

Doc. IHS-5000
2 Feb 2000

GIS Interface Development
A Guide for Resource and Patient Management System (RPMS) Developers

February 2, 2000

Prepared by
Science Application International Corporation

GIS Interface Development i Table of Contents

TABLE OF CONTENTS
1.0 SYSTEM OVERVIEW .. 1

1.1 Primary System Components .. 1
1.1.1 Application ... 2
1.1.2 Formatter ... 2
1.1.3 Transaction Type ... 2
1.1.4 Interface Script File .. 2
1.1.5 Receiver... 2
1.1.6 UIF--Universal Interface File .. 2
1.1.7 Interface Destination File ... 2
1.1.8 Output Controller ... 3
1.1.9 Transmitter... 3
1.1.10 Application Deformatter ... 4
1.1.11 System Control .. 4

1.2 Transaction Flow Through the GIS .. 4
1.2.1 Outbound Transactions ... 4
1.2.2 TCP/IP Transmitters/Receivers ... 6
1.2.3 TCP/IP Transmitters/Receivers ... 8
1.2.4 Interactive transactions .. 10

1.3 Quick Guide ... 12
1.3.1 Create the message .. 13
1.3.2 Send the message (outgoing) .. 13
1.3.3 Receive the message (incoming) ... 14
1.3.4 Route the message (store-and-forward) 14

2.0 INTERFACE MESSAGE DESIGN ... 15

2.1 Script Generator: HL7 .. 16
2.1.1 HL7 Summary .. 17
2.1.2 Field Data Types .. 17
2.1.3 Field Definition ... 20

2.1.3.1 Field Data Location .. 22
2.1.3.2 Field Data Location for Set ID Fields 25
2.1.3.3 Field Data Location for Word Processing Fields 26
2.1.3.4 Field Data Location Using Special Variables 27

2.1.4 Segment Definition .. 27
2.1.5 Message Definition .. 29
2.1.6 Message/Transaction Type Link .. 34
2.1.7 Incoming vs. Outgoing Transactions .. 35

2.2 Script Generator X12 Modifications ... 35
2.2.1 Field Data Types .. 36
2.2.2 Field Definition ... 36
2.2.3 Segment Definition .. 37
2.2.4 Message Definition .. 37
2.2.5 Compiled X12 Script Characteristics 39

2.2.5.1 Create Sequence Number .. 41

User Manual ii Table of Contents

2.3 Programmer APIs .. 42
2.3.1 Programmer-Defined Lookup/Store Options 42
2.3.2 M Calls From Compiled Scripts ... 43

2.3.2.1 Variable arrays used in M Calls .. 44
2.3.3 Error handling .. 47

2.4 Generate/Compile Scripts .. 48
2.5 Error Conditions ... 50
2.6 Message Definition Hints ... 51

3.0 TRANSACTION ROUTING .. 53

3.1 Outgoing Transactions ... 53
3.1.1 Parent Transaction Type Definition .. 53
3.1.2 Application Program Interface (API) Call 55
3.1.3 Child Transaction Type Definition .. 57
3.1.4 Destination Definition ... 59
3.1.5 Destination for the Background Process 61
3.1.6 Transaction Replication To Multiple Destinations 65

3.2 Incoming Transactions ... 68
3.2.1 Destination-Transaction Type Pair ... 70
3.2.2 Destination-Background Process Pair 73
3.2.3 HL7 Message Type Recognition (Destination Determination) . 77
3.2.4 X12 Message Recognition ... 78
3.2.5 X12 Validation .. 79
3.2.6 Functional Identifiers (Message Type) and Message

Recognition .. 80
3.3 Responses to Incoming Transactions .. 80

3.3.1 HL7 Accept Acknowledgments .. 80
3.3.2 HL7 Application Acknowledgments .. 83
3.3.3 Queries and Specialized Acknowledgments 84

3.3.3.1 Query Status API .. 84
3.3.4 X12 Query Responses ... 85
3.3.5 X12 Transaction Acknowledgments ... 85
3.3.6 X12 Functional Acknowledgments ... 85

3.4 The Bi-directional Interface .. 86
3.5 Routing a Store-And-Forward Transaction .. 89
3.6 Transient Connection ... 90

4.0 SELECTIVE ROUTING .. 93

4.1 Concept of Operations ... 93
4.1.1 Inbound transactions ... 93
4.1.2 Outbound transactions ... 94

4.2 Application Screening Logic ... 94
4.2.1 INA Array ... 95
4.2.2 INDA Array... 95
4.2.3 INSRCTL Array .. 95
4.2.4 INSRDATA Array ... 96

4.3 Selective Routing (SRMC) Code Placement .. 97

User Manual iii Table of Contents

4.3.1 Interface Transaction Type File ... 97
4.3.2 Interface Destination File ... 97
4.3.3 Background Process Control File .. 98

4.4 Screening Points .. 98
4.4.1 Receiver Screens .. 99
4.4.2 Message Replicator Screens ... 99

4.5 Primary Destinations and Subordinate Destinations 100
4.5.1 Outbound ... 100
4.5.2 Inbound .. 101

4.6 Route ID and Interface Destination Mapping ... 102
4.6.1 Creating Destination Specific MSH Segments 102
4.6.2 MSH Facility and Application Precedence 104

4.7 Routing Activity Logs ... 104
4.8 Application Acknowledgment Routing .. 104
4.9 Sample Screening Logic Code .. 105
4.10 Supporting Utilities ... 106

4.10.1 PARSEG^INHUT ... 108
4.10.2 GETSEG^INHUT ... 108
4.10.3 RCVSCRN^INHUT .. 108

4.11 Application Acknowledgment Routing .. 109
4.11.1 GETDEST^INHUT ... 109

5.0 THE GIS IN OPERATION .. 111

5.1 Universal Interface File (UIF) ... 111
5.2 Interface Error File ... 113
5.3 Status levels .. 115

5.3.1 X12 Status Levels .. 116
5.4 Testing/Debugging Concepts and Utilities ... 117

5.4.1 Transaction Search Functions ... 117
5.4.2 Error Search Functions .. 119
5.4.3 List Queued Transactions .. 120

5.5 INHPSAM .. 121
5.5.1 Preparing Transactions for Distribution 121
5.5.2 Activating/Deactivating an Interface 123

6.0 QUERY RESPONSE FUNCTIONS .. 125

6.1 Log on Server .. 125
6.1.1 Background LoS Process Definition 125

6.2 Application Server .. 127
6.2.1 ApS Background Process Definition 128
6.2.2 Variable arrays for incoming and outgoing scripts 128
6.2.3 ApS User Time Out .. 130

6.3 Transaction Re-queue Warning ... 130
6.4 Testing/Debugging hints .. 131

7.0 DATA TRANSFORMS AND CHARACTER CONVERSION 132

Appendix A: .. 133

GIS Interface Development i Introduction

Introduction

The GIS Applications Development Manual provides an overview of the Generic
Interface System (GIS), an interface tool of Science Applications International
Corporation (SAIC). The document is intended for applications developers, including
both systems analysts and programmers. It explains how to define GIS messages and
how to route messages from one system to another. It includes examples of data input
screens with an explanation of the various fields on the screens and how they are
used.

This document does not explain all functionality in the GIS, but focuses on the
functions needed to develop and test interface messages. Many of the system utilities
are used primarily by site management personnel, and are not explained in this
manual.

Applications developers should also consult the appropriate ICD and implementation
guide for the specific interface(s) being developed. Other sources of information on
the GIS and on interface development include the following.

Health Level 7
3300 Washtenaw Avenue, Suite 227
Ann Arbor, MI 48101-4250
http://www.mcis.duke.edu/standards/HL7/hl7.htm

GIS Interface Development i GIS Changes Specific to the RPMS

GIS Changes Specific to the RPMS

The Generic Interface System (GIS) was initially developed on the Composite Health
Care System (CHCS). This document has been adapted from the original CHCS
version specifically for the GIS application to the Resource and Patient Management
System (RPMS) of the Indian Health Services (IHS) system.

Overview of Changes
The following changes have been made to the original CHCS software in order to
port the GIS to the RPMS:

• Screens in the CHCS GIS menu options have been converted to ScreenMan for
use with the RPMS.
An analysis was performed to determine the feasibility of porting the CHCS
WindowMan and VA ListMan functions to RPMS. It was concluded that it would
require significant effort because of the graphic control characters and extensive
use of the keyboard (DWK) and terminal control (DIJC) arrays.

• The GIS functionality is the same as in CHCS, but the user interface is different
because of ScreenMan functionality. The screens used in this document represent
screen changes made for the RPMS.

• The GIS functionality ported to the RPMS is comparable to the CHCS version
4.602 baseline with the enhancements developed for version 4.603 that were
available at the time of conversion for RPMS.

• The following CHCS GIS menu options were not included in the conversion to
RPMS:

− BSC Background Process Security Control
− STAT Interface Statistics Generator
− IES Interface Error Statistics Generator

GIS Interface Development 1 System Overview

1.0 System Overview
The Generic Interface System (GIS) is a transaction oriented, information transfer and
format processing system used to create, manage, and interpret messages flowing
from one system to another. Its primary use is to provide interface messaging between
the RPMS and other computer systems such as offboard anatomic pathology, blood
bank, clinical chemistry, and between other the RPMS and VA systems.

The GIS is symmetric in design which allows messages from any source to be routed
to any destination. This allows the GIS to serve as a message source, a message
processor, and a message router.

The GIS provides an application independent interface. This allows interfaces to be
accomplished using a simple, standardized tool. Functional analysts can create and
modify interface message formats with minimal programmer intervention. The GIS
also provides independence from hardware and software platforms.

The GIS is essentially two different tools. The first provides the ability to define both
incoming and outgoing interface messages/transactions. This capability can be
operational for any database that utilizes a FileMan Data Dictionary. The message
definition function is called the Script Generator Subsystem.

The second tool is a message router. It is an "interface engine" used to route
transactions/messages between any two systems. The GIS has the capability of
routing "store-and-forward" interface transactions which are neither created nor
stored in the local application database.

1.1 Primary System Components
The following is an overview of the primary system components. Figure 1.1
illustrates the relationship between components. Notice in the diagram that the
Universal Interface File (UIF) and the Interface Destination File are at the center of
the diagram.

Both outgoing messages/transactions and incoming messages/transactions are treated
as inputs to the UIF. Outgoing messages/transactions are processed through system
components shown in the upper left of the diagram. Incoming messages/transactions
are processed through system components shown in the upper right of the diagram.

All messages must have a valid destination. The Output Controller routes all
messages based on their destinations. Messages are either routed to a remote system
(as shown in the lower left of the diagram) or to an application/database (as shown in
the lower right of the diagram).

GIS Interface Development 2 System Overview

1.1.1 Application
An application is any application program which initiates an interface transaction or
interprets a remote transaction.

1.1.2 Formatter
The job of the formatter is to process application requests to generate interface
transactions. The formatter consists of the format queue and the Format Controller.
Application requests to generate a transaction are queued to the Format Controller.
This queuing process enables application programs to experience very little delay.
When calling the Formatter, application programs must specify a Transaction Type
and a file entry. From the queue, the format controller processes each application
request. The format controller extracts data from the database, formats the data into
an outbound transaction, and places the formatted transaction in the Universal
Interface File.

1.1.3 Transaction Type
Transaction Types contain the information necessary to create and route transactions.

1.1.4 Interface Script File
Scripts are used to both create and interpret messages. Transaction Types point to the
appropriate script for interpretation.

1.1.5 Receiver
A receiver is a program written to receive information from a remote system. The
receiver can either run as a GIS-controlled background task or can be invoked by
other events. A typical receiver accepts data from a remote system, files transaction in
the Universal Interface File, and returns an acknowledgment. There can be many
simultaneously active receivers.

1.1.6 UIF--Universal Interface File
This file contains all interface transactions regardless of destination. It also contains
all status and tracking information for the transactions.

1.1.7 Interface Destination File
This contains the information necessary to route an interface transaction to its
destination. Each UIF entry must have a destination.

GIS Interface Development 3 System Overview

1.1.8 Output Controller
This is a background task responsible for scanning the UIF for transactions to be sent
to their destinations. Based on user-defined data Interface Destination file, the Output
Controller determines which path the output will take.

Figure 1-1: Primary System Component Diagram

1.1.9 Transmitter
This is a M routine used to transmit a transaction to a remote location. A typical
transmitter sends outgoing transactions to a remote system over a TCP/IP connection,

GIS Interface Development 4 System Overview

receive an acknowledgment of the transmission, and updates the status of the
transactions.

1.1.10 Application Deformatter
This module processes transactions with the aid of a Transaction Type and prepares
the data for storage on the local database. Using an input script, it handles data
interpretation, transformation, validity checking, and storing.

1.1.11 System Control
This module consists of several components which are responsible for monitoring and
controlling the entire GIS. Major components are the Background Process Control,
the Interface Error File, and various utilities used to search for transactions, re-queue
transactions, remove entries from various queues, and others.

1.2 Transaction Flow Through the GIS
The following is an overview of the flow of transactions as they are routed through
the GIS. Both outgoing and an incoming flows are described.

1.2.1 Outbound Transactions
Figure 1.2 illustrates the flow of an outbound transaction. An understanding of this
flow will aid in understanding how outgoing interface messages must be defined. For
a typical outgoing transaction, the sequence of events is as follows.

• The application API makes a call to the GIS function, ^INHF, using the parent
transaction type as the first parameter in the call. Variable arrays INDA and INA
are also provided in the call.

• This places an entry in the Format Controller Queue (^INLHFTSK).

• When the format controller picks the entry off the queue, it identifies all child
transaction types associated with the parent transaction type. Child transaction
types contain a recursive pointer to the Interface Transaction Type File
(^INRHT).

• For each child transaction type, the format controller identifies the script, and
therefore, the routine compiled from the script for the child transaction type.

• The format controller executes the compiled script, which extracts the data from
the database. It then formats the data for the outgoing message and files it as an
entry in the Universal Interface File (^INTHU). The child transaction type
contains a pointer to the “destination”, an entry in the Interface Destination File
(^INRHD). This destination is stored in the UIF.

GIS Interface Development 5 System Overview

• As it executes, the script also makes an entry in either the Output Controller
Queue (^INLHSCH) or a Destination Queue (^INLHDEST), depending on a flag
specified in the Interface Destination File. The queues contain a pointer to the
entry in the UIF, along with the priority and the time-to-process of the message.
The latter two are based on data stored in the Interface Transaction Type File.

• As the output controller picks the entry from the Output Controller Queue, it
identifies the destination stored as part of the entry. The controller then references
the entry in the Interface Destination File to obtain the name of the routine to
process the message (only outbound destinations contain a routine name).

• If the destination is a remote system, the transaction will typically be sent via a
transmitter which operates as a background process. The output controller will
queue the transaction on a destination queue, where it will be sent when the
background process is active.

GIS Interface Development 6 System Overview

Figure 1-2: Outbound Transaction Flow

1.2.2 TCP/IP Transmitters/Receivers
Most interface transactions are exchanged with remote systems via TCP sockets. The
GIS includes specialized background jobs for such networks.

Figure 1.3 illustrates the flow of an outbound transaction via a TCP/IP connection.
The transmitter is a background job which is started, stopped, and monitored using
the same functions as other background jobs such as the output controller and format

GIS Interface Development 7 System Overview

controller. While the transmitter is in operation, the typical sequence of events is as
follows.

• The transmitter checks for entries in the destination queue. The destination queue
is ^INLHDEST(<Interface Destination file ien>,<priority>,<time-to-
process>,<UIF ien>).

• The transmitter sends the transaction to the remote system.

• If enhanced acknowledgment rules are being used (See “Responses to Incoming
Transactions”), the transmitter will wait for an accept acknowledgment from the
receiving system.

• The accept acknowledgment will be evaluated. A positive acknowledgment
indicates that the message was received successfully. A negative acknowledgment
indicates that the message was not received successfully or that it contained a
fatal error in HL7 encoding rules. The acknowledgment does not imply the
validity of the data—only the validity of the transmission.

• If a negative acknowledgment was received, the transmitter will re-transmit the
transaction up to the site-definable maximum number of retries.

• If a positive acknowledgment was received, the transmitter will remove the
transaction from the destination queue, and will update the status of the
transaction. This status will be either “sent” or “complete” depending on whether
an application acknowledgment message is expected from the remote system.
Figure 1.3 illustrates the flow of an incoming transaction via a TCP/IP
connection. The receiver, like the transmitter, is a background process. While the
receiver is in operation, the typical sequence of events is as follows.

• The receiver periodically reads the TCP/IP socket for incoming transactions.

• The incoming transaction is evaluated to ensure that it has all HL7 required
components.

• If the incoming transaction fails the evaluation, the receiver sends a negative
acknowledgment (a status of “CR”) back to the remote system and waits for
another transaction.

• If the incoming transaction passes the evaluation, the transaction is stored in the
Universal Interface File, placed on the Output Controller Queue, and a positive
acknowledgment is returned to the remote system. The incoming transaction may
be an application acknowledgment or a new transaction. Both are treated
identically by the receiver.

GIS Interface Development 8 System Overview

Figure 1-3: Incoming Transaction flow

1.2.3 TCP/IP Transmitters/Receivers
Most interface transactions are exchanged with remote systems via TCP sockets. The
GIS includes specialized background jobs for such networks.

Figure 1.4 illustrates the flow of an outbound transaction via a TCP/IP connection.
The transmitter is a background job which is started, stopped, and monitored using
the same functions as other background jobs such as the output controller and format
controller. While the transmitter is in operation, the typical sequence of events is as
follows.

GIS Interface Development 9 System Overview

• The transmitter checks for entries in the destination queue. The destination queue
is ^INLHDEST(<Interface Destination file ien>,<priority>,<time-to-
process>,<UIF ien>).

• The transmitter sends the transaction to the remote system.

• If enhanced acknowledgment rules are being used (See “Responses to Incoming
Transactions”), the transmitter will wait for an accept acknowledgment from the
receiving system.

• The accept acknowledgment will be evaluated. A positive acknowledgment
indicates that the message was received successfully. A negative acknowledgment
indicates that the message was not received successfully or that it contained a
fatal error in HL7 encoding rules. The acknowledgment does not imply the
validity of the data—only the validity of the transmission.

• If a negative acknowledgment was received, the transmitter will re-transmit the
transaction up to the site-definable maximum number of retries.

• If a positive acknowledgment was received, the transmitter will remove the
transaction from the destination queue, and will update the status of the
transaction. This status will be either “sent” or “complete” depending on whether
an application acknowledgment message is expected from the remote system.

Figure 1.5 illustrates the flow of an incoming transaction via a TCP/IP connection.
The receiver, like the transmitter, is a background process. While the receiver is in
operation, the typical sequence of events is as follows.

• The receiver periodically reads the TCP/IP socket for incoming transactions.

• The incoming transaction is evaluated to ensure that it has all HL7 required
components.

• If the incoming transaction fails the evaluation, the receiver sends a negative
acknowledgment (a status of “CR”) back to the remote system and waits for
another transaction.

• If the incoming transaction passes the evaluation, the transaction is stored in the
Universal Interface File, placed on the Output Controller Queue, and a positive
acknowledgment is returned to the remote system. The incoming transaction may
be an application acknowledgment or a new transaction. Both are treated
identically by the receiver.

GIS Interface Development 10 System Overview

Figure 1-4: TCP/IP Transmitter Flow

Figure 1-5: TCP/IP Receiver Flow

1.2.4 Interactive transactions
Figure 1.6 illustrates the flow of an interactive transaction. Interactive transactions
include CIW type interactions as described in “Query Response Functions”, which
are primarily interactive functions from a workstation, as well as queries as defined
by the HL7 Version 2.3 specification. This is a more complex process because
interactive transactions are not processed through the output controller or the format
controller. Instead the background process provides some of the functions which
would normally be provided by the format controller and the output controller.

GIS Interface Development 11 System Overview

Interactive transactions are typically initiated by a remote system, which is illustrated
in the figure.

• The incoming transaction is received by a specialized receiver process.

• The receiver is responsible for initial validation of the incoming transaction. If
valid, the receiver will store the transaction in the Universal Interface File
(^INTHU).

• In addition, the receiver identifies the destination of the transaction. It then
references the entry in the Interface Destination File (^INRHD) to obtain the
name of the entry in the Interface Transaction Type File (^INRHT). Only inbound
destinations contain a pointer to the Transaction Type File. Incoming transactions
have a one-to-one relationship between an entry in the Interface Destination File
and an entry in the Interface Transaction Type File. (Note that the concept of
“parent” and “child” transaction types only applies to outgoing transaction types,
not to incoming transactions.)

• The receiver references the Interface Transaction Type File to identify the script
and the routine compiled from the script.

• The compiled routine is executed. It parses the message and stores the data into
the database.

• The receiver then identifies the application acknowledgment Transaction Type
from the Interface Transaction Type File. The acknowledgment script may be
complex. Many interactive transactions are requests for data from the local
database, such as a request for patient information. These acknowledgment
messages can contain a significant amount of data in addition to the message
header and the status information. However, the GIS processes complex
acknowledgment transactions the same as simple acknowledgments.

• The receiver executes the acknowledgment script. The variable array from
execution of the incoming script is available and is used to pass data into the
acknowledgment script.

• Execution of the script results in a new entry in the Universal Interface File.

• The acknowledgment transaction for an interactive process differs from a
“normal” process in that it is not placed on the Output Controller queue. Instead,
the receiver process transmits the transaction back to the remote system over the
same connection (typically a TCP socket) on which the incoming transaction was
received.

GIS Interface Development 12 System Overview

Figure 1-6: Interactive Transaction Flow

1.3 Quick Guide
As described, the GIS provides two major functions. The first is Message Definition.
The primary tool is the Script Generator which is used to define the interface
messages. It creates compiled M code to extract and format messages from the
database (outgoing) or update the database (incoming). The second major function is
Transaction Routing. This routes interface transactions (messages) between
applications and/or remote systems.

GIS Interface Development 13 System Overview

This document describes how the two functions work together to create and route
messages out of, and into, the database. The following is a simplified guide to using
the GIS. Each step is more fully described in subsequent chapters of this document.

1.3.1 Create the message
Define the message using the script generator. This step consists of establishing field
definitions, segment definitions and a message definition. Fields must be defined in
the Script Generator Field file before they can be entered into the Field Multiple of
the Script Generator Segment File. Similarly, segments must be defined before they
can be entered into the Segment Multiple of the Script Generator Message file.
However, the Data Location which is specified in a field definition is dependent upon
the overall structure of the segments within a message. Therefore the overall message
must be planned as a unit.

Create the message/transaction type link. Although the terms message and
transaction type are often used interchangeably, the routing function of the GIS routes
a transaction, defined as an entry in the Interface Transaction Type file. If it is an
outgoing transaction, the message must be linked to a child transaction type, and the
child type must be linked to a parent transaction type. Both are entries in the
Interface Transaction Type File. A child transaction type is one which contains a
recursive pointer to another entry in the file, which is thereby defined to be the parent.

Generate/compile the script. This creates compiled M code--a series of routines in the
IS* name space--which is used to extract from or to store data into the database. The
GIS uses the data entered in the message definition files (Script Generator Message
File, Script Generator Segment file and Script Generator Field file) to generate and
compile scripts. Once compiled into routines, the original definition data is not
referenced as part of the day-to-day routing functions of the GIS.

1.3.2 Send the message (outgoing)
Place an Application Program Interface (API) call in the application. This must
reference a parent transaction type. The API triggers GIS code, which places an
entry in the formatter queue. Figure 1.2.1-1 illustrates the program flow. As the
formatter picks each entry off the Format Queue, it executes the outgoing compiled
script for each of the parent type’s children. The script extracts the data from the
database, formats it as defined, and stores the formatted transaction in the Universal
Interface File. At the same time, it places a pointer to the entry in the Universal
Interface File on the Output Controller queue. The formatter is only used for outgoing
transactions

Define the Destination. For outgoing transactions, a pointer to an entry in the
Interface Destination File is placed while in the child transaction type. Many
transactions can point to the same destination. The destination is used by the output
controller to determine how to route the transaction. For outgoing transactions, the
destination is typically the name of a routine. This routine may store the transaction in

GIS Interface Development 14 System Overview

a file (such as a VMS file) or place the transaction on a destination-specific queue for
transmission to a remote system. It can also transmit the transaction directly. The
most common destination is a remote system, and the GIS contains standard routines
to place the transaction on a destination-specific queue for transmission by a TCP/IP
background process.

Create the destination-background process link. Outgoing transactions may be "sent"
to a disk file, a remote system, etc. This is controlled by a background process which
handles all of the transactions for a specified destination. The background processes
can be started, stopped, and monitored with system utilities.

1.3.3 Receive the message (incoming)
Define the destination and link the transaction type to a destination. For incoming
transactions, this means defining a Destination-Transaction Type Pair. The
transaction type must be pointed to by an entry in the Interface Destination File in a
one-to-one relationship.

1.3.4 Route the message (store-and-forward)
Store and forward transactions do not need message scripts. They are transactions
which are received from a remote system, stored in the Universal Interface File, then
forwarded to another remote system. To route a store-and-forward transaction, it is
only necessary to define the incoming background process, a destination, an outgoing
background process.

User Manual 15 Interface Message Design

2.0 Interface Message Design
The Generic Interface System provides a robust tool which allows applications
developers to define the structure of interface messages. The format of a message
follows the structure specified in the Health Level Seven (HL7) encoding rules, but is
general and robust enough to support other standards. With this structure, HL7 data
fields are organized into logical groupings called segments. Each segment typically
contains logically related fields, such as patient demographic data, observation data,
etc. Segments are then organized into messages. For more information on HL7 rules,
refer to HL7 Version 2.3 documentation published by the Health Level Seven
Conference.

Fields, segments and messages can be defined using the Script Generator. This
consists of a series of tables which allow applications developers to define message
elements using simple file and table build. Once defined, the GIS generates a message
script based on the data entered in the tables. For complex messages, the script can
contain imbedded calls to external M routines which perform complex functions
beyond the ability of FileMan. This subsystem is robust enough to define most
messages that are required for data exchange with remote systems.

The purpose of the script for outgoing transactions is to extract data from a FileMan
database and format it into a message. For inbound transactions, the script parses data
from the standard format, converts it as needed, and stores it in a FileMan database.
The following is a portion of the Patient file as defined in the database, which is
compared with a portion of the Patient Identification (PID) segment as defined in the
HL7 standard.

^DPT(D0,0)= (#.01) NAME [1F] ^ (#.02) SEX [2S] ^ (#.03) DOB [3D]
^....^(#8000) FMP/SSN [15F]^
PID^SET ID^EXTERNAL ID^INTERNAL ID^ALTERNATE ID^NAME^MOTHER’S MAIDEN
NAME^DATE OF BIRTH^SEX^.....

The next example shows a portion of a specific entry in the Patient file, followed by a
portion of the actual PID segment of an outgoing interface transaction. Notice that the
format of some of the data varies between the two. The functionality of the GIS not
only extracts/inserts data, but formats it to meet the standard which is required. The
table entries between the ^DPT entry and the PID segment show the name of the
fields as defined in the Script Generator Field file and the Data Type. The Data Type
is one method used by the GIS to transform data from one format to another.

GIS Interface Development 16 Interface Message Design

Figure 2-1: Location of GIS Fields and their Data Types

The script which is generated by the Script Generator Subsystem is filed into the
Interface Script file, where it is used to compile M routines. The compiled routines
are invoked by the GIS for each incoming or outgoing message.

It is possible to bypass the Script Generator and define scripts directly. However, this
is not recommended. It requires considerable skill and understanding of the way in
which scripts are compiled into routines and should only be used if absolutely
necessary.

Note: If the GIS is being used to route store-and-foreword transactions, do not define
a script.

2.1 Script Generator: HL7
This chapter describes how to define messages using the Script Generator. There are
differences between the definition of outbound and inbound messages. It is important
to re-iterate the relationship between the transaction type and the message. Message
definition is essentially a front-end to the actual operation of the GIS. Messages must
be linked to a transaction type because the GIS uses the transaction type as the
starting point to route messages.

Entries in most GIS tables must have be correctly “name spaced”. The Interface
Namespace file contains a list of “namespaces” that can be used in the GIS. Entries in
the Interface Transaction Type File, the Interface Destination File and the message
definitional files must have names that begin with an allowable namespace. For
example, “HL” is a defined namespace and all HL7 transactions begin with “HL”
such as “HL DG REG PATIENT”. Other current namespaces include X1 (for X12),
NC (for NCPDP) and TEST.

Because scripts compile differently for different interface standards, it is particularly
important to specify the correct standard when defining a message. The Script
Generator Message File and the Interface Script File contain a field that specifies the
interface standard to be used when generating and compiling scripts. The new field is
identical for both files and is a set-of-codes type with entries for HL7, NCPDP, X12,
etc.

GIS Interface Development 17 Interface Message Design

The field is specified as an “identifier”. This means that the user is automatically
prompted to make an entry in this field the first (and only the first) time they create a
message. Once they make an entry in this field, the code will take them to the proper
message definition screen. They will never be prompted again, nor will they be able
to modify the “standard” being used other than through fileman. The value stored in
the message file is automatically carried forward into the script file.

2.1.1 HL7 Summary
The GIS is a generalized interface tool. It is not specific to the Health Level Seven
(HL7) standard but it supports HL7 specifications. For example, the subsystem will
create the

HL7-specific MSH (message header) segment on outgoing messages using HL7-
specific MSH fields.

The following fields in the initial message definition screen (see Figure XXX -
Message Definition Screen 1) correspond with HL7-specific MSH segment fields for
outgoing transactions. Note that not all MSH fields are user-defined. For example, the
GIS inserts MSH-7, the date/time of the message, into the MSH at the time it is
created.

Field Name Message Header piece position
Sending Application MSH-3
Sending Facility MSH-4
Receiving Application MSH-5
Receiving Facility MSH-6
Message Type MSH-9, first component
Event Type MSH-9, second component
Processing ID MSH-11
Version MSH-12
Accept ACK MSH-15
Application ACK MSH-16

For more information on the use of these fields, refer to the HL7 documentation and
to the chapter on “Message Definition”.

2.1.2 Field Data Types
Data types are contained in the Script Generator Data Type file (# 4012.1). Data types
should only be created or modified by the Interface Team, and all requests for
changes or additions to data types should be referred to the Interface Team.

Each field which is included in an interface message must be understood by both the
sending and the receiving system. Free text data is typically quite similar, if not
identical, on various systems, but other types of data may be stored differently. A

GIS Interface Development 18 Interface Message Design

date, for example, may be stored as 2950614 in a FileMan system, 06141995 in a
second, 6/14/95 in a third, etc.

The goal of standards such as HL7, X12 and others is to provide a standard
representation of data types and to assemble the data into agreed-upon formats. All of
the supported data types in the HL7 standard are defined in the GIS. The applications
developer will not need to define any data types, but must be aware that each field in
a segment must point to a data type. The GIS includes the following data types.

Data Type Name Data Type Designation
Address AD
Coded Element CE
Coded ID ID
Composite CM
Composite ID with Check Digit CK
Composite Person Name CN
Composite Quantity with Units CQ
Date DT
Numeric NM
Person Name PN
Set ID SI
String ST
Telephone Number TN
Text TX
Time TM
Time Stamp TS

HL7 data types which are not currently supported are: Formatted Text Data (FT),
Coded Element with Formatted Values (CF), Reference Pointer (RP), Timing
Quantity (TQ), and Money (MO).

Figure 2-2 is an example of a data type definition screen. Defining a data type enables
the user to enter data for the following: (R) = required field

DATA TYPE (R) Name must be 3-30 characters, not numeric or starting with
punctuation.

ABBREVIATION (R) The two character abbreviation for this data type obtained
from the HL7 standard.

DESCRIPTION Free text description of the field data type for documentation
purposes.

INCOMING TRANSFORM This is M code that will serve to transform incoming data of
this type from the HL7 format to that required by the local host
database. The M code should start with the data in X and
leave the transformed result in X. If the transform kills the
variable X, the GIS will log an error. If the transform sets the
value of X="", the local database will not be updated, but will
retain any prior value. If the transform sets the value of X="@",
any existing value in the local database will be deleted.

GIS Interface Development 19 Interface Message Design

OUTGOING TRANSFORM This is M code that will transform the data format stored in the
local database into HL7 format. The starting data will be in X
and the transformed data should also be in X. The starting
data will be in full output form including any output transforms.
(Date/Time fields are an exception—they remain in FileMan
internal format.)

GET X FROM
TRANSFORM

This is used in Incoming transactions in conjunction with the
Map field in the Script Generator Field file. In turn, the Map
field points to the Data Element Map Function file, which
references values as they are stored (mapped to) another
system. If the Map function returns a value such as IEN^.01,
the appropriate code for the Get X From transform is S
X=$P(X,U,2).

 *** HL7 Data Type Definition ***

DATA TYPE: HL CODED LOCATION ABBREVIATION: CE
INCOMING TRANSFORM:
I $P($G(INTHL7F2),U,4) S X=$$SUBESC^INHUT7(X,INDELIMS,"I")

OUTGOING TRANSFORM:
S:$L(X) X=$$CL^INHUT1(X,.INDELIMS,$P($G(INTHL7F2),U,4),"O")

GET X FROM TRANSFORM:
DESCRIPTION:

COMMAND: Press <PF1>H for help Insert

Figure 2-2: Data Type Definition Screen with Outgoing Transform

 *** HL7 Data Type Definition ***

DATA TYPE: CODED ID ABBREVIATION: ID
INCOMING TRANSFORM:

UTGOING TRANSFORM:

GET X FROM TRANSFORM:
K:X="" X I $D(X) S X=$P(X,U,2)

DESCRIPTION:

COMMAND: Press <PF1>H for help Insert

Figure 2-3: Data Definition Screen with Get X From Transform

GIS Interface Development 20 Interface Message Design

2.1.3 Field Definition
The field is the fundamental building block of interface messages. Fields are
organized into segments, which, in turn, are organized into messages/transactions.

When defining a field for an interface message, it is useful to first consider the Field
Data Location. The most common fields have data locations which can be defined as
fields in a FileMan Data Dictionary. For an outgoing message, the data is extracted
from this data location in the FileMan database. For an incoming message, the data
will be placed into this data location.

For outgoing messages, it is also possible to define the data location as a FileMan
computed expression, or to use a programmer-defined variable. Fields are defined in
the GIS in the Script Generator Field file (# 4012). Figures 2-4 through 2-7 are
examples of screens 1, 2 and 3 of the field definition screens used in the GIS.

Defining a field provides the ability to enter data for the following: (R) = required
field.

FIELD NAME(R) Name must be 3–30 characters, not numeric or starting
with punctuation.

DATA TYPE (R) Enter the data type of this field. This is a pointer to the
Field Data Type file described in another section

MAX LENGTH (R) This is the maximum length that this field can be in the
message. If the data is longer than the maximum
length, it will be truncated.

MAP FUNCTION This is a pointer to the Data Element Map Function file
for cross-system data mapping. It is used with CE data
types.

OVERRIDE FILEMAN INPUT
TRANSFORM

Use this for incoming transactions only. If this field is
set to "yes", the data in the incoming transaction will be
entered in the database, bypassing the FileMan input
transform.

DELETE ON NULL Use this field only for incoming transactions that use
GIS generated input templates. If set to "yes" and the
remote system provides no value for this field, the GIS
will delete any existing data in the field when the
incoming message is filed. (The GIS inserts a value of
"@" in the FileMan input template). If set to “yes” and
the remote system sends “” in the field, the GIS will not
delete the existing data. This varies from the HL7
standard, which uses two double quotes ("") to specify
that an existing value should be deleted.

DATA LOCATION This is the location of the data. It can be either a field
name or number or a computed expression. The root
file upon which this expression will depend is the file
defined in the Message. Refer to the section on Field
Data Location for more information and examples.

GIS Interface Development 21 Interface Message Design

WP APPEND/OVERWRITE If the data location for the field is a word processing
field, the flag entered here will specify if the incoming
data should be appended to current data or to
overwrite the data.

INPUT VALIDATION This is M code used to validate the field in incoming
data. The value of the data will be in the variable X.
The code should kill X if the data is invalid. The GIS will
log an error if X is killed. If the M code resets the value
of X to "@", existing data in the field in the local
database will be deleted. If the M code resets the value
of X to "", existing data in the field in the local database
will be preserved.

DESCRIPTION Free text description used for documentation.
INCOMING TRANSFORM This field can be used to override the Incoming

Transformation for the specified Data Type of this field.
OUTGOING TRANSFORM Use this field to override the outgoing Transform for the

specified data type of this field.
TIME PRECISION Enter 'Y' for year, 'L' for month, 'D' for day, 'H' for hour,

'M' for minute, 'S' for second, or '1' for auto precision
(which indicates to determine the precision based on
the data

TIME CONVERT Enter ‘0’ to don’t convert to precision.
Enter ‘1’ to convert to precision indicated (O/B – add
precision component)
Enter ‘2’ to convert to precision indicated (O/B – don’t
add precision component) Enter ‘3’ to convert to HL7
V2.3 Standard

MIDNIGHT OFFSET Enter '0' to do nothing or for:
outbound enter '1' to add 1 day and set time to 0000
enter '2' to subtract 1 second
enter '3' to subtract 1 minute
For inbound enter '1' to subtract 1 day and set time to
2400

ENCODING CHARACTERS
CONVERSION

Enter '1' to convert delimiters from HL7 to FileMan
(inbound), or FileMan to HL7 (outbound)

SUB-FIELDS If an entry is made in this multiple, this indicates that
this field is composed of sub-fields. The transforms and
validation for this field will be ignored and those defined
for the "sub-fields" will be used. This is a recursive
pointer to the Script Generator Field file.

 SEQUENCE (R) The order in which this sub-field appears within the
field.

 REQUIRED This field is used to indicate whether this sub-field is
required within this field. (Used only for inbound
transactions)

 USED FOR LOOKUP This field is used to indicate whether this sub-field is to
be used for lookup.

GIS Interface Development 22 Interface Message Design

ADDITIONAL LINES TO BE
PLACED IN INPUT TEMPLATE

This field can be used to place additional M code in the
FileMan input template. This is particularly useful if the
input transform for a field requires a specified value in
another field. For example, if the "Temporary Address
Enter/Edit" field must be set to "yes" before the
"Temporary Address" field will pass the FileMan input
transform, M code can be used to “populate” the “yes”
value.

FIELD LENGTH TYPE Outgoing transactions default to the M-standard of
variable length fields. Leading and trailing blanks are
truncated. This field is used if the remote system
requires a fixed field or minimum/maximum field length
(i.e. X12 requirement).

MINIMUM LENGTH This is used only for outgoing transactions which utilize
minimum/maximum field length. The value entered in
the maximum length will be used for the maximum, the
value entered here will be the minimum. Data extracted
from the database will be truncated if the length
exceeds the maximum, and will be padded if it is less
than the minimum.

PAD CHARACTER This is the pad character to pad data for fixed field
lengths or for minimum/maximum field lengths. The
default is a space.

PAD LEFT/RIGHT This specifies whether data in fixed or
minimum/maximum field lengths should be padded to
the left (the default) or the right.

2.1.3.1 Field Data Location
The significance of the Field Data Location is that it provides the GIS with a method
of navigating to the field to extract or insert data. The definition of the data location is
dependent upon the structure of the message--particularly on the way in which
message segments are defined. A typical message will extract or insert data from
more than one FileMan file, often using one or more FileMan multiples. The starting
point for navigating is the “root” file of a message, which is entered as one field in the
Script Generator Message file. The following explanation assumes familiarity with
the documentation sections on segment definition and message definition.

GIS Interface Development 23 Interface Message Design

 *** Field Definition *** pg 1 of 3

FIELD NAME: HL DOB
DATA TYPE: DATE

MAX LENGTH: 8 MAP FUNCTION:
 OVERRIDE FILEMAN INPUT TRANSFORM:
 DELETE ON NULL:
DATA LOCATION:
#.03

 WP OVERWRITE/APPEND:
INPUT VALIDATION:

DESCRIPTION:

COMMAND: Press <PF1>H for help Insert

Figure 2-4: Field Definition Screen 1

 *** Field Definition (cont’d) *** pg 2 of 3

INCOMING TRANSFORM:

OUTGOING TRANSFORM:

 TIME PRECISION: TIME CONVERT:

MIDNIGHT OFFSET: ENCODING CHARACTERS CONVERSION:

SUB-FIELDS SEQUENCE REQUIRED USED FOR LOOKUP

COMMAND: Press <PF1>H for help Insert

Figure 2-5: Field Definition Screen 2

If the FileMan field is in the root file, entering either the field name or field number is
sufficient to define the location of the data. For example, the root file of the message,
HL DG UPDATE PATIENT, is the patient file. Segment HL DG PATIENT
IDENTIFICATION, the PID segment, contains many fields from the patient file.
Some examples of data locations from the PID segment are as follows.

GIS Interface Development 24 Interface Message Design

Field Name Field Data Location
HL DG PATIENT NAME NAME
HL DG DATE OF BIRTH DOB
HL DG SSN NUMBER - PATIENT #17
HL DG ALTERNATE PATIENT #8000

Because the three fields shown in the example are in the Patient file, the field name or
field number are used for the Field Data Location. (It is highly recommended that the
field number be used when defining data locations because similar field names in the
database can cause ambiguity when the script is compiled.)

Similarly, if the field is in a file which has been defined in the Segment Multiple of
the Script Generator Message File as either an “other” or as a “multiple”, the data
location of all fields in that file can also be defined using either the field name or field
number. For example, segment HL DG IN1 INSURANCE which is the IN1 segment
of the HL DG UPDATE PATIENT, is defined in the segment multiple as “Other
File” = “yes”, and “File” = “POLICY”. Some of the field data locations in this
segment are defined as follows.

Field Name Field Data Location
HL DG GROUP NUMBER #17
HL DG GROUP NAME #18
HL DG INSURANCE CO NAME #13
HL DG INSURED DATE OF BIRTH #3:#.03

Notice the field data locations for the first two fields in the example. These
correspond to the GROUP NUMBER and GROUP NAME fields in the sample Policy
File (#8086).

Field #13 in the Policy file is a pointer to the Insurance Company File (#8064). The
GIS will follow the pointer to the Insurance Company File and extract the data from
the #.01 field (Insurance Company Name). The field data location of #13 is
equivalent to #13:#.01, but the #.01 is not necessary.

Field #3 in the Policy file is a pointer to the Patient File. The field data location for
HL DG INSURED DATE OF BIRTH of #3:#.03 instructs the GIS to follow the
pointer to the Patient File and extract the data from the #.03 field (DOB). This is the
same field that is used in the PID segment, with a data location of “DOB”.

GIS Interface Development 25 Interface Message Design

 *** Field Definition (cont’d) *** pg 3 of 3

ADDITIONAL LINES TO BE PLACED IN INPUT TEMPLATE:

FIELD LENGTH TYPE:
 MINIMUM LENGTH:
 PAD CHARACTER: PAD LEFT/RIGHT:

COMMAND: Press <PF1>H for help Insert

Figure 2-6: Field Definition Screen 3

The significance of this is that the data location must be defined differently depending
on how the segment is defined within a message. There must be a different entry in
the Script Generator Field file for each “path” to the field. The Script Generator Field
HL DG DATE OF BIRTH used in the PID segment can not be used in the IN1
segment, even though it is the same field. The starting point for “navigation” differs
between the two segments. However, if multiple messages use identical paths to
navigate to a specified field, then a single entry in the Script Generator Field file can
be used by all of them.

To determine the navigation that is required to properly define the Data Location, you
can test the values by using the FileMan Inquire function. Start the FileMan print
function for the file which is the starting point for the navigation. Then determine
what is necessary to extract the desired data element using a one-line expression. This
expression is what would be used as the Data Location for the field in question. The
following examples illustrate the data location for the patient name and social security
number, depending on whether they are being obtained from the patient file, or from
the lab file (which points to the patient file)

FIELD: Patient SSN in a segment extracting from the Patient file
DATA LOCATION: #.09 or SSN

FIELD: Patient in a segment extracting from the Lab Result file
DATA LOCATION: #.01 or PATIENT

FIELD: Patient SSN in a segment extracting from the Lab Result file
DATA LOCATION: PATIENT:#.01:#.09 or SSN

2.1.3.2 Field Data Location for Set ID Fields
Fields which have a Field Data Type of Set ID are used to number repeating segments
within an HL7 message. For example, the OBX segment specifies a Set ID as the first
field of the segment and a message which contains a repeating OBX segment must
assign the number “1” to the first instance of the segment, a “2” to the second, etc. To

GIS Interface Development 26 Interface Message Design

define a field in an outgoing message as a Set ID, the data location of the field should
typically consist of the name of the segment, such as “OBX”. As it extracts data for
the outgoing message, the GIS stores the counters for all Set ID fields in an array with
the following format and increments the counter each time a segment is repeated:

INSETID("OBX")=<counter number>

If repeating segments are nested within other repeating segments, it will be necessary
to initialize the counter for each subsequent repetition. This should be done in the
Outgoing M Code field of the parent segment. For example, the message HL CP Z07
GROUP PROV POC MSG has segments as follows.

Segment Sequence Repeating? Outgoing M Code
MSH 1 No
ZPG 2 No
STF 3 Yes D Z07ZPC^CPGNETUT
ZPC 4 Yes D Z07ZPJ^CPGNETUT
ZPJ 5 Yes

The ZPC segment, which contains a Set ID field, is a repeating segment nested in the
repeating STF segment. The Outgoing M Code on the STF segment calls tag Z07ZPC
in the routine CPGNETUT, as follows.

Z07ZPC ;Resetting the value of INDA for MCP Provider Place of Care(ZPC)
 K INDA(8550.11)
 S INSETID("ZPC")=0
 D GETHCPSP^CPGNETUT(INDA,.INA)
 I $D(INA("MULPOC",INDA)) S INDA(8550.11)="" M INDA(8550.11)=INA(
 "MULPOC",INDA)
 Q

Notice that the code sets the value of INSETID(“ZPC”) to zero. The reason the value
must be set in the STF segment rather than the ZPC segment, is that it must be reset
each time the STF segment repeats. No matter how many times the STF segment
repeats, the first ZPC segment Set ID nested in the STF will have a value of 1, the
second will have a value of 2, an so on.

2.1.3.3 Field Data Location for Word Processing Fields
Field data locations for FileMan word processing fields require special processing. A
word processing field that is used for multiple lines of text, such as a results report,
will have multiple entries in the FileMan file. However, a word processing field is not
a FileMan multiple. Continuing a preceding example, the Lab Results file contains a
Comment field, which is stored as field 10 in File 63.19. A message with a repeating
NTE segment would have the following structure.

GIS Interface Development 27 Interface Message Design

DD 63-Lab Results ORC
 DD 63.04-Clinical Chemistry Multiple OBR
 DD 63.07-Result Multiple OBX
 DD 63.19-Comment NTE

If the repeating NTE segment is defined using Parent Segment = OBX, the script will
compile properly, but the GIS will not loop through the comment multiple to extract
all entries of the file. On the other hand, if a repeating NTE segment is defined using
Parent Segment = OBR, the script generator will not be able to locate the Comment
field as a multiple field within File 63.19.

The solution to this problem requires that the interface message field which is to
contain the comment text should be defined with a data location = @NULL. Further,
the Outgoing Transform for the field should call an M function to look up the data.
The following is an example where the Outgoing Transform is

 S X=$$RESCOM^LRGISH1

where the tag RESCOM^LRGISH1 extracts data from the Comment multiple of the
Lab Results file as follows.

RESCOM() ; output transform to return result comments
 Q:(+INDA=1) "RESULT COMMENT(S): "_$G(^LR(INDA(3),"CH",INDA(2),1,INDA(1),
1,+INDA,0))
 Q $G(^LR(INDA(3),"CH",INDA(2),1,INDA(1),1,+INDA,0))
 ;

2.1.3.4 Field Data Location Using Special Variables
For outgoing messages, the data location can be specified using a special variable,
rather than a data dictionary definition. This allows a value to be passed from a
calling program into the outgoing message. For example, a data location of
@ADMITDATE indicates that the value of the ADMITDATE variable will be
provided by the application routine, or by a programmer-defined routine, and will be
used in the outgoing message.

An array of special variables can be constructed within the application routine, then
passed by reference in the call the ^INHF. Refer to the “Application Program
Interface”. Call for details. Alternatively, the variable or array of variables can be set
in M routines as described in “M Calls from Compiled Scripts”.

For incoming data, computed expressions are not allowed since there is no home in
the database for computed expressions.

2.1.4 Segment Definition
A segment is a logical grouping of data fields which is treated as a group within a
message. Many segments are defined in detail by the coding specification being
followed (i.e. HL7), that specifies the fields which must be included in the segment,

GIS Interface Development 28 Interface Message Design

the data type of each field, and the order in which the fields must be placed in the
segment. In the absence of a defined specification, customized segments may be
created as long as both the sending and the receiving systems agree on the format of
the segments.

Each segment has a Segment ID which identifies it. For HL7, this is a three-character
identifier (for example PID is the Segment ID of the patient identification segment).
Segments are defined in the GIS in the Script Generator Segment File (#4010). Figure
2-7 is an example of a screen used to define a segment in the GIS. As shown, the field
is a multiple entry within the segment definition. The fields must be defined prior to
defining the segment.

 * * * Segment Definition * * *

SEGMENT NAME: HL DG PATIENT IDENTIFICATION
SEGMENT ID: PID

Field Seq. Req. Rep. Lookup Trans.
HL DG PATIENT NAME 5 NO
HL DG GENDER 8
HL DG DATE OF BIRTH 7
HL DG RACE 10
HL DG RELIGION 17
HL DG MARITAL STATUS 16
HL DG PATIENT ADDRESS 11
HL DG PATIENT ACCOUNT NUM 18
HL COUNTY CODE 12
HL DG ALTERNATE PATIENT 4

COMMAND: Press <PF1>H for help Insert

Figure 2-7: Segment Definition Screen

The following data items may be entered for each segment: (R) = required field.

SEGMENT NAME (R) The full name for the segment.
SEGMENT ID (R) This is the ID used to identify segments. For HL7

messages, this will be a three-character designation, such
as PID, OBX, etc.

FIELD The segment typically contains many fields. This is a
multiple which points to each.

 SEQUENCE (R) This is the order within the segment that this field resides.
The number must be unique within this segment. Fields
will be located exactly as they are designated. A field with
sequence 7 will be the seventh piece, even if sequences
lower than 7 are not defined.

 REQ’D (REQUIRED) This specifies whether the field is required. The standard-
making body (i.e. HL7 or X12) typically designate which
fields are required in a segment.

GIS Interface Development 29 Interface Message Design

 REPEAT This specifies whether the field can repeat within a
segment.

 USED FOR LOOKUP Used only for incoming transactions. This field specifies
that this field is to be used to identify the FileMan record
into which data from the segment is to be stored. If no field
in the segment is defined as the “used for lookup” field,
the GIS will use the field with the data location of .01. If
there is no .01 field in the segment, or if additional fields
are needed to uniquely identify a record, enter a “yes” for
all fields which are to be used. The file in which the lookup
occurs is specified in the message definition. (Disregard
this field if the message uses a programmer-defined
lookup/store routine.)

 REQ’D (REQUIRED)
 TO PASS
 TRANSFORM

Entering "yes" will indicate that this field must pass its
input transform in order for processing to proceed. If set to
"no" (the default value), an error message will be
generated but processing will continue.

There may be more than one segment created with the same segment ID. This is
because the same functional data is stored in many different data locations. For
example, a segment which contains patient observation information might have
several versions to point to different fields based on the root file. There might be an
OBX segment containing laboratory data and another OBX segment containing
radiology data and a third OBX with pharmacy data. Each would point to a different
set of fields even though the segment structure is the same.

2.1.5 Message Definition
In the HL7 standard, a group of segments is called a message. A message contains
multiple segments. The first is the message header segment (MSH), followed by one
or more segments as defined by the HL7 specification. As long as the sending and
receiving system agree, segments which are not defined in the HL7 specification can
be included in a message.

GIS Interface Development 30 Interface Message Design

 *** Message Definition *** pg 1 of 2

 Message Name: HL LAB MI RESULTS - OUT Inactive: NO
 Event Type: R01 Message Type: ORU Audit: NO
 Send Applic.: "XXX\LABMI" Rec. Applic.:
 Facility: INSITE Facility:
Processing ID: PRODUCTION HL7 Version: 2.3 Lookup Parameter: PARSE ONLY
 Accept Ack: NEVER Application Ack: NEVER
 Root File: LAB DATA
 Routine for Lookup/Store:
 Description:
SEGMENTS
HL DG PATIENT IDENTIFICATION
HL MESSAGE HEADER OUT
HL LAB COMMON ORDER - OUT
HL LAB BT OBSER REQ
HL LAB BT BACT RESULT

COMMAND: Press <PF1>H for help Insert

Figure 2-8: Message Definition Screen 1

It is important to be aware that interface standards other than HL7 may not use
the same nomenclature for interface messaging. For example, the X12
specification groups together segments into what it defines as a "transaction set".

Within the GIS, messages defined using the Script Generator Message File (#4011)
must be linked to an entry in the Interface Transaction Type file. The routing
functions of the GIS are based on the Transaction Type.

Figures 2-8 through 2-12 are examples of screens used to define a message in the
GIS. The segment is a multiple entry on the first screen. The segment definition is
shown on Figures 2-11 and 2-12. The segments must be defined prior to defining the
message.

The following data elements may be entered to define a message. Data elements
which are specific to HL7 (The message type and event type are explained in both
sections) are explained in the HL7 section of the documentation. (R) designates a
required field.

MESSAGE NAME (R) Name of the message.
INACTIVE This specifies if the message is active. The script generator will

not generate scripts for an inactive message.

GIS Interface Development 31 Interface Message Design

 *** Message Definition (con’d) *** screen 2 of 3

Transaction Types:
HL LAB MI RESULTS - BASE

MUMPS Code for Lookup:

Generated Input Script:
Generated Output Script: Generated: HL LAB MI RESULTS - OUT-O
Outgoing Initial MUMPS Code:

COMMAND: Press <PF1>H for help Insert

Figure 2-9: Message Definition Screen 2

MESSAGE TYPE (R) The message type defines the message to the receiving system. This field
typically contains the three-character HL7 message type as defined in the
HL7 specification. However, any message type can be used as long as both
the sending and receiving systems have agreed to the definition. Example
values are: ADT, ORM, etc.

EVENT TYPE (R) The event type (also referred to as the "trigger event" in HL7 terminology) is
an additional identifier to the message type. For example ADT\A01 is an ADT
message used to admit a patient. ADT\A02 is an ADT message used to
transfer a patient. The receiving system will use both the message type and
the event type (if it exists) to identify and process a message.

AUDIT Not currently supported.
LOOKUP PARAMETER This value is used for incoming data to determine which entry in the local

database is to be updated. (Disregard this field if a programmer-defined
lookup/store routine is used.) It affects how a lookup is done as follows:
FORCED LAYGO = a new entry in the root file will always be created.
LAYGO ALLOWED = an attempt will be made to match the incoming data to
that already in the local database (using the fields identified as being used for
lookup). If the attempt fails, then a new entry will be created. NO LAYGO = an
attempt will be made to match the incoming data to that already in the local
database. But if the match fails, an error will be generated and no new entry
will be made. (LOOKUP ONLY and PARSE ONLY are not used)

ROOT FILE (R) This file specifies the default location in the host data base for all fields in the
message. For example, if the root file is the Patient File, the GIS expects all
data for the message to be in the patient file unless otherwise specified. Refer
to field data locations for more information.

ROUTINE FOR
LOOKUP/STORE

For incoming messages, the GIS will normally create a FileMan input
template to store the data. If a routine is specified for lookup/store, no
template will be created, and all entry into the local host database must be
processed by this routine. For more information, refer to the section on
Programmer-Defined Lookup/Store Options.

DESCRIPTION This is a free-text field for documentation purposes.

GIS Interface Development 32 Interface Message Design

TRANSACTION TYPE This defines one or more Transaction Types for the Message. The IN/OUT
field for the Transaction Type is used to determine the type of script to build.

MUMPS CODE FOR
LOOKUP

This M code will be placed in the generated script instead of the default
FileMan lookup. It can be used to set the value of the INDA array.

GENERATED INPUT
SCRIPT

This field is for information, not for data input. Each time the script generator
function is run on this message, the name of the generated input script is
placed into this field.

GENERATED OUTPUT
SCRIPT

This field is for information, not for data input. Each time the script generator
function is run on this message, the name of the generated output script is
placed into this field.

OUTGOING INITIAL
MUMPS CODE

This M code will be placed at the top of outgoing scripts. For more
information, refer to M Calls From Compiled Scripts.

In addition, the following fields in Figure 2-8 are used to create the HL7-specific
MSH segment for outgoing transactions.

SENDING
APPLICATION

MSH-3. A free text field which identifies the sending facility. This entry must
be enclosed in quotes. Instead of entering a value in this field, a variable such
as @HLSNDAPP may be used to dynamically define the sending application
at the time the outgoing message is created. For more information on using
variables, refer to the section on Field Data Location.

SENDING FACILITY MSH-4. A free text field which identifies the sending facility. You must enclose
this entry in quotes. Indirection (@ variables) can be used.

RECEIVING
APPLICATION

MSH-5. A free text field which identifies the receiving application. You must
enclose this entry in quotes. Indirection (@ variables) can be used.

RECEIVING FACILITY MSH-6. A free text field which identifies the receiving facility. You must
enclose this entry in quotes. Indirection (@ variables) can be used.

MESSAGE TYPE (R) MSH-9, first component. This field and the “Event Type” field define the
message to the receiving system. The message type typically contains the
three-character HL7 message type as defined in the HL7 specification, but
any message type can be used as long as both the sending and receiving
systems have agreed to the definition. Example values are: ADT, ORM, etc.
Do not enclose this entry in quotes.

EVENT TYPE (R) MSH-9, second component. The event type (also referred to as the "trigger
event" in HL7 terminology) is an additional identifier to the message type. For
example ADT\A01 is an ADT message used to admit a patient. ADT\A02 is
an ADT message used to transfer a patient. The receiving system will use
both the message type and the event type (if it exists) to identify and process
a message. Do not enclose this entry in quotes.

PROCESSING ID (R) MSH-11. This indicates whether the message is production, training or debug.
VERSION (R) MSH-12. This is the HL7 version under which the message is defined. As of

release 4.5 of the GIS, the supported HL7 version is 2.3.
ACCEPT ACK MSH-15. This specifies the conditions under which an accept

acknowledgment is expected from the remote system under enhanced
acknowledgment rules. Allowable values are NE (never), AL (always), SU
(success only), and ER (error only). However, all GIS transmitters currently
expect an accept acknowledgment, so AL should be used in this field.

GIS Interface Development 33 Interface Message Design

APPLICATION ACK MSH-16. This specifies the conditions under which an application
acknowledgment is expected from the remote system under enhanced
acknowledgment or original rules. Allowable values are the same as for
accept acknowledgments. Note that this field is independent of the
“Acknowledge Expected” field in the Interface Transaction Type File, which
controls the status levels assigned by the GIS to outgoing transactions. See
Child Transaction Type Definition and Status Levels for related information.

The following fields are contained in the segment multiple of the message definition.
The definition of the segment multiple has important ramifications on the field data
location for fields within the segment.

SEGMENTS A message typically contains multiple segments. The segment field is a
multiple which points to all segments which comprise this message.

REQUIRED Specifies if the segment is required in this message. This is only used for
inbound transactions.

SEQUENCE # (R The sequence number is the order in which this segment will appear within
the message. Segments will be ordered in the message according to the
value of this field. A sparse array of values may be used (i.e. there will be no
"blank" segments in a message) but each number must be unique within this
message.

REPEATABLE Indicates whether or not this segment can be repeated within this message. A
repeatable segment must have an entry in the “Other File” field or the
“Multiple Field” field.

OTHER FILE Answering "yes" indicates that the fields for this segment reside in a file other
than the root file. The other file must then be identified in the File field.

PARENT SEGMENT This field allows segments to be "nested" within a message. For example, a
message may contain multiple, repeating OBR segments with multiple,
repeating OBX segments for each OBR segment. The OBX must designate
the OBR as it's parent. If the segment being defined is a multiple in a FileMan
file, the field data locations specified in this segment are fields in the current
multiple.

 *** Segment Information ***
Segment: HL AP ORDER OUT REQUEST Required: NO
Sequence #: 50 Repeatable: NO Other File: NO
Parent Segment:
 File: PROTOCOL
Multiple Field:
 Make Links:
 Template:
 Routine:
MUMPS Code before Lookup:
Script Code before Lookup:
Screening Logic: I $G(INA("OREVENT",+INDA))'="RP"
Outgoing MUMPS Code:

Figure 2-10: Message Definition – Segment Multiple Screen 1

GIS Interface Development 34 Interface Message Design

FILE If "yes" is indicated in the Other File field, this field is used to specify the file in
which the fields for this segment will reside. A lookup will be done to
determine the proper entry in the file. Whichever field in the message has a
data location corresponding to the .01 field will be used for lookup. The Field
Data Location specified as part of the Field definition for the fields in this
segment must coincide with the file which is indicated here.

MULTIPLE FIELD If "no" is indicated in the Other File field and the segment is repeating, this
field must be filled in. It is the name of the multiple field in the current file. For
incoming transactions, a lookup will be performed in the multiple and all data
locations for this segment refer to fields within this multiple. Whichever field
references the .01 of the multiple will be used for the lookup. Typically, the
segment being defined is a multiple in a FileMan file, and the parent segment
is another segment which has been defined to be one level "above".

LOOKUP PARAMETER This is used for inbound transactions to specify how the lookup is to be
performed within the multiple or other file. The choices are the same as for
the lookup parameter for the message. (Disregard this field if a programmer-
defined lookup/store routine is used.) MAKE LINKS If the value of this field is
set to "yes", all fields at this file level which point to a previously visited file will
populate the appropriate pointers. This is used for inbound transactions only.
(Disregard this field if a programmer-defined lookup/store routine is used.)

TEMPLATE This can be used to designate a FileMan input template to store data for this
segment. If left blank, the system will generate an input template. This is used
for inbound transactions only. (Disregard this field if a programmer-defined
lookup/store routine is used.)

ROUTINE This is the name of a routine to run after the lookup has been done and any
templates are processed. It is used only for inbound scripts. (Disregard this
field if a programmer-defined lookup/store routine is used.)

MUMPS CODE
BEFORE LOOKUP

This M code will be placed in the script prior to the lookup on the root file. If
this code sets INDA to a non-null and non-zero value it will be used as the
entry in the root file and the regular lookup will not be performed. For more
information, refer to the M Calls From Compiled Scripts section. (Disregard
this field if a programmer-defined lookup/store routine is used.)

SCRIPT CODE
BEFORE LOOKUP

Lines of code which will be placed in the script for the OTHER or MULT
blocks prior to lookup being done. For more information, refer to the M Calls
From Compiled Scripts section.

SCREENING LOGIC This M code is used to screen repeating segments for outgoing transactions.
For more information, refer to the M Calls From Compiled Scripts section.

OUTGOING MUMPS
CODE

This M code will be placed in the script after the screening logic (if provided)
for outgoing transactions. For more information, refer to the M Calls From
Compiled Scripts section.

2.1.6 Message/Transaction Type Link
Messages defined in the Script Generator Message File must be linked to an entry in
the Interface Transaction Type file. All of the GIS routing functions are based on the
Transaction Type.

It is not possible to generate a script unless the Script Generator Message file contains
at least one entry in the Transaction Type field multiple. It is possible to link a
message to any number of transaction types. The second message definition screen,
Figure 2-9 illustrates how to link a message to a transaction type. In this example,

GIS Interface Development 35 Interface Message Design

several transaction types are created from this single message definition. The message
generator creates a script for each transaction type. Once a script is generated and
compiled, it is these Transaction Types which are routed through the GIS as part of
the normal routing of interface messages.

The Message generator populates the field in the Interface Transaction Type file
which points to the entry in the Interface Script file.

2.1.7 Incoming vs. Outgoing Transactions
There are a number of differences between incoming and outgoing messages and
transaction types. Some are obvious from the prompts on the various table definitions,
while others are not. The following are some of the significant differences.

Outgoing transactions must have a parent transaction type which is called from the
application. Incoming transactions have no parent transaction types.

The HL7 fields which are used to define the MSH segment are only used for outgoing
transactions. Entries such as sending facility, receiving application, etc. are not used
for incoming transactions.

For outgoing transactions, the data location entered in screen 1 of the field definition
may consist of a variable such as @HLACKTYPE. The value for this variable is then
passed into the outgoing script in a programmer-defined INA array. For incoming
transactions, such indirection is not valid and the script will not compile. Developers
may leave the data location blank and use logic in the programmer-defined
lookup/store routine to update the database.

2.2 Script Generator X12 Modifications
The GIS supports the X12 standard for interface messaging. In general, the process of
defining and routing X12 messages is the same as for HL7 messages and it is
recommended that the user read the preceding sections on HL7 messaging before
proceeding to this section. However, there are important differences between the
structures of X12 and HL7 messages that must be considered when building X12
messages in the GIS.

On difference is that the actual X12 transaction set is nested within three sets of
"wrappers" or "control structures". Because X12 can be used for batch transmission,
the outer set of wrappers (the ISA and IEA segments) wrap around a set of group
wrappers (the GS and GE segments), which in turn wrap around the actual transaction
(contained within the ST and SE segments). In batch mode, X12 allows multiple
ST/SE pairs within a group, and multiple groups within the message.

The GIS does not support "batch" X12 transmissions that contain multiple X12
groups within an ISA/ISE wrapper, nor does it support multiple transactions
within a group. Because of this, the GIS creates a single identifier for outbound

GIS Interface Development 36 Interface Message Design

messages that is used as the transaction set identifier as well as the group identifier.
Within the GIS, the status of an X12 transaction set can not be separated from the
status of the entire message contained within the ISA/IEA wrappers because the GIS
treats it as a single unit.

Another feature of X12 is it's use of "generic" segment identifiers. For example, the
270 and 271 transactions contain four different HL segments, HL 20 through HL 23.
The segment identifier, as contained in the actual message that is transmitted or
received, does not distinguish between them. In each case, the segment ID is HL. But
the HL designation is not sufficient to identify the segment and the HL segment is
NOT a repeating segment.

In addition, the same segment identifier is used in different loops, but the contents are
different. For example, the PID segment used in an HL7 message is used only for
patient data. In contrast, X12 uses the NM1 segment for a variety of information,
such as patient data, organization data, subscriber data, etc.

2.2.1 Field Data Types
The GIS contains two built-in entries in the Script Generator Data Type File. They
are as follows.

Data Type Name Data Type Designation
X1 String ST
X1 Date XD

The X12 String type should be used in all X12 messages instead of the HL7 string
type because in some cases the GIS must convert certain characters into a special
format if the characters are used as HL7 delimiters (such as the &).

2.2.2 Field Definition
The same data entry screens are used to define X12 as for HL7 fields. The third page
contains some fields of particular importance to X12. The Field Length Type defaults
to a variable length. It also allows the user to specify Minimum/Maximum field
lengths. A minimum/maximum field must have a length of at least the minimum
specified, but not to exceed the maximum.

GIS Interface Development 37 Interface Message Design

 *** Field Definition (cont’d)*** pg 3 of 3

ADDITIONAL LINES TO BE PLACED IN INPUT TEMPLATE:

FIELD LENGTH TYPE:
 MINIMUM LENGTH:
 PAD CHARACTER: PAD LEFT/RIGHT:

The implementation of Minimum/Maximum fields in the GIS assumes that the
minimum length will be enforced only if the value of the field has length. In other
words, if the value of a variable is null, the length will not be padded.

For example, if first field of segment XXX has a minimum length of 5, a maximum
length of 12 and the value of the variable to be inserted in the field is ABC, the field
will be padded to 5 characters and the segment will be XXX^ABC__^. If the value of
the variable to be inserted in the field is “”, no padding will occur and the segment
will be XXX^^.

2.2.3 Segment Definition
The GIS treats all segments for all interface standards identically. The only
significant difference between the standards is that the X12 standard specifies
segment identifiers of two or three characters whereas HL7 identifiers must all be
three characters in length. The GIS does not constrain the values entered by the user
for this field.

2.2.4 Message Definition
When an X12 message is first created, the GIS will prompt the user to specify the
interface standard. After a value is entered, the GIS will display the message
definition screens. X12 screens are slightly different than HL7 screens, and the M
code that is compiled as a result of the definition is significantly different for the two
standards. Once the standard is specified, the user is never again prompted for this
entry.

The following are examples of X12 definition screens.

GIS Interface Development 38 Interface Message Design

*** X12 Message Definition *** Screen 1 of 3
Message Name: TEST X12 DAVE
 Lookup Parameter: LAYGO ALLOWED
 Accept Ack:
 Root File: VA PATIENT
 Routine for Lookup/Store:
 Description:

 Segments:
TEST DAVE

*** X12 Message Definition (cont'd) *** Screen 2 of 3
------ ISA Segment Fields ----
Author Info Qualifier: Author Information:
Security Info Qualifier: Security Information:
Inter. ID Info Qualifier: Inter. ID Qualifier Receiver:
Inter. Sender ID: Inter. Receiver ID:
Inter. Control Version #: Usage Indicator:
Request Ack:

------ GS Segment Fields ----
Functional ID: Ver/Rel/Industry ID:
Application Sender: Application receiver:

------ ST Segment Fields ------
Transaction Set ID:

Screen 2 of the X12 message definition set allows data to be specified for many of the
header segments, ISA, GS and ST. Values for other header fields, such as the
Interchange Date, ISA09, and Interchange Time, ISA10, are populated by the GIS at
the time the message is created. The following tables list all of the fields for the three
header segments and their transforms/data locations.

Interchange Control Header (ISA)

FIELD NAME DT M/m TRANSFORM / DATA LOCATION
ISA01 X1 AUTHOR INFO QUALIFIER ID 2/2 12.01
ISA02 X1 AUTHOR INFORMATION AN

10/10
12.02

ISA03 X1 SECURITY INFO QUAL ID 2/2 12.03
ISA04 X1 SECURITY INFORMATION AN 10/10 12.04
ISA05 X1 INTERCHANGE ID QUAL S ID 2/2 12.05
ISA06 X1 INTERCHANGE SENDER ID AN 15/15 12.06
ISA07 X1 INTERCHANGE ID QUAL R ID 2/2 12.07
ISA08 X1 INTER RECEIVER ID AN 15/15 12.08
ISA09 X1 INTERCHANGE DATE DT 6/6 $E(INTX(NOW,"TS"),3,8)
ISA10 X1 INTERCHANGE TIME TM 4/4 $E(INTX(NOW,"TS"),9,12)
ISA11 X1 INTER CTRL STAND IDENT ID 1/1 12.11
ISA12 X1 INTER CTRL VERSION NUM ID 5/5 12.12
ISA13 X1 INTER CTRL NUMBER ISA N0 9/9 @INSEQ
ISA14 X1 ACK REQUESTED ID 1/1 12.14

GIS Interface Development 39 Interface Message Design

FIELD NAME DT M/m TRANSFORM / DATA LOCATION
ISA15 X1 USAGE INDICATOR ID 1/1 12.15
ISA16 Component Element Separator 1/1 “” : “

Functional Group Header (GS)

FIELD NAME DT M/m TRANSFORM /DATA LOCATION
GS01 X1 FUNCTIONAL ID CODE ID 2/2 12.16
GS02 X1 APPL SENDER CODE AN 2/15 12.17
GS03 X1 APPL RECEIVER CODE AN 2/15 12.18
GS04 X1 GS DATE DT 8/8 INTX(NOW,"TS")
GS05 X1 GS TIME TM 4/8 $E(INTX(NOW,"TS"),9,16)
GS06 X1 GROUP CTRL NUMBER GS N0 1/9 @INSEQ
GS07 X1 RESPONSIBLE CODE ID ½ 12.2
GS08 X1 VERSION ID CODE AN 1/12 12.21

Transaction Set Header (ST)

FIELD NAME DT M/m TRANSFORM / DATA LOCATION
ST01 Transaction Set Identifier Code ID 3/3 12.22
ST02 Transaction Set Control Number AN 4/9 @INSEQ

Recommended transforms and data locations for trailer segments (IEA, GE and SE)
are as follows.

Interchange Control Trailer (IEA)

FIELD NAME TRANSFORM / DATA LOCATION
IEA01 X1 NUM OF INCL FUNCT GRP “1”
IEA02 X1 INTER CTRL NUMBER IEA @INSEQ

Functional Group Trailer (GE)

FIELD NAME TRANSFORM / DATA LOCATION
GE01 X1 NUM OF TS INCLUDED “1”
GE02 X1 GROUP CTRL NUMBER GE @INSEQ

Transaction Set Trailer (SE)

FIELD NAME TRANSFORM / DATA LOCATION
SE01 Number of Included Segments @INSE
SE02 Transaction Set Control Number @INSEQ

2.2.5 Compiled X12 Script Characteristics
The compiled outgoing scripts created by the GIS for X12 messages have the
following characteristics.

GIS Interface Development 40 Interface Message Design

All outgoing messages are created with an ISA segment followed by a GS segment
followed by an ST segment. These segments do not have to manually added to the
segment multiple of the message. Because the GIS does not support multiple ST-SE
pairs within a GS-GE pair nor multiple GS-GE pairs within an ISA-IEA pair, the
position of these segments are fixed. However, it is necessary to manually insert
trailer segments (SE, GE and IEA) into a message and the sequence numbers
assigned to these trailer must be higher than the sequence numbers of any segments
within the actual transaction set of the message.

The GIS suppresses trailing null fields in an X12 segment. The X12 standard
specifies that a segment should end at the last populated field. For example, the
following segment would be considered a violation of the standard because the last
populated field has a value of “B” and is followed by four delimiters:

NM1*IL*1*SMITH*ROBERT*B****~

But the following is valid:

NM1*IL*1*SMITH*ROBERT*B***MI*11122333301~

As is the following:

NM1*IL*1*SMITH*ROBERT*B~

The GIS suppresses null segments in a message. The X12 standard specifies that
segments should not be present in a transaction if there are no populated fields in the
segment. This differs from the HL7 standard.

The GIS supports loop counters. X12 wrapper segments include a count of the
number of segments within the wrapper. The wrappers are shown in the following
table. Counter fields are in the end wrapper, not the beginning. Because outgoing GIS
messages will only have one transaction per interchange, the counters in the
interchange trailer (IEA) and group trailer (GE) will always be set to 1. The counters
are only needed to the number of segments in the ST-SE loop and insert the value in
the SE.

Note: Because segments with no populated fields must be suppressed, the counter
must follow the suppression logic.

Wrapper Segment Counter Field Comment
ISA Interchange header segment for ISA-IEA

loop.
GS Group header for the GS-GE loop.
ST Transaction header for the ST-SE loop.
SE SE01 Closes the ST loop. Contains a count of the

transmitted segments including the
beginning (ST) and ending (SE) segments.

GIS Interface Development 41 Interface Message Design

Wrapper Segment Counter Field Comment
GE GE01 Closes the GS loop. Total number of

transaction sets (ST-SE loops) in the group.
Outbound transactions should only have
one.

IEA IE01 Closes the ISA loop. IEA01 is a count of the
number of functional groups in the
interchange. Outbound transactions should
only have one.

Existing GIS functionality can be used to set a variable that contains the loop counter.
The data location of field SE01 is to be specified as an INA variable. An examples
data location is: @INSE.

A counter such as INST is then initialized in the Outgoing MUMPS Code field of the
ST segment multiple in the message definition using logic such as the following. This
initializes the counter at the current value of the LCT variable. This variable is used
internally by the GIS to count the number of segments in an outgoing message.

N INST S INST=LCT

In the Outgoing MUMPS Code field of the SE segment, the following type of logic is
used to set variable INA(“INST”) with the count of the number of segments that were
created in the message. By subtracting the LCT variable stored in INST earlier from
the current LCT, the actual number of segments created between the two segments is
known. Because “empty” segments must be suppressed, this type of count is an actual
count. The value of INA(“INSE”) is then used by the GIS to populate the segment
count within the SE segment.

S INA("INSE")=LCT-INST+1,CNTGE=CNTGE+1

Note that the INA value must be subscripted if the ST-SE loop is a repeating loop.

2.2.5.1 Create Sequence Number
The X12 header specifies a numeric message identification number that must not
exceed 9 digits. The GIS normally creates a message identifier using the function
MESSID in routine INHD. The function is called at the start of every outgoing script.
This does not meet the X12 requirement because the length may exceed 9 digits and
the format of the message ID includes the MTF code of the site—which is
alphanumeric.

A similar issue was encountered in the design for the PDTS (NCPDP) project. The
solution for both PDTS and X12 is to use a numeric-only sequence number that is
crossreferenced to the existing Message ID. For X12, the function to create the
number will be called from the compiled script immediately after the call to
$$MESSID.

GIS Interface Development 42 Interface Message Design

Both HL7 and X12 make the receiving system responsible for recognizing the
delimiters used by the sending system.

2.3 Programmer APIs

2.3.1 Programmer-Defined Lookup/Store Options
For inbound transactions, the script generator normally creates a FileMan input
template using the field data locations for each field in the various segments. This can
be overridden if a lookup/store routine is specified. If any of the fields in the
incoming message contain values which can not be defined as FileMan Data
Dictionary entries, or if the fields are not destined for a FileMan database, a
lookup/store routine must be used to process the incoming message.

If an entry is made in the Routine for Lookup/Store field in screen 1 of the message
definition or in the MUMPS Code for Lookup field in screen 2 of the message
definition, the script generator/compiler will not attempt to create a FileMan input
template, nor will it attempt to validate data locations for incoming fields. Instead, the
script which is generated and the M routine which is compiled will parse the
incoming transaction, then make a programming call to the designated M code. The
code will be placed at the end of the compiled routine. An example of a compiled
routine containing a routine for lookup/store is the following code fragment.

MUMPS Code for Lookup is only active if no Lookup/Store Routine is designated for
the message. If an entry is made in both the MUMPS Code for Lookup and in the
Routine for Lookup/Store, only the code in Routine for Lookup/Store will be used in
the compiled M routine.

In either case, the application programmer must write the code to update the local
host database. A variable array is available to the lookup/store routine in the
following format.

@INV@(<Segment ID><Field number>)=field value

For example, the fields in the PID segment will be in the array

@INV@(”PID1”)=1
@INV@(“PID2”)=
.
etc.

Fields in repeating segments have a second level subscript, such as @INV@(segment
id,n) where n is the nth iteration of the repeating segment. Further, segments which
repeat within a repeating segment will have the field variables in the format
@INV@(segment id,n1,n2). The following shows some examples of fields in a
message with a repeating OBX segment, which are contained within a repeating OBR
segment.

GIS Interface Development 43 Interface Message Design

@INV@(“OBR1”,1)=1
@INV@(“OBR1”,2)=3777
@INV@(“OBX1”,1,1)=1
@INV@(“OBX1”,1,2)=2
@INV@(“OBX5”,1,1)=49
@INV@(“OBX5”,1,2)=36
@INV@(“OBX1”,2,1)=1

Programmers should be aware that changing the segment multiple in a message
definition from non-repeating to repeating, or vice versa, will change the variable
array accordingly.

2.3.2 M Calls From Compiled Scripts
For some message types, the script generator will create scripts and compile M code
which requires no programming code. However, more complex messages often
contain field values which are most effectively obtained using M code. This is true of
both outgoing and incoming transactions. In addition to the Programmer-Defined
Lookup/Store Options described separately, calls to M code can be made at several
other places within a script.

For outbound transactions, the following calls are available.

Outgoing Initial MUMPS Code This is entered in the message definition screen. In the
compiled M routine, the code entered in this field is
located just below the START tag after the code which
sets the delimiters. It will be executed before any data is
extracted from the database. This provides a powerful tool
for programmers to define or redefine variables, perform
complex lookups, or perform other operations.

Screening Logic This code is entered in the segment multiple of the
message definition screen. It is used only if the segment is
either repeatable, or if the "other file" field indicates the
data for the segment resides in a file other than the "root"
file for the message. If either of these is true, the M code
entered as "screening logic" will be placed in the compiled
M routine as shown in the example below. If neither of
these conditions is true, any M code in the screening logic
field will be ignored when the script is compiled.

Outgoing MUMPS code This code, like Screening Logic, is entered in the segment
multiple of the message definition screen. The M code
entered in this field will be placed in the compiled M
routine. If the segment is repeating, the code will be
executed for each iteration of the segment. This is very
useful for setting and/or initializing local variable arrays.
For example, the INDA array for segments nested under a
repeating segment should be set using Outgoing M code
in the repeating segment. This ensures that the correct
segments will be populated for each iteration.

The following code fragment is an example of a repeating segment with both
screening code and outgoing MUMPS code. If this were not a repeating segment, the

GIS Interface Development 44 Interface Message Design

FOR loop would not be present, and the screening logic would not be included in the
routine.

S INI(1)=0 F S INI(1)=$O(INDA(2.95,INI(1))) Q:'INI(1) S INDA(2.95,INI)=""
.Q:'$D(^DPT(INDA(1),"DA",INDA,0))
.;SCREEN=D SCREEN^LOGIC
GIS Interface Development Page 2-34
.I $D(^DPT(INDA(1),"DA",INDA,0)) X "D SCREEN^LOGIC" E Q
.D EXAMPLE^OUTMCODE

For inbound transactions, the following calls are available.

MUMPS Code before Lookup This code is entered in the segment multiple of the
message definition screen. As the name indicates, it is
placed in the compiled script prior to the lookup in the
multiple or other file. It can be used to set the value of the
INDA array.

Script Code before Lookup This code is entered in the segment multiple of the
message definition screen. It is placed in the compiled
script just prior to the lookup. Both MUMPS Code before
Lookup and Script Code before Lookup can be used in a
single message.

Routine This routine will be run after the lookup has been done and
any templates are processed.

2.3.2.1 Variable arrays used in M Calls
The variables which are available to the applications programmer are as follows.

Outbound transactions
INDA This array is normally set by the interface application call

and consists of the internal entry numbers of those records
in the database from which data is being extracted to
format the transaction. However, the array can also be set
by some of the M calls described above, such as Outgoing
Initial MUMPS code. It can also be set by an incoming
transaction if, for example, the incoming transaction is a
query transaction and the outgoing is a specialized
acknowledgment. See the section on the Application
Program Interface Call for the proper format of this array.

INA This array is normally set by the interface application call
and consists of any type of data which needs to be passed
into the compiled M routine. The most common values are
field variables which are used as Field Data Locations, but
various flags and values needed by M calls can be passed
in. The format of the array is @INA@(“variable”)

GIS Interface Development 45 Interface Message Design

INDEST An outbound transaction must have a valid entry in the
Interface Destination file for the GIS to create an entry in
the Universal Interface file. INDEST is the internal entry
number of the destination, and the GIS normally sets this
value from the pointer in the Interface Transaction Type
file. If a programmer function determines that a transaction
should be redirected to a destination other than that
specified in the Interface Transaction Type file, this value
can be reset in one of the M Calls From Compiled Scripts.

INQUE This variable signals the GIS whether or not the transaction
should be placed on the output controller queue for
processing. Interactive transactions do not go on the
queue, but are typically processed directly by a transmitter.
The default value of null or 0 places the transaction on the
queue, a value of 1 prevents queuing.

INTT This variable is the internal entry number of the entry in the
Interface Transaction Type file.

Incoming transactions
UIF This variable is the internal entry number of the transaction

record in the Universal Interface file.
INOA If the inbound transaction is processed off the output

controller, INOA is passed by reference into the compiled
script, but has no initial value. The primary purpose of
INOA is to allow specialized programmer functions to pass
a variable array from the inbound transaction to be used in
an acknowledgment transaction. The INOA array will be
passed into the acknowledgment as the INA array
described above.

INODA If the inbound transaction is processed off the output
controller, INODA is passed by reference into the compiled
script, but has no initial value. The primary purpose of
INODA is to allow specialized programmer functions to set
an array that will be passed out of the inbound transaction
for use by a returning acknowledgment transaction. The
INODA array will be passed into the acknowledgment as
the INDA array described above.

For both outgoing and incoming messages, the GIS creates a variable array for all
data using the format @INV@("Segment ID_Field Number")=value. For example,
the following variables are from the PID segment.

GIS Interface Development 46 Interface Message Design

INV("PID1")=1
INV("PID10")=X
INV("PID11.1")=20115 WOODFIELD ROAD
INV("PID11.2")=DEPENDENT
GIS Interface Development Page 2-36
INV("PID11.3")=GAITHERSBURG
INV("PID11.4")=MARYLAND
INV("PID11.5")=20882
INV("PID12")=
INV("PID13")=301 948-2858
INV("PID14")=202-774-9778

In the preceding example, the value of the first field in the PID segment is 1, the
value of the tenth field is X, etc. Fields which contain sub-fields are delimited with a
period. In the preceding example, the eleventh field is an address field, which is
comprised of sub-fields for address line 1, address line 2, city, state and zip.

Care must be taken to avoid confusion when using values for segments which contain
numbers because the GIS does not place any type of delimiter between the segment
ID and the field number. For example, the PV1 segment is parsed into variables such
as the following.

INV("PV11")=1
INV("PV12")=
INV("PV13")=685&SHEINACT&99HOS\2-G\\A0101
INV("PV14")=DI

In the preceding example, the value of the first field in the PV1 segment is "1", the
value of the third field is "685&SHEINACT&99HOS\2-G\\A0101", etc.

When referencing this array in M routines, use extended references such as
@INV@(“PID1”) because the GIS will roll out local variables into a utility global if
available system memory is low and/or the interface site parameter specifies global
storage. The GIS uses a value for the variable of INV=”INV” for local storage, but
INV=”^UTILITY(“INV”,$J) for global storage. Then a value such as:

INV(“PID14")=202-774-9778

becomes:

^UTILITY(“INV”, 545386096,"PID14")=202-774-9778

with global storage.

For outgoing transactions, the INV array contains the values of the fields after the
Outgoing Transform has been run (see section on “Field Data Types”).The array for
each segment is created as the data for that segment is extracted from the database.
Therefore, M calls from the script must be placed after the segment is processed.

As an example, some messages contain a repeating OBX segment within a repeating
OBR segment. Outgoing M code defined in the OBX segment will NOT have access

GIS Interface Development 47 Interface Message Design

to values such as INV(“OBX1”), because the GIS executes the code before extracting
the elements of the OBX array. Therefore it is not possible to manipulate the values
of OBX variables using programmer code called from the OBX segment.

2.3.3 Error handling
Compiled scripts contain several check points at which errors are evaluated. These
points are locations at which most errors can be identified but further processing is
not possible because of the error condition. The checkpoints are:

For input transactions:

• End of each MUMPS section (not after lines of code beginning with ‘^’)

• Before the LOOKUP section

• Before the STORE section
For outgoing transactions

• In the END section before the entry is entered into the Universal Interface file The
GIS uses the following variables for error handling.

INHERR(INHERCNT) This contains a subscript array of errors where INHERCNT is a
consecutive number starting with 1=the first error encountered.

INSTERR This is the highest error level encountered in the script where
0=no error, 1=non-fatal and 2=fatal. This is set to 0 at the top of
the compiled script and is re-set when an error is encountered.
Once the level is 2, a subsequent level 1 error would not reset
INSTERR, it will remain at 2.

INREQERR The compiled script sets this variable to a level 2 if required data
is missing. This value is compared with the value of INSTERR at
the error checkpoints within the script, and processing
terminates if either value is a 2.

Figure 2.11 shows the checkpoints in the compiled script (IS0000nn), the error
variables which are evaluated and/or set at each checkpoint, and the resulting status at
the completion of processing.

If a script contains calls to external M routines, programmers should log errors into
the same array used by the GIS. At any point in the script where M code is being
executed (e.g. MUMPS section, M coded transform, etc.) a programmer can log an
error message by calling:

D ERROR^INHS(<error message>,<error level>) or
D ERROR^INHS(.INHERR,1)
where:
<INHERR> = Array of error messages to log (enclosed in quotes)
<error level> = error level of 1 or 2 (the default is 2)

After the script has terminated (successfully or unsuccessfully), the INHERR array is
logged as a single entry in the Interface Error file, with all of the sub-scripted errors

GIS Interface Development 48 Interface Message Design

as nodes in the entry. In general, external M routines should not log errors directly,
but should allow the GIS to log them.

Figure 2-11: Error Processing in Complied Scripts

2.4 Generate/Compile Scripts
Once a message has been defined in the Script Generator subsystem of the GIS, a
script must be generated and the script must be compiled. Any time a message is
created or modified, the GIS prompts the user to generate a script. Script generation is

GIS Interface Development 49 Interface Message Design

also available using the menu option Generate Scripts for a Message. Either way, the
GIS will create a script and file it in the Interface Script File (#4006).

The user is then prompted to compile the script. The menu option, Compile a Script,
can also be used. The script is compiled into a series of M routines with routine
names in the format ISnnnnnx, where nnnnn is the internal entry number in the
Interface Script file (right justified and padded with 0’s) and x is a sequence indicator
starting with null and incrementing through the alphabet. For example, a script with
internal entry number 25 will compile into routine IS00025. If the maximum routine
size is reached, the overflow is compiled into IS00025A, followed by IS00025B, etc.

All scripts and compiled M routines follow a prescribed format. Each section of the
script fulfills a specific function. Compiled routines for outgoing transactions have
the following format:

START The START tag of the compiled M routines initializes the variables which will be used by the
routine. This includes message delimiters, subdelimiters, site parameters, etc.

MUMPS If Outgoing Initial MUMPS Code is specified in the Script Generator Message file, the code
will immediately follow the initialization. An example is as follows. ;Entering MUMPS section.
D CHOUT^LRGISH1

DATA The data section extracts data from the FileMan database, then formats it into the outgoing
transaction. Each segment of the message is processed in the order specified in the
Sequence # field of the Segment Multiple in the Script Generator Message file. This is a two-
step process.
1) The routine extracts data from the database for all fields in the segment, in field sequential
order, converting each field into the format which will be used in the final message. Each of
these fields can be identified by a comment line such as the following.
 ;SET PID7 =
 $E(INSGX("^INTHL7FT(6,3)",DOB),1,14)
This example is the 7th field of the PID segment, which is the patient’s date of birth. The
comment line will be followed by M code which will extract the data from the database. Fields
which utilize special variables which are passed into the routine are commented similar to the
following.
 ;SET OBX6 = @LRUNIT
The final line of M code for each field will be similar to the following.
 S @INV@("PID7")=X K DXS,D0
2) After all of the field values for a segment have been set into the INV array, the routine
concatenates them into the format of the completed segment. This point in the routine can be
identified by a line of code such as the following.
 K LINE S LINE="",CP=0 S L1="PID"
The variable LINE then begins with the Segment ID, in this example, the PID segment. The
routine then concatenates the variable LINE with the value of each field in the segment.
After all fields have been concatenated to the LINE variable, it is stored in an ^UTILITY array,
and the routine will begin processing the next message segment.

END The END section check for errors (refer to error handling). If no fatal errors have been
encountered, an entry is created in the Universal Interface file.

Incoming transactions have the following format:

START The START tag of the compiled M routines initializes the variables which will be used
by the routine. This includes message delimiters, subdelimiters, site parameters, etc.

GIS Interface Development 50 Interface Message Design

DATA The data section of incoming transactions parses each segment into field variables.
Each segment is examined consecutively. The parsing is based on the Segment ID
(i.e. PID) found in the incoming segment. Segments in the incoming transaction must
be sequenced in the same order as defined in the Script Generator Message file.
Repeating segments are allowed. The syntax used by the compiled routine is similar
to the following example.
S:DO
@("@INV@(""PID1"")")=$$PIECE^INHU(.LINE,
DELIM,2)
All fields of all segments are parsed and placed into the INV array before the next
step in processing.

TRANSFORM The TRANSFORM section applies the Input Transform as specified by the Field
Data Type to each field--that is each element of the INV array as set in the DATA
section. If the transform is unsuccessful, it will kill X, and an error message will be
placed in the error array. For example:
“Variable <variable name> failed input transform.”
If the segment is a repeating segment, the error message will specify the “iteration
number”, which allows analysts to identify which of the repeating segments contains
the error.

REQUIRED The REQUIRED section verifies that each field which is specified as being required
in the Script Generator Segment file has a value. For each required field that is null,
a fatal error is logged in the error array. After all required fields have been tested for
values, the routine will terminate if highest error level encountered thus far in
processing is error level 2. Refer to the section on Error Handling for more
information. If a Programmer-Defined Lookup/Store Routine is specified in the Script
Generator Message file, the call to that routine is at the end of the REQUIRED
section.

LOOKUP Unless a Programmer-Defined Lookup/Store Routine has been defined, the
LOOKUP section is used to identify the .01 field(s) of the file(s) which are being
updated by the incoming transaction. STORE Unless a Programmer-Defined
Lookup/Store Routine has been defined, the STORE section calls a FileMan input
template to update the fields in the database. The input template is created at the
same time that the script is compiled.

END The END section quits with an error level of 0 (no errors, 1 (non-fatal error) or 2 (fatal
error).

2.5 Error Conditions
Several types of error conditions are identified as the script is generated and/or
compiled. Some of these are as follows.

Error: No script is generated.

Possible Causes: a) No transaction type is defined for the message.
 b) Transaction type is inactive.

Correction: Check the transaction type.

Error: Ambiguity in the following expression: Current base file:

GIS Interface Development 51 Interface Message Design

COMMENT SUB-FIELD (#63.19)
Expression: COMMENT
Ambiguity NOT resolved.
ERROR: Invalid expression in SET statement.
SET NTE3 = COMMENT
Compile aborted due to above error.

Possible Causes: (For outgoing messages) The error indicates that the GIS can not
find the field specified in the field data location.

Correction: Review the field data location of the field in relation to the segment
definition in the Script Generator Message file.

Error: Message indicates the data location is invalid (incoming message)

Possible Causes: For incoming messages, special variables and computed expressions
are not allowed for data locations. A lookup/store routine will not over-ride an invalid
data location.

Correction: Redefine the field with a valid data location, or leave the data location
blank. A lookup/store routine can be used to store data, eliminating the need for the
data location in the field definition.

2.6 Message Definition Hints
The GIS is a very flexible tool. There are typically several alternatives to solving any
given requirement. The following lists some of these solutions.

Requirement: Create a repeating segment for the root file.

Solution: In the Message Definition Screen, designate the segment as OTHER, and
designate the file to be the same as the root file. If there is no "other" file, the script
generator compiles a script which expects only a single INDA value and will not
create a repeating segment. The INDA array for all records in the root file may be
passed into the script from the application call, or can be set using one of the M calls
from the script.

Requirement: Create a repeating segment within a repeating segment.

Solution: The GIS allows nesting of repeating segments within repeating segments.
However, it is usually necessary to set the INDA array for the “lower” segment using
Outgoing MUMPS Code in the “upper” segment. An example of this type of message
is the HL DG SWAP BEDS. This transaction contains two PV1 segments each of
which has a PID segment. The initial INDA array as passed from the application will
include the following elements.

GIS Interface Development 52 Interface Message Design

INDA(2.95,admission 1 ien)=“”
INDA(2.95,admission 2 ien)=“”
INDA(2,patient 1 ien)=“”
INDA(2,patient 2 ien)=“”

However, with this array, the GIS will create two PID segments, for each PV1
segment. The solution is to use Outgoing MUMPS code in the PV1 segment to re-
define the INDA(2) array. For the first iteration, the array will look as follows.

INDA(2.95,admission 1 ien)=“”
INDA(2,patient 1 ien)=“”
For the second iteration, the array will look as follows.
INDA(2.95,admission 2 ien)=“”
INDA(2,patient 2 ien)=“”

GIS Interface Development 53 Transaction Routing

3.0 Transaction Routing
The primary function of the GIS is to route electronic interface transactions between
systems. Transactions can be routed between and/or among "local" databases or
remote databases. Transaction routing is controlled by entries in several tables,
primarily the Interface Transaction Type file, the Interface Destination file, the
Interface Replication File and the Background Control file.

This section is intended to provide a quick guide to routing a transaction. It is divided
into sections on routing outbound transactions, routing inbound transactions, routing
storeand-forward transactions and selective routing.

3.1 Outgoing Transactions
An outgoing transaction is one which contains extracted data which originated in the
host database that is being sent to an external system. An outgoing transaction
typically consists of the following elements.

• A defined message in the Script Generator Message file, with the child transaction
type entered in the Transaction Type multiple of the message.

• A parent transaction type.

• A child transaction type.

• An application program interface (API) call in system using the parent transaction
type.

• A pointer from the child transaction type to an entry in the Interface Destination
file.

• Unless selective routine or message replication is required, the Destination of the
child transaction type should specify “direct routing”. This streamlines processing
because the transaction does not have to be processed by the Output Controller.
Alternatively, the Destination can specify a routine to control distribution of the
transaction.

• A background process such as a TCP/IP transmitter or a routine which writes the
transaction to a flat file.

The steps which are required to route an outgoing transaction are described in
subsequent sections.

3.1.1 Parent Transaction Type Definition
For outgoing transactions there are two kinds of transaction types: parent and child.
When creating an entry in the Interface Transaction Type file, there is no obvious
distinction between parent and child. A child transaction type contains a recursive
pointer in the field, Parent Transaction Type, while a parent transaction type does not.

GIS Interface Development 54 Transaction Routing

(A replicated transaction is ultimately copied from a single child, but it must not point
to a parent in the Interface Transaction Type file.)

A parent transaction type contains no routing or formatting information and is used as
the name called from an application program. Once a parent transaction type has been
defined and activated, the name should never be changed in the Name (#.01) field
unless the M code in the calling application is also changed. The string value of the
Name field is called from the application program, not the internal entry number. If
the name is changed for an active parent transaction type, the GIS will not be able to
identify it. A parent transaction type can have many child transaction types associated
with it. The relationship between parent and child is shown in the following diagram.

A parent transaction type can have many child transaction types associated with it.
The relationship between parent and child is shown in the following diagram.

Figure 3-1: Child/Parent Transaction Types

As shown, the child transaction types point to the parent transaction type. Each child
will have a compiled script. When a parent is invoked from an application, all child
transaction types that point to that parent will be processed—one script per child. All
transaction types can be made active or inactive. If a child is inactive it will be
skipped. If a parent is inactive no transactions will be generated.

If an outgoing transaction can be triggered from an existing application, there is no
need to create a new parent transaction type--only another child which points to the
parent. However, if an entirely new transaction is created both a parent and a child are
needed. Figure 3-1 is an example of a parent transaction type in the Interface
Transaction Type file. For a parent transaction type, only the following fields are
needed. Other fields are not used.

NAME This is the name of the transaction type. For clarity, it is useful to designate that it
is a parent. For example, HL ADT REG OUT (PARENT).

ACTIVE This specifies that this transaction type is active. The default value is inactive, so
you must make an entry in this field to activate your transaction type.

GIS Interface Development 55 Transaction Routing

FORMAT
CONTROLLER—
PRIORITY

The format controller process time and format controller priority control the priority
and the time at which the parent transaction type is processed. Allowable values
for priority are 0 (highest priority) to 9 (lowest priority), with a default value of 0.
The priority specified in the parent transaction type can be over-ridden in the
application call (see below). The Formatter executes all of the message scripts for
the child transaction types to extract data from the database and format it into
interface messages. Because this is a computationally-intensive process,
transactions which do not require immediate processing can be given a lower
priority or an offpeak time-to-process. Such action must be carefully taken with
consideration to the sequencing of related transactions and interfaces. Consult
with the Interface Team before using values other than the default.

FORMAT
CONTROLLER -
PROCESS TIME

Along with the format controller priority, this field controls the time at which the
parent transaction type is processed and the message script(s) are run. The value
specified in this field can be over-ridden in the application call (see below). If no
value is supplied, the default time-to-process is “now”. Time to process may be
specified in relative terms, for example T@2300 instructs the formatter to extract
the data at 11 p.m. on the day the application calls the parent transaction type.
Similarly, NOW+3M sets the time at 3 minutes in the future (S for seconds, M for
minutes, H for hours and D for days are all supported in this syntax). A value of
“STAT” is also allowed and will force the transaction to the top of the format
queue. Such action must be carefully taken with consideration to the sequencing
of related transactions and interfaces. Consult with the Interface Team before
using values other than the default.

 *** Transaction Type Definition, Screen 1 of 2 ***

 Name: WL DG REG OUT (PAREBT)
 In/Out: OUT
Destination:
 Script:
 Parent:
 Dependency: Retry Rate: Max # of attempts:
Acknowledge expected from remote: Application Ack Conditions:
Acknowledge Message:
 Format Controller---Priority: Process time:
 Output Controller---Priority: Process Time:
Description:
Application Process:

COMMAND: Press <PF1>H for help Insert

Figure 3-2: Definition of Parent Transaction Type in Interface Transaction Type File

3.1.2 Application Program Interface (API) Call
Application routines are responsible for initiating interface transactions. In order to
initiate a transaction the following call is made:

GIS Interface Development 56 Transaction Routing

D ^INHF(<Parent TT>,<.INDA>,<.INA>,<time to process>,<priority>)

The use of the parameters is as follows.

PARENT TT This is the name of the parent transaction type. Once a parent transaction type is in
use, the name should not be changed. It is the string value of the .01 field of the
parent transaction type which is called from the application program, not the internal
entry number.

INDA For a simple message, this is the internal entry number of the record in the root file
from which data is being extracted in the format INDA(ien). For more complex
messages, this may be an array which is passed by reference from the application.
The general format of the array will be INDA(data dictionary number, ien). For
example, INDA(2,42051)=”” (Entry 42051 in file 2) INDA(2.95,8872)=”” (Entry 8872
in sub-file 2.95) However, there is a wide variation in the construct of the INDA
array depending on the way the message is defined. The INDA structure will be
different for dependent segments, repeating segments, etc. Examples of INDA
arrays under special conditions are shown in the section on Message Definition
Hints.

INA This is an optional parameter which allows values from the application to be passed
into the script. It is passed by reference and becomes the INV array within the
script. This may be necessary when:
• A user-defined value is required in the transaction.
• A value is required which cannot easily be extracted from the database.
• Time sensitive data is being used. If a value is likely to change quickly (within

seconds or minutes), this guarantees its value in the formatted message.
Otherwise, the Format Controller uses the value of the field at the time the entry
is taken from the Format Queue and processed.

For example, to create the following two special script variables:
@DATE = 2910528
@HCP = Smith, John
A programmer could set
INA("DATE") = "2910528”
INA("HCP") = "Smith, John”
and use .XX as the third parameter in an interface call which could look like the
following.
 D ^INHF(“TEST TT”,.INDA,.INA)

TIME-TO-
PROCESS

This optional parameter over-rides the formatter time-to-process specified for the
transaction in the Interface Transaction Type file. (This parameter should not
normally be used as part of the call. Instead, time-to-process should be set in the
Interface Transaction Type File)

The ^INHF call will return a value in the variable INHF of either 0 (if an error
occurred) or the ien of the entry which INHF creates in the Interface Task File,
^INLHFTSK. (Errors are not logged by the GIS with exception of an unknown
transaction type.) The application code should test for a value of 0. Typical error
conditions which will result in INHF = 0 are as follows.

• Interface system is "inactive" in the Interface Site Parameter file.

• Missing Parent Transaction Type parameter.

GIS Interface Development 57 Transaction Routing

• Unknown Parent Transaction Type.

• Missing INDA parameter.

• User number (DUZ) is null, non-existent, or zero.

• The specified parent transaction type is inactive.

• The specified transaction type is not a parent transaction type.

3.1.3 Child Transaction Type Definition
For an outgoing transaction (with the exception of a replicated transaction), the child
transaction type is the fundamental element in the GIS. Although the "transaction" is
defined using other GIS tools, it is the script associated with the child transaction type
which actually extracts the data from the database and formats the "message”. The
child transaction type is pointed to by an entry in the Script Generator Message file. It
is not possible to generate and/or compile a message script until the message has a
valid pointer to a transaction type. For more information on messages, refer to the
section on “Message Definition”.

If a transaction type is to be sent to multiple destinations, do not create a separate
child transaction type for each. Create only one child transaction type and designate
its destination as HL REPLICATOR. See the section on “Transaction Replication”
and “Selective Routing” for details.

 *** Transaction Type Definition, Screen 1 of 2 ***

 Name: WL DG REG OUT (PAREBT)
 In/Out: OUT
Destination: HL MDIS
 Script: Generated: HL DG ADD PERSON MESSAGE-O
 Parent: HL DG REG OUT (PARENT)
 Dependency: Retry Rate: Max # of attempts:
 Acknowledge expected from remote: Application Ack Conditions:
 Acknowledge Message:
 Format Controller---Priority: Process time:
 Output Controller---Priority: Process Time:
 Description:
 Application Process:

COMMAND: Press <PF1>H for help Insert

Figure 3-3: Definition of Child Transaction Type in Interface Transaction Type File

Figure 3-3 is an example of a child transaction type entry in the Interface Transaction
Type file. (Note: As of Version 4.5, three screens are used to define transaction types.

GIS Interface Development 58 Transaction Routing

However, screens 2 and 3 are used specifically for selective routing, and will be
described in that section of the documentation.) The fields are used as follows.

NAME This is the name of the transaction type. For clarity, it is useful to
designate the destination. For example, HL ADT REG OUT (MDIS). If the
transaction type is being replicated to multiple destinations, designate the
"base" transaction type as being a replicated type. For example, HL ADT
REG OUT (REP).

IN/OUT The in/out field specifies that this is an outgoing transaction.
ACTIVE The active field specifies that this transaction type is active. The default

value is inactive, so you must make an entry in this field to activate your
transaction type.

DESTINATION The destination field is a pointer to an entry in the Interface Destination
file. Many different messages/transaction types can be routed to the
same destination. If the transaction type is being replicated, the
destination of the "base" transaction type is HL REPLICATOR.

SCRIPT This is a pointer to the Interface Script file. If the script is being created
using the Script Generator, this field will be populated with the correct
value once the script is generated.

PARENT The parent transaction type field is a recursive pointer to the parent
transaction type which is triggered from the application. This field must
have a valid entry or the transaction will not be created (with the
exception of a replicated transaction). DEPENDENCY If a parent has
more than one child, dependency can be used to designate the order in
which the child transaction types are processed.

RETRY RATE This specifies to the output controller the amount of time to wait between
attempts to re-send the outbound transaction in the event the first attempt
fails. This field is not used if the Destination is a background process
such as a TCP/IP transmitter.

MAX # OF ATTEMPTS This specifies to the output controller the maximum number of attempts to
re-send the outbound transaction in the event the first attempt fails. This
field is not used if the Destination is a background process such as a
TCP/IP transmitter.

ACKNOWLEDGE
EXPECTED FROM
REMOTE

This field is used only for outgoing child or replicant transactions and
indicates whether or not an application acknowledgment is expected from
the remote system. If the value in the field is "no" (the default), the status
of an outgoing transaction becomes "complete" as soon as it is sent to
the remote system (or when an accept acknowledgment is received if
enhanced processing rules are being used). If the value in this field is
"yes", the status of an outgoing transaction becomes "sent" when it is
transmitted to the remote system. It is updated to “complete” when the
application acknowledgment is received. There are several status levels
which may be assigned to an outgoing transaction. Refer to the section
on status levels for more information.

APPLICATION ACK
CONDITION

Not used for outgoing transactions.

ACKNOWLEDGE
MESSAGE

Not used for outgoing transactions.

FORMAT CONTROLLER—
PRIORITY

Not used for child transaction types

FORMAT CONTROLLER -
PROCESS TIME

Not used for child transaction types

GIS Interface Development 59 Transaction Routing

OUTPUT CONTROLLER –
PRIORITY

After being created in the format controller, an outgoing child transaction
may be placed on the Output Controller queue for delivery to the final
destination. (However, transactions can be specified for “direct delivery”
to a destination queue bypassing the Output Controller. Refer to
Destination Definition.) The Output Controller - Priority and Process Time
fields controls the priority and time-to process of the transactions on the
output queue. Allowable values for priority are 0 (highest and the default
value) to 9 (lowest priority).

OUTPUT CONTROLLER -
PROCESS TIME

Along with Output Controller - Priority, this field controls the time-to-
process of a transaction on the output queue. The default value is “now”.
Allowable values are a specific time or a relative time such as “T@2300”
or “STAT”.

DESCRIPTION This is a free text field for documentation.
APPLICATION PROCESS This is a pointer to the Background Process which is started when this

Transaction Type is used with interactive messaging.

3.1.4 Destination Definition
For an outgoing transaction, the "destination" is a method of processing the
transaction. It is an entry in the Interface Destination file. The entry primarily consists
of the name of a routine which will process the transaction once it is obtained from
the Output Controller Queue. Many different messages/transaction types can be
routed to the same destination. A newly-created transaction will often be destined for
an existing destination, requiring no new entry in the Interface Destination file.

Destination entries for outgoing transactions must have a name and either the name of
a routine or a mail recipient. The GIS includes some standard routines for processing
outbound transactions. One such routine is INHVSEQ, which is used for transactions
which are destined for remote systems. INHVSEQ will place the transaction on a
destination queue, where a specialized TCP/IP transceiver or other background
processes will transmit the transaction. Another standard routine used to process
outbound transactions is INHRDUP. This routine is used to replicate a "base"
transaction to multiple destinations. Refer to the sections on “Transaction
Replication” and “Selective Routing” for more information on this process.

GIS Interface Development 60 Transaction Routing

 *** Transaction Type Definition, Screen 1 of 2 ***

 Name: HL CLINICOMP
Acceptance TT:
Accept Ack Conditions:

Priority: Retry Rate: 1M Max # of Attempts: 3
 *** Enter a value for ONE of the following:
 Transaction Type:
 Transceiver Routine: INHVSEQ
 Mail Recipient:
 Message Subject:
 Device for Output:

Code to Edit Transactions:

COMMAND: Press <PF1>H for help Insert

Figure 3-4: Destination Definition for Outgoing Transaction

Figure 3-5 is an example of an outgoing entry in the Interface Destination file. (Note:
As of Version 4.5, four screens are used to define destinations. However, screens 2
through 4 are used specifically for selective routing, and will be described in that
section of the documentation.)

NAME For clarity, the name should include the name of the system (remote or
otherwise) to which the transactions are directed along with the word
"OUT" or the letter "O" to quickly distinguish outbound destinations from
incoming destinations.

ACCEPTANCE TT Not used for outgoing transactions.
ACCEPT ACK CONDITIONS: Not used for outgoing transactions.
PRIORITY No longer used—this field has been moved to the Interface Transaction

Type file.
RETRY RATE and MAX # OF
ATTEMPTS

These fields are needed only if the routine designated as the
Transceiver Routine (see below) is the routine which transmits the
transaction to it’s ultimate destination. If the routine moves the
transaction onto a destination queue where it is transmitted by a
background process, the retry rate and max # of attempts are not
useful. In those rare cases where the transceiver routine does deliver
the transaction, these fields control the period between retries following
a non-fatal error and over the number of attempts that can be made at
transmission.

TRANSACTION TYPE Not used for outgoing transactions.
TRANSCEIVER ROUTINE The designated routine will process all transactions with this

destination. The routine INHUSEQ should be used unless special
processing is required. Although it is possible to identify the name of a
TCP/IP transceiver routine in this field, this should NOT normally be
done. Instead, this field is used to designate the routine which moves
the outbound transaction onto the appropriate destination queue.

GIS Interface Development 61 Transaction Routing

MAIL RECIPIENT If a mail recipient is specified, the transaction will be passed to MailMan
to be routed. The recipient can be any type of recipient acceptable to
MailMan including a user, network user, mail group or device.

MESSAGE SUBJECT If the mail recipient field is used, the message subject may be filled in to
specify the subject of the message which will be created.

DEVICE FOR OUTPUT The device multiple allows entry of a device (pointer to device file) or
several devices to be used. The GIS will handle all device arbitration by
ensuring that one of the devices in the list is open and active before the
transceiver routine is invoked. Adding more devices here will most likely
increase the throughput of the GIS to the destination in question.

CODE TO EDIT
TRANSACTIONS

This is executable M code which, if present, will be used whenever a
transaction with this destination is being edited using the Transaction
Edit option.

3.1.5 Destination for the Background Process
The Background Process Control file contains entries for the various processes which
transmit and receive transactions from remote systems. It can also be used to control
processes which write transactions into system files (i.e. VMS or Unix). The primary
entries in the Background Process Control file are the names of the transceiver
routine, and the name (pointer) to the Destination file served by this background
process. Although it is possible to designate the transceiver routine in the Destination
file, developers should use the Background Process Control file because this provides
the control to start, stop and monitor the progress of the transceiver. This control does
not exist in the Destination file.

In addition, the background processes utilize destination-specific transaction queues,
whereas the Destination file uses the Output Control Queue. Because the destination-
specific queues function independently, it is not necessary that all TCP/IP
connections for all remote systems be active simultaneously. If the connection to one
remote system is unavailable, transactions for that destination are added to that queue,
while those for other destinations continue to be transmitted.

The GIS includes standardized routines for use by the Background Process Control
file. The routine used for outgoing transactions is INHVTAPT. This transmitter
supports enhanced acknowledgment. While active, it continually monitors the
background queue, which will be ^INLHDEST(<destination>,<priority>,<time-to-
process>,<UIF ien>) where "destination" is the ien of the entry in the Interface
Destination file pointed to by the background process, and “ien” is the entry of the
transaction in the Universal Interface file. Once an entry is detected in the queue,
INHVTAPT will transmit it to the remote system, then wait to receive an accept
acknowledgment.

Figures 3-5 and 3-6 show an entry in the Background Process Control file. The fields
are used as follows. (As of Version 4.5, three screens are used to define Background
Processes. However, screens 3 is used specifically for selective routing, and will be
described in that section of the documentation.)

GIS Interface Development 62 Transaction Routing

 *** Background Process Entry/Edit *** Screen 1 of 3

 Name: ANATOMIC PATHOLOGY TRANSMITTER
 Active: INACTIVE Priority: 5
 Device:
 Routine: INHVTAPT
 Destination: ANATOMIC PATHOLOGY
Destination Determination Code:
D ^INHF
 Client/Server: CLIENT Connection Type: PERSISTENT
Server Ports:
5555

Client Addresses:
135.34.1.10

COMMAND: Press <PF1>H for help Insert

Figure 3-5: Background Process Entry 1 for Outgoing Transactions

Note: Some values in the Background Process Control File can have a significant
impact on throughput.

NAME This is the name of the background process. When using any of the
background control functions, such as starting a process, stopping a process,
verifying which processes are running, etc., this name is used.

ACTIVE This flag must be set to ACTIVE for the background process to be started.
PRIORITY This is the priority at which this background task should run. Values are from 1-

10 with 1 being highest, 10 is lowest, and 5 is equal to normal user priority. If
this field is null, then the value from the Interface Site Parameters will be used.

DEVICE This field should not normally be used. It is only used to designate the name of
the device which this program should open and use for all I/O operations. It
should not be filled in if the Routine controls I/O.

ROUTINE This is the name of the background process routine. A standardized routine for
outgoing TCP/IP interfaces is INHVTAPT.

DESTINATION This is a pointer to the entry in the Interface Destination file which specifies the
destination queue containing messages to be sent.

DESTINATION
DETERMINATION
CODE

This is not used for outgoing transactions.

CLIENT/SERVER The example in Figure 3-5 designates this process as a TCP/IP “client”
process, with corresponding entries for TCP/IP address and ports (see Client
Addresses field below). If desired, the process can be designated as a TCP/IP
“server”, with a corresponding entry for TCP/IP port (see Server Ports field
below).

GIS Interface Development 63 Transaction Routing

CONNECTION TYPE The connection type determines how the Background Process will handle the
opening and closing of the connection to the destination systems. Persistent
connection (default) is opened initially and remains connected throughout the
life of the process. Transient connection is opened only during the time of
transfer. For the transmitter, the connection is initiated when a transaction
appears in the queue. The receiver will run in server mode and listen for
connection. Closing of the connection is up to the client.

SERVER PORTS This allows multiple entries. An entry is needed here only if the process is a
TCP/IP server. When attempting to open a TCP/IP socket, the GIS will try every
port designated until it successfully opens the socket. Only one socket will be
opened.

CLIENT
ADDRESSES

This allows multiple entries. If an entry is made here, a second screen allows
entry of address ports. An entry is needed here only if the process is a TCP/IP
client. When attempting to open as a client to a remote server, the GIS will try
every address and port until it successfully opens the socket. Only one socket
will be opened.

OPEN HANG TIME Used as the background process attempts to open a TCP/IP socket, it is the
hang time, in seconds, between attempts to open a socket. (This is only
meaningful if opening as a TCP/IP client.)

OPEN RETRIES This specifies the number of times the background process will attempt to open
a socket. If no connection is made with the other system after the specified
number of attempts, the background process will log an error and terminate.
(This is only meaningful if opening as a TCP/IP client.)

TRANSMITTER
HANG

Not currently being used.

SEND HANG TIME If a transmission is rejected by the remote system (an ack status of CR or CE),
or the acknowledge received from the remote system is garbled, the send hang
time specifies the number of seconds between attempts to re-send the
transmission (until the maximum number of send retries is reached).

GIS Interface Development 64 Transaction Routing

 *** Background Process Entry/Edit *** Screen 2 of 3
-------------------- Parameters ---
 Open Hang: Open Retries:
 Disconnect Hang: Disc. Retries:
 Transmitter Hang:
 Send Hang Time: 1 Send Retries: Send Timeout:
 Read Hang Time: Read Retries: Read Timeout:
 End of Line: Send Maximum:
 Client Init String:
28
Init Response:

Start Of Message: End of Message:

--------------- Interactive Process Parameters ---------------------------
Maximum Number of Jobs: Suppress Startup:
 Security Key Frame:

COMMAND: Press <PF1>H for help Insert

Figure 3-6: Background Process Entry 2 for Outgoing Transaction

SEND RETRIES This specifies the number of attempts the background process will make to send an
interface transaction to the remote system. If the remote system rejects the
transaction under enhanced acknowledgment rules (i.e. a status of CE or CR), the
background process will count each rejection, and when the number of retries is
exceeded, the rejected transaction will be removed from the destination queue and
the background process will attempt to send the next transaction. However, if there
is no response from the remote system or the response is garbled, the GIS will NOT
remove the transaction from the queue, but will continue to attempt to send the
transaction to the remote system.

SEND TIMEOUT Not currently being used.
READ HANG
TIME

For a transmitter, this specifies the number of seconds the process will hang
between socket reads for the accept acknowledge transaction. Under enhanced
processing, the transmitter sends a transaction to a remote system, then
immediately “listens” for the accept acknowledgment. If nothing is received, it will
hang and “listen” again. (Note: testing has revealed that this value is the single most
important parameter affecting transmitter throughput. The lowest allowable value
provides the best throughput. However, this is not true for a receiver process.)

READ RETRIES This specifies the number of attempts the background process will make to receive a
transaction from the remote system. This is primarily used by transmitter jobs under
enhanced acknowledgment. After the transmitter sends a transaction to a remote
system, it will make the specified number of reads for an accept acknowledgment.

READ TIMEOUT When the background process “listens” for a transmission from a remote system, this
specifies the number of seconds it will read the socket. It is important not to set this
number too high, because the background process can not exercise any control
during the read. For example, an attempt to shut down the background job will have
no effect during the time the process is reading a socket.

END OF LINE This specifies the ASCII code for the end-of-line terminator. For HL7, this is the ACII
code 13 (the default), and the end of line is the delimiter between HL7 segments in
the transmission.

GIS Interface Development 65 Transaction Routing

CLIENT INIT
STRING

If specified, this is the initialization string which the TCP/IP client will send to the
TCP/IP server to initiate communication with the server. If the background process is
the client, this specifies what will be sent, if the process is the server, this specifies
what is expected to be received. Note that the terms client and server are
independent of whether the process is a transmitter or a receiver. This is only sent
as the socket is opened, not at the start of individual transmissions. If the TCP/IP link
between systems is lost, the client will re-establish the socket and re-send the
initialization string.

INIT
RESPONSE

If specified, this is the string which is returned by the TCP/IP server to the TCP/IP
client in response to an initialization string.

MAXIMUM
NUMBER OF
JOBS

If the background process creates other background jobs, this designates the
maximum number that will be created. An example is the log-on server, which runs
as a single process to accept requests for log-on, then creates additional
background jobs to which the remote system(s) are directed.

SUPPRESS
STARTUP

If the background process should not be started using the menu option to start all
background jobs, this field should be designated “yes”. (For example, jobs that are
started by the log-on server, not by a menu option.)

SECURITY KEY
FRAME

This designates the key frame used for specialized background jobs, such as the
log-on server.

3.1.6 Transaction Replication To Multiple Destinations
It is possible to send a single outgoing transaction to multiple destinations. If desired,
the MSH segment can be tailored to meet the requirements of each destination while
leaving the body of the message/transaction intact. It is also possible to execute M
code to make minor modifications of the body of the transaction. Replicating a
message provides a method of sending a transaction to multiple destinations without
incurring the overhead needed to extract and format multiple transactions. Replication
requires the following steps.

A single “child” transaction type (entry in the Interface Transaction Type file) is used
as a “base” transaction. When the parent transaction type is processed by the format
controller, the script for the child/base transaction type is used to extract and format
an entry in the Universal Interface file. It also places a pointer to the UIF entry in the
Output Controller Queue. When processed by the output controller and the replicator,
multiple copies of this base transaction will be created in the UIF. A pointer to each
will be made in the appropriate destination queue for transmission to the remote
destination.

The destination for this child/base transaction type must be HL REPLICATOR,
which is a pre-designated entry in the Interface Destination file. Figure 3-7 shows the
HL REPLICATOR destination. As shown, INHRDUP is specified as the transceiver
routine. This is the entry routine for the Replicator. It also performs selective routing
functions. For each destination to which the transaction is to be sent, an additional
entry must be made in the Interface Transaction Type file. These entries are not
“child” transaction

GIS Interface Development 66 Transaction Routing

*** Define transaction types for originating transaction type ***

The originating transaction type specifies the message which will be
replicated to the transaction type and it’s designated destination
--
Transaction type: HL DG REG OUT (AP)
Originating type: HL DG REG OUT (REP)

Special formatting:
 Reformat MSH?:
 Event type: Message type:
Sending applic: Rec. applic:
 Facility: facility:
 Processing ID: HL7 version:
 Accept ACK: Application ACK:
 Country code:

COMMAND: Press <PF1>H for help Insert

Figure 3-7: Message Replication Entry for Replicated Transaction

For each destination to which the transaction is to be sent, an additional entry must be
made in the Interface Transaction Type file. These entries are not “child” transaction
types because they do not contain a recursive pointer to the parent transaction type.
Each of these transaction types should point to the desired entry in the Interface
Destination file. Because replicated transactions do not get processed by the format
controller, the format priority and format time-to-process are not used, but you may
specify different output priority and output time-to-process for each replicated
transaction if you desire.

The “base” transaction type will control priority and time-to-process for both the
format controller and the output controller. These must be set to match the replicated
transaction with the highest priority and/or earliest time-to-process.

For each destination to which the transaction is to be sent, an entry must be made in
the Interface Message Replication file. This file primarily consists of a pointer to the
“base” transaction type and a pointer to the “replicated transaction” transaction type.
Figure 3-8 shows an example of this entry. The use of the key fields in this entry are
as follows.

TRANSACTION TYPE This is the pointer to the entry in the Interface Transaction Type file for the
replicated message.

ORIGINATING TYPE This is the pointer to the “base” entry in the Interface Transaction Type file.
SPECIAL
FORMATTING

This is executable M code which can be used to modify the replicated
message. With a call to a sophisticated M routine, this can be used to
customize individual field entries within the message. Values set by this code
over ride MSH values specified in the gallery (see Figure 3-7). For further
information refer to Creating Destination Specific MSH segments in the
selective routing section.

GIS Interface Development 67 Transaction Routing

REFORMAT MSH? If the MSH segment must be tailored for the destination, enter “yes” in the
Reformat MSH? Field. The default is “no”, meaning the MSH contained in the
“base” transaction will be used (The GIS populates Message ID and the
Date/Time stamp as the replicants are created). If only a few fields need to be
changed for the destination, you only need to make entries in the fields that
need to be changed. If an MSH field is left blank, the value of the “base” MSH
will be used. If the “base” MSH contains a value, but the replicated transaction
must be blank, enter double quotes in the appropriate field. For further
information refer to Creating Destination Specific MSH Segments in the
selective routing section.

The remainder of the fields correspond to fields within the MSH. See section on
“Message Definition” for a description of these fields.

Note that the original child transaction is not transmitted. Instead, it provides the base
from which replicated transactions are made—each of which is sent to the designated
destination. The Activity Log multiple of the base transaction will contain an entry
for each replicated transaction. The multiple will show the status of the replicant. If
the replication was successful, the status of the replicant will be “complete” and the
multiple will also show the replicant’s entry in the Universal Interface File.

The status of the base transaction is set to “complete” if all replicated transactions are
successfully created. If an error is encountered while creating any replicated message,
the status of the base message will be “error”. An error in one replication does not
impact other replications. It is possible for the Activity Log multiple to indicate one
or more “complete” replications and one or more with a status of “error”. A base
transaction with a status of “complete” can not be re-queued. A base transaction with
a status of “error” can be re-queued, but only those destinations in an “error” status
will be re-processed.

Once a replicated transaction has been created, it becomes an independent transaction
in the GIS. It has an entry in the UIF and it’s status can be monitored using the same
tools as are used for any other transaction. See the section on “Status Levels” for
more information.

GIS Interface Development 68 Transaction Routing

 *** Interface Destination Definition, Screen 1 of 3 ***

 Name: HL REPLICATOR
Acceptance TT:
Accept Ack Conditions:

Priority: Retry Rate: Max # of Attempts:
 *** Enter a value for ONE of the following:
 Transaction Type:
 Transceiver Routine: INHRDUP
 Mail Recipient:
 Message Subject:
 Device for Output:

Code to Edit Transactions:

COMMAND: Press <PF1>H for help Insert

Figure 3-8: Pre-defined Destination for Transactions to be Replicated

3.2 Incoming Transactions
For purposes of this documentation an incoming transaction is one which is received
from a remote system. It typically contains data which originated in the remote
system which is intended to be used to update data in the database, but the transaction
is not limited to this purpose. Incoming transactions can also include query messages,
requests for interactive login, etc. (If the incoming transaction is being routed to
another remote system rather than into host system, refer to the documentation
section on “Routing a Store-And-Forward transaction”)

An incoming transaction typically consists of the following elements.

• A background process to receive the incoming transaction.

• An entry in the Interface Destination File pointed to by the background process as
explained in the section on the “Destination-Background Process Pair”.

• A defined message in the Script Generator Message file.

• A link between the message type (i.e. MSH-9) and a “destination”. This link is
provided by destination determination code as explained in the section on
“Message Type Recognition”.

• An entry in the Interface Destination File which points to the incoming
transaction type as explained in the section on the “Destination-Transaction Type
Pair”.

• A transaction type (there is no distinction between parent and child types for
incoming transactions)

GIS Interface Development 69 Transaction Routing

A single background process may be used to receive many types of incoming
transactions, and it will point to a single entry in the Interface Destination file. It
contains an entry which identifies the transaction type of the accept acknowledgment
message, if enhanced acknowledgment is in effect. It also controls the routing of an
application acknowledgment.

For each different type of incoming transaction, an entry must be provided in the
Interface Destination File which identifies the destination for that message type
(which is usually a six-character message type/trigger event), and a corresponding
entry in the Interface Transaction Type file which identifies the message and the
compiled routine needed to process the incoming transaction into the database. The
entry in the Interface Destination file pointed to by the background process should not
normally point to a transaction type. Figure 3-16 illustrates the relationships between
background processes, destinations and transaction types for incoming transactions.

The same transmitter and receiver routines (INHVTAPT and INHVTAPR) are used
for HL7 and X12 messages.

The steps which are required to route an incoming transaction type are described in
the following sections.

Figure 3-9: Relationship of Destination Background Process and Transaction Type

GIS Interface Development 70 Transaction Routing

3.2.1 Destination-Transaction Type Pair
Each incoming transaction, with the exception of store-and-forward transactions and
mail, requires one entry in the Interface Transaction Type file and one in the Interface
Destination file.

The transaction type is the fundamental element which is routed through the GIS.
Incoming transactions do not distinguish between parent and child transaction types.
When a message is defined (see the section on “Message Definition”), linked to an
incoming transaction type, and compiled, the GIS typically creates two types of M
routines. One is a compiled routine which will parse the incoming message into
segments and fields. The other is a compiled Fileman input template which will
update the database.

It is necessary to create an entry in the Interface Transaction Type file and link it to
the entry in the Script Generator Message file before the GIS will generate and/or
compile the message script. In general, there will be one entry in the Interface
Transaction Type file for each HL7 message type (i.e. a message type/trigger event).
For example, there may be a transaction type which corresponds to the ADTA01. It is
possible, and usually desirable, to use the same incoming transaction type to process
all incoming messages of the same HL7 message type, regardless of the remote
system. If, however, the applications developer must vary the process between
identical message types originating from different remote systems, it is necessary to
create different entries in the Interface Transaction Type file.

Figure 3-10 is an example of an incoming transaction type. Figure 3-11 is an example
of a destination which points to the transaction type. Notice that the “Transaction
Type” field in the Destination entry is “HL AP LOGIN/RESULT – IN”, which is the
incoming Transaction Type entry.

The fields for an incoming transaction type are defined as follows.

NAME This is the name of the transaction type. For clarity, it is useful to name the
Transaction Type the same as the Destination which points to it. This clearly
documents the pairing of the entries in the two different files. It is also useful to
designate transactions as incoming or outgoing by appending “- IN” to the name.

IN/OUT This designates the transaction as incoming.
ACTIVE This specifies that this transaction type is active. The default value is inactive, so you

must make an entry in this field to activate your transaction type.
DESTINATION Not used for incoming transactions.
SCRIPT This is a pointer to the Interface Script File. Normally, the script is created using the

Script Generator Subsystem (i.e. the child transaction type is an entry in the
transaction type multiple of a message in the Script Generator Message file), and this
field is populated with the correct value as the GIS generates the script.

GIS Interface Development 71 Transaction Routing

 *** Transaction Type Definition, Screen 1 of 2 ***

 Name: HL AP LOGIN/RESULT – IN
 In/Out: IN Active: INACTIVE
Destination:
 Script: Generated: HL AP LOGIN/RESULT – INCOMING-I
 Parent:
 Dependency: Retry Rate: Max # of attempts:
Acknowledge expected from remote: Application Ack Conditions: NEVER
Acknowledge Message: HL GIS ACCEPT ACKNOWLEDGEMENT
 Format Controller---Priority: Process time:
 Output Controller---Priority: Process Time:
 Description:
 Application Process:

COMMAND: Press <PF1>H for help Insert

Figure 3-10: Transaction Type Definition for Incoming Transaction

 *** Interface Destination Definition, Screen 1 of 3 ***

 Name: HL AP LOGIN/RESULT – IN
Acceptance TT: HL GIS ACCEPT ACKNOWLEDGEMENT
Accept Ack Conditions:

Priority: 0 Retry Rate: Max # of Attempts: 10
 *** Enter a value for ONE of the following:
 Transaction Type: HL AP LOGIN/RESULT – IN
 Transceiver Routine:
 Mail Recipient:
 Message Subject:
 Device for Output:

Code to Edit Transactions:

COMMAND: Press <PF1>H for help Insert

Figure 3-11: Destination for an Incoming Transaction

PARENT Incoming transactions do not have parent transaction types. This field
should be left blank.

DEPENDENCY Not used for incoming transactions.
RETRY RATE Transactions which encounter an error when processed by the Output

Controller can be re-queued up to the maximum tries specified. The
retry rate can be specified as the number of minutes, hours or days
before the next attempt to process the transaction. Examples of correct
format are M10 (10 minutes), H2 (two hours) or D1 (one day). If the
retry rate is not specified, the entry will not be re-queued.

GIS Interface Development 72 Transaction Routing

MAX # OF ATTEMPTS Used in conjunction with the Retry Rate. If the Output Controller can not
successfully processes a transaction within the maximum number of
retries specified, an error will be logged and the transaction will be
deleted from the queue. If the number of attempts is not specified, the
entry will not be requeued.

ACKNOWLEDGE
EXPECTED FROM REMOTE

Not used for incoming transactions.

APPLICATION ACK
CONDITION

This allows an over-ride to the value in MSH-15 in an incoming HL7
message. If not specified, the value of MSH-15 determines the
conditions under which an application acknowledgment message will
be created and returned to the remote system. If specified, the
allowable values correspond to those specified by HL7.

ACKNOWLEDGE MESSAGE This is a pointer to the entry in the Interface Transaction Type file which
is the application acknowledgment to be returned to the sending
system.

FORMAT CONTROLLER –
PRIORITY & PROCESS
TIME

These fields are not used for incoming transactions because incoming
transactions are not processed by the format controller.

OUTPUT
CONTROLLERPRIORITY &
PROCESS TIME

The use of these fields is identical for both incoming and outgoing
transactions. Refer to the section on Outgoing Child Transaction Types
for details.

DESCRIPTION This is a free text field for documentation.
APPLICATION PROCESS Pointer to an entry in the BACKGROUND PROCESS CONTROL file for

a server background job that will be created by this transaction type.
This field will be used during server creation to access the name of the
routine to run and to search for the next available server slot.

Each incoming transaction type is paired with an entry in the Interface Destination
file. Although it is possible for more than one destination to point to one transaction
type, this would be unusual.

All interface transactions, incoming, outgoing (with the exception of “direct delivery”
outgoing transactions) and store-and-forward are processed by the Output Controller
via the Output Queue. As each entry is picked off the queue, the Output Controller
examines the "destination" of the entry. For incoming transactions the "destination"
points to the transaction type, which points to the compiled script that will properly
process the message. The use of the fields in the Destination for an incoming
transaction are as follows.

NAME This is the name of the Destination. For clarity, it is useful to name the
Destination the same as the Transaction Type to which it points. This clearly
documents the pairing of the entries in the two different files. It is also useful to
append “- IN” to the name to designate it as an incoming destination.

ACCEPTANCE TT This is not needed for a destination-transaction type pair.
ACCEPT ACK
CONDITIONS:

This is not needed for a destination-transaction type pair.

USE SEQUENCE #
PROTOCOL

*** Not currently used *** This is not needed for a destination-transaction type
pair, unless the entry in the destination file is also being pointed to by a
background process. See description in destination background process pair.

GIS Interface Development 73 Transaction Routing

LAST SEQUENCE# *** Not currently used *** If sequence number protocol is being used, this field
will be updated by the GIS for each message received. It should not be
modified unless the systems must be manually resynched.

PRIORITY Not active.
RETRY RATE/MAX #
OF ATTEMPTS

Not used for incoming messages.

TRANSACTION
TYPE

This is the pointer to the entry in the Interface Transaction Type File.

TRANSCEIVER
ROUTINE

Not used for incoming messages.

MAIL RECIPIENT This is only used if the incoming message is to be routed to mail. If an entry is
placed here, no entry can be placed in the transaction type field.

 *** Interface Destination Definition, Screen 1 of 3 ***

 Name: HL AP LOGIN/RESULT - IN
Acceptance TT: HL GIS ACCEPT ACKNOWLEDGEMENT
Accept Ack Conditions:

Priority: 0 Retry Rate: Max # of Attempts: 10
 *** Enter a value for ONE of the following:
 Transaction Type: HL AP LOGIN/RESULT - IN
 Transceiver Routine:
 Mail Recipient:
 Message Subject:

 Device for Output:
Code to Edit Transactions:

COMMAND: Press <PF1>H for help Insert

Figure 3-12: Background Process Screen 1 for Incoming Transactions

MESSAGE SUBJECT This is an optional field for mail messages.
DEVICE FOR OUTPUT Not used for incoming transactions.
CODE TO EDIT TRANSACTIONS Not used for incoming transactions.

Once an incoming destination has been defined and is active, the name should not be
changed unless the Destination Determination Code is also changed. The string value
of the .01 field, not the pointer, is used in Destination Determination.

3.2.2 Destination-Background Process Pair
Incoming transactions typically originate on a remote system and are transmitted to
the GIS via some type of electronic, interactive link such as TCP/IP. The GIS
provides a method of defining a background process to receive and process these
incoming transactions. This requires an entry in the Background Process Control file
and an entry in the Interface Destination File. (Note: this entry in the Interface

GIS Interface Development 74 Transaction Routing

Destination File does not provide the same function as that described in the section
“Destination-Transaction Type Pair”)

The Background Process Control file defines the transceiver routine which receives
the incoming transaction. Related functions in the GIS provide the control to start,
stop and monitor the progress of the transceiver. Figure 3-13 is an example of an
entry in the Background Process Control file for incoming transactions. Figure 3-14
is an example of an entry in the Interface Destination File. Notice that the
“Destination” field in the Background Process entry is “HL DBSS”, which is the
name of the entry in the Destination file.

 *** Interface Destination Definition, Screen 1 of 3 ***

 Name: HL DBSS
Acceptance TT: HL GIS ACCEPT ACKNOWLEDGEMENT
Accept Ack Conditions:

Priority: Retry Rate: 1M Max # of Attempts: 3
 *** Enter a value for ONE of the following:
 Transaction Type:
Transceiver Routine: INHVSEQ
 Mail Recipient:
 Message Subject:
 Device for Output:

Code to Edit Transactions:

COMMAND: Press <PF1>H for help Insert

Figure 3-13: Destination Entry for TCP/IP Receiver (One destination per process,
accommodates multiple transaction types)

The use of the fields in the Background Control process are as follows. The TCP/IP
parameters (not shown) are similar for both incoming and outgoing processes. For a
sample input screen of parameters, see Figure 3-6.

NAME This is the name of the background process. When using any of the
background control functions, such as starting a process, stopping a process,
verifying which processes are running, etc., this name is used. The first two
letters of the name are also used to create a unique message id, even if the
remote system sends multiple messages with the same message ID. Refer to
the explanation of the Message ID field in the Universal Interface File section
of this documentation.

ACTIVE This flag must be set to ACTIVE for the background process to be started.
DEVICE Not used for receivers.
ROUTINE This is the name of the background process routine. A standardized routine

for TCP/IP receivers is INHVTAPR.
DESTINATION This is a pointer to the entry in the Interface Destination File which contains

additional information on the processing of all messages from this remote
system.

GIS Interface Development 75 Transaction Routing

DESTINATION
DETERMINATION
CODE

This is executable M code which provides the information needed to identify
the destination of the incoming transaction based on data which is typically
contained in the MSH segment. See the section on Message Type
Recognition for details.

CLIENT/SERVER The example in Figure 3-19 designates this process as a TCP/IP "client"
process, with corresponding entries for TCP/IP address and ports (see Client
Addresses field below). If desired, the process can be designated as a
TCP/IP "server", with a corresponding entry for TCP/IP port (see Server Ports
field below).

SERVER PORTS This allows multiple entries. An entry is needed here only if the process is a
TCP/IP server. When attempting to open a TCP/IP socket, the GIS will try
every port designated until it successfully opens the socket. Only one socket
will be opened.

CLIENT ADDRESSES This allows multiple entries. If an entry is made here, a second screen allows
entry of address ports. An entry is needed here only if the process is a
TCP/IP client. When attempting to open as a client to a remote server, the
GIS will try every address and port until it successfully opens the socket. Only
one socket will be opened.

OPEN HANG TIME Used as the background process attempts to open a TCP/IP socket, it is the
hang time, in seconds, between attempts to open a socket. (This is only
meaningful if opening as a TCP/IP client.)

OPEN RETRIES This specifies the number of times the background process will attempt to
open a socket. If no connection is made with the other system after the
specified number of attempts, the background process will log an error and
terminate. (This is only meaningful if opening as a TCP/IP client.)

TRANSMITTER HANG Not currently being used.
SEND HANG TIME Not used for receivers.
SEND RETRIES Not used for receivers.
SEND TIMEOUT This is not currently implemented.
READ HANG TIME This parameter has a slightly different impact in a receiver than in a

transmitter. Whereas it should be set as low as possible (i.e. 1 second) for a
transmitter to improve throughput, it should be set higher for a receiver to
reduce system load. In the receiver, the receiver “listens” to an open socket
for an incoming transaction. If no transaction is received, the read hang is the
number of seconds before “listening” again. The parameter is also used to
specify the hang time between socket reads if an error occurs while reading
the socket.

READ RETRIES If an error occurs while reading the socket (as opposed to receiving no
transaction in the socket read), this specifies the number of attempts which
will be made to get a good read.

READ TIMEOUT Same as for transmitter.
END OF LINE Same as for transmitter.
CLIENT INIT STRING Same as for transmitter.
INIT RESPONSE Same as for transmitter.
MAXIMUM NUMBER
OF JOBS

Same as for transmitter.

SUPPRESS STARTUP Same as for transmitter.
SECURITY KEY
FRAME

Same as for transmitter.

GIS Interface Development 76 Transaction Routing

The GIS includes standardized routines for use by the Background Process Control
File. The most commonly used routine for incoming transactions is INHVTAPR,
which supports enhanced acknowledgment. While active, it monitors the link to the
remote system. Once a transaction is received, INHVTAPR will:

• Validate the transaction according to HL7 criteria

• If all criteria are valid, store the transaction in the Universal Interface File

• Determine if the transaction should be queued on the Output Control Queue

• If specified, create and transmit an accept acknowledgment back to the originating
system.

The entry in the Background Process Control file is paired with an entry in the
Interface Destination File. Refer to Figure 3-20. Notice that no values are entered for
Transaction Type, Transceiver Routine or Mail Recipient.

The use of the fields in the Interface Destination File are as follows.

NAME This is the name of the Destination. If the destination is pointed to only by an
incoming background process, it is useful to append - IN to the name. If it is
pointed to by both the receiver process and the transmitter process, a
designation such as -IO would be useful.

ACCEPTANCE TT This is required if enhanced acknowledgment rules are being used. It is a
pointer to the entry in the Interface Transaction Type file which will serve as the
accept acknowledgment returned to the sending system. Although the
background process may receive many different types of transactions, only one
type of accept acknowledgment message is returned to the remote system.

ACCEPT ACK
CONDITIONS:

This provides an over-ride to any value in the MSH-15 field of the transaction
from the remote system. MSH-15 specifies the conditions under which an
accept acknowledge message will be created and returned to the remote
system. If this field is left blank, the conditions specified in MSH-15 will be used.
If this field is filled it, it will over-ride any value in MSH-15.

PRIORITY Not active.
RETRY RATE and
MAX # OF
ATTEMPTS

Not used for incoming messages.

TRANSACTION
TYPE

This is not needed unless the Destination which is used in the Background
Process-Destination pair is also being used as a Destination-Transaction Type
Pair. See the section on Destination-Transaction Type Pair for the use of this
field.

TRANSCEIVER
ROUTINE

Not used for incoming messages.

MAIL RECIPIENT Designates the mail recipient if the incoming transaction is a mail message.
MESSAGE SUBJECT This is an optional field for mail messages.
DEVICE FOR
OUTPUT

Not used for incoming transactions.

CODE TO EDIT
TRANSACTIONS

Not used for incoming transactions

GIS Interface Development 77 Transaction Routing

3.2.3 HL7 Message Type Recognition (Destination Determination)
The HL7 standard specifies that the message type is contained in ninth field of the
MSH (message header) segment of each message. The message type consists of a
three-character message type which is, optionally, coupled with a three-character
trigger event. Examples are ADTA01, ADTA02, etc.

The GIS contains a set of routines which are called from the receiver routine,
INHVTAPR. These parse each incoming HL7 message and identify the HL7 message
type. The applications developer must provide the link between the message type and
the appropriate entry in the Interface Destination File. For incoming transactions, the
destination entry points to an entry in the Interface Transaction Type file. For a store-
and forward transaction, the destination entry points to another Destination.

Developers should provide executable code in the entry in the Destination
Determination Code field in the Background Process Control File. An example of this
is shown in Figure 3-18.

As each incoming transaction is processed, this executable code will attempt to
identify an entry in the Interface Destination File which corresponds to the message
type in the ninth field of the MSH. As the incoming transaction is filed into the
Universal Interface File, it is this destination which is used as the Destination (.02)
field of that file. Subsequently, when the transaction is processed by the Output
Controller, this destination will enable the GIS to identify the inbound transaction
type and it’s associated compiled script which will update the database.

The Destination Determination Code, either directly, or via an M routine which is
executed, must either 1) create an array in the variable INDEST(<message
type><trigger event>)=the string value of the .01 field in the Interface Destination file
and call the tag DEST^INHUSEN or 2) set the variable INDSTP = to the ien of the
entry in the Interface Destination File. Method 1 is preferred, though method 2 may
be useful if only a single message type is being processed. For either method, the
variables which are available to the applications developer are:

INTYP = the three-character HL7 message type
INEVN = the three-character HL7 trigger event

The following entry in the Destination Determination Code field is an example of the
first method.

S INDEST("ORU")="HL LA DII LSI INBOUND" D DEST^INHUSEN

An example of the second method is the following routine fragment, which is called
from the Destination Determination Code field. This example accommodates several
types of inbound HL7 messages and uses order type in addition to message type to
determine the inbound destination.

GIS Interface Development 78 Transaction Routing

DEST ; determine destination for an inbound *PWS* message
 ; Input : ING (req) = var name for inbound data array
 ; INTYP (req) = msg type
 ; INEVN (req) = event type
 ; INMSH (req) = MSH segment
 ; INDELIM (req) = segment delimeter
 ; Output: void
 ; INDST = INTERFACE DESTINATION Name
 ; INDSTP = INTERFACE DESTINATION pointer
 ; INDEST = array of valid inbound destinations
 ; Local : INORTYP = ORDER TYPE (ZOR:1)
 ; INRECV = receiving app (MSH:5)
 ; INSEND = sending app (MSH:3)
 K INDSTP
 N I,INORTYP,INRECV,INSEND,X
 S INSEND=$P(INMSH,INDELIM,3),INRECV=$P(INMSH,INDELIM,5), INORTYP=""
 ; build INDEST() if not done so for PWS
I $G(INDEST)'="CIW" S INDEST="CIW" F I=1:1 S X=$P($T(DESTTXT+I),";;",2)
Q:'$L(X) S INDEST($TR($P(X,U,1,3),U,""))=$P(X,U,4)
 I INTYP="ORM" F I=1:1 S X=$G(@ING@(I)) Q:'$L(X) I
$P(X,INDELIM)="ZOR" S
 INORTYP=$P(X,INDELIM,2) Q
 S X=INTYP_$S(INTYP="ZPW":"*",1:INEVN)_INORTYP
 D LOG^INHVCRA1("msg type is "_X,5)
I $D(INDEST(X)) S INDST=INDEST(X) I $D(^INRHD("B",INDST)) S INDSTP=$O(^(
INDST,0))
 Q
DESTTXT ; the following lines are used by DEST to build INDEST() for CIW
 ;;ZIL^Z02^^HL INH APPLICATION SERVER LOGON
 ;;ZIL^Z03^^HL INH APPLICATION SERVER LOGOFF
 ;;ZPW^*^^HL ORPW PATIENT SELECT
 ;;QRY^A19^^HL ORPW PATIENT LOOKUP - IN
 ;;ORM^O01^8^HL ORPW ANC ORDER - IN
 ;;ORM^O01^10^HL ORPW CLN ORDER - IN
 ;;ORM^O01^30^HL ORPW CON ORDER - IN
 ;;ORM^O01^14^HL ORPW DTS ORDER IN
 ;;ORM^O01^11^HL ORPW IVP IN
 ;;ORM^O01^4^HL ORPW LAB ORDER IN
 ;;ORM^O01^6^HL ORPW MED ORDER IN
 ;;ORM^O01^3^HL ORPW NRS ORDER - IN
 ;;ORM^O01^80^HL ORPW NRS ORDER - IN
 ;;ORM^O01^5^HL ORPW RAD ORDER - IN
 ;;ORM^O01^9^HL ORPW RX ORDER - IN

Whichever method is used, be aware that the GIS utilizes the string value of the .01
field in the Interface Destination File. Thus, the name of the entry must not be
changed in a production system, unless the Destination Determination Code is also
changed. Otherwise, the GIS will be unable to recognize the entry.

3.2.4 X12 Message Recognition
Incoming messages must have a message type that maps to an entry in the Interface
Destination File. For HL7 messages, the “Destination Determination Code” specified
in the Background Process Control File matches the “Message Type/Event Type”
specified in the MSH with an entry in the Destination file. This destination is then
stored in the “Destination” field of the message as it is created in the UIF.

GIS Interface Development 79 Transaction Routing

The X12 term for message type is “functional identifier”. It is not specified in the ISA
header, but in the first field of the GS loop header (GS01). Values in this field equate
to X12 message types. For example, FA (Functional Acknowledgment) equates to the
997 message, HB (Health Care Eligibility/Benefit Information) equates to the 271,
etc.

The functional identifier will be used for X12 messages in the same way that the
Message Type is used for HL7 messages. The “Destination Determination Code”
specified in the Background Process Control File will map the functional identifier to
an entry in the Interface Destination File. With properly constructed Destination
Determination Code it will transparent whether the incoming message is an X12
message with a functional identifier or an HL7 message with a message type.

3.2.5 X12 Validation
As with HL7, all X12 messages that are received by either the receiver (messages) or
the transmitter (acknowledgements) are passed into IN^INHUSEN to be validated.
Messages that begin with an ISA segment are assumed to be X12 messages and are
validated according to X12 rules. The logic that returns properly formatted
communication-level acknowledgements is also handled within the INHUSEN set of
routines. Depending on the messaging partner, either a TA or a 997 may be used as
the communication-level acknowledgement.

The overall design points for the message recognition/validation functions are as
follows.

• All incoming messages, whether received by the transmitter or the receiver, are
first validated according to X12 validation rules (refer to validation section for
detailed validation design).

• All validated messages are stored in the UIF.

• FA or 997 acknowledgments update the “commit acknowledgment” field in the
original outgoing message using the same logic as HL7 commit
acknowledgments. For example, if the transaction type of the outgoing message
does not specify that an application acknowledgment is required then receipt of
the 997 updates the status of the original message to “complete”. Otherwise it
updates to “sent” (or “error”).

Validation rules are as follows.

• The fourth character in the ISA segment will be identified as the delimiter. It will
be used to parse the message. Any character can be used (but if it is a character
that is also used in the text of the X12 message unpredictable parsing will occur).

GIS Interface Development 80 Transaction Routing

• The second segment must be either a “GS” or a “TA1”. A message that fails this
requirement will be rejected. If the failed message is received by a transmitter, no
further action will be taken and the retry logic of the transmitter will be followed.
If the failed message is received by a receiver, a 997 acknowledgment message
will be returned to the sending system.

• Unless the message is a TA1, it must contain one GE, ST and SE segment. The
number of segments specified in the GE01 must match the number of segment in
the ST-SE loop.

• Multiple ST-SE loops are not supported and will cause the entire message to be
rejected. The same is true for multiple GS-GE loops.

• If the message is a 997, it must have an AK9 segment. The AK901 field must
have an error code of A (Accepted), E (Accepted with errors) or R (Rejected). An
“A” or “E” value will update the status of the original/outgoing message to either
“Sent” (if an application acknowledgment is expected) or “Complete” (if not). An
“R” value will update the status to “Commit Error” (check this)

• All error segments in a 997 (e.g. AK1, AK2, AK3, etc.) will be added to the error
array and logged in the Interface Error File.

• If the incoming message specifies a trace number of an original message (such as
a query sent from the RPMS system), the trace number will be identified. The
location of this trace number varies depending on the type of message.

3.2.6 Functional Identifiers (Message Type) and Message Recognition

3.3 Responses to Incoming Transactions
Upon receipt of an incoming transaction, it is often necessary for the receiving system
to create and return some type of message to the sending system. One example of this
is an acknowledgment transaction to indicate that the incoming transaction was
received. Another type of response is required if the incoming transaction is a query
for information. Yet another type of response supports logon requests from remote
systems. This section of the documentation describes some of the responses which
can be created using the GIS.

3.3.1 HL7 Accept Acknowledgments
An accept acknowledgment (sometimes referred to as a “commit” acknowledgment)
is an HL7 message which indicates that the receiving system has received the
message transmitted by the sending system. The status field in the MSA segment
indicates the success (CA = Commit Accept) or failure (CR = Commit Reject or CE =
Commit Error). Accept acknowledgment (Refer to HL7 specifications, chapter 2.5,
Application Processing Rules) is an optional feature of the HL7 version 2.3
specification.

GIS Interface Development 81 Transaction Routing

Accept acknowledgments are an optional function for communication with any
specific remote system. However, all currently-implemented GIS TCP/IP transmitters
and receivers require accept acknowledgments. A transmitter designed to return
accept acknowledgments will first "listen" to a TCP/IP port for a transmission. As
soon as a single transaction is received, it will be processed and the transmitter will
send the accept acknowledgment over the same TCP/IP channel on which the original
transaction was received. It will then go back into a receive mode.

This varies slightly from the description in the HL7 specification, whereby accept
acknowledgments can be created for some messages, but not for others. Such a
configuration would require two TCP/IP channels to implement reliably.

For incoming transactions, the GIS assigns a status of CA based on four conditions.

1. The incoming transaction contains an MSH segment as the first segment of the
transaction.

2. The MSH contains a message ID (MSH-10).

3. The MSH contains a recognized message type (and optional trigger event).

4. The incoming transaction is stored in the Universal Interface File.

The GIS will create an accept acknowledgment message with the appropriate status
based on the following conditions.

1. The Commit Acknowledgment field of the MSH segment (MSH-15) contains a
value indicating that the sending system expects an acknowledgment (this should
be set to AL = Always). (Note: The GIS contains an over-ride field, Accept Ack
Conditions, in the Interface Destination File for the value in MSH-15. If a value is
placed in Accept Ack Conditions, the value in MSH-15 is ignored.)

2. The transceiver routine is designed to return the accept acknowledgment.

GIS Interface Development 82 Transaction Routing

 *** Transaction Type Definition, Screen 1 of 2 ***

 Name: HL GIS ACCEPT ACKNOWLEDGEMENT
 In/Out: OUT Active: ACTIVE
 Destination: HL ACCEPT ACK OUT
 Script: Generated: HL GIS ACCEPT ACKNOWLEDGEMENT-O
 Parent:
 Dependency: Retry Rate: Max # of attempts:
 Acknowledge expected from remote: Application Ack Conditions:
 Acknowledge Message:
 Format Controller---Priority: Process time:
 Output Controller---Priority: Process Time:
 Description:
 Application Process:

COMMAND: Press <PF1>H for help Insert

Figure 3-14: Transaction Type Entry for Accept Acknowledgement

 *** Interface Destination Definition, Screen 1 of 3 ***

 Name: HL ACCEPT ACK OUT
Acceptance TT:
Accept Ack Conditions:

Priority: Retry Rate: Max # of Attempts:
 *** Enter a value for ONE of the following:
 Transaction Type:
Transceiver Routine:
 Mail Recipient:
 Message Subject:
 Device for Output:

Code to Edit Transactions:

COMMAND: Press <PF1>H for help Insert

Figure 3-15: Destination Entry for Accept Acknowledgment TT

3. The destination which is linked to the background process of the incoming
transaction contains a pointer to an accept acknowledgment in the Acceptance TT
field. Figure 3-17 is an example of a destination entry which defines the
transaction type HL GIS ACKNOWLEDGMENT as the accept acknowledgment
message. Figure 2-16 shows the transaction type entry.

The accept acknowledgment is a standard HL7 message which normally contains
only an MSH segment and an MSA segment. For most applications, the HL GIS
ACKNOWLEDGMENT message can be used as the accept acknowledgment. A

GIS Interface Development 83 Transaction Routing

portion of the message definition screen for this message is shown in Figure 3-23 and
the segment definition for the MSA segment of the message is shown in Figure 3-24.

 *** Message Definition *** pg 1 of 2

 Message Name: HL GIS ACCEPT ACKNOWLEDGEMENT Inactive: NO
 Event Type: ACK Message Type: ACK Audit:
 Send Applic.: Rec. Applic.:
 Facility: Facility:
Processing ID: PRODUCTION HL7 Version: 2.2 Lookup Parameter: NO LAYGO
 Accept Ack: Application Ack:
 Root File: INTERFACE TRANSACTION TYPE
 Routine for Lookup/Store:
 Description:
Segments:
HL MESSAGE HEADER OUT
HL ACKNOWLEDGEMENT

COMMAND: Press <PF1>H for help Insert

Figure 3-16: Accept Acknowledgment Message Definition

 *** Segment Definition ***

SEGMENT NAME: HL ACKNOWLEDGEMENT
SEGMENT ID: MSA

Field Seq. Req. Rep. Lookup Trans.
HL ACK STATUS 1
HL ACK ID 2
HL ACK TEXT 3
HL ACK EXPECTED SEQ 4
HL ACK DELAY 5
HL ACK ERROR 6

COMMAND: Press <PF1>H for help Insert

Figure 3-17: Accept Acknowledgment MSA Segment Definition

If a specialized accept acknowledgment is needed, use the script generator to define
the message and create an entry in the Interface Transaction Type File for it. This
transaction type should then be pointed to in the ACCEPT TT field of the Interface
Destination File entry associated with this background process. Because it is defined
in the Interface Destination File, all message types received from that destination will
be sent the same type of accept acknowledgment message.

3.3.2 HL7 Application Acknowledgments
An application acknowledgment indicates the results of the attempt by the receiving
system to process the incoming transaction. Accordingly, the application

GIS Interface Development 84 Transaction Routing

acknowledgment is created at the time the incoming transaction is processed by the
output controller. If the output controller queue contains a significant number of
entries, there may be a time lag between the receipt of the transaction and the
processing of the transaction--and thereby a lag in the creation of the application
acknowledgment. Thus, the application acknowledgment is not created "interactively"
by the transceiver rouine, as is the accept acknowledgment. It will not be transmitted
back to the initiating system over the same TCP/IP channel used to receive the initial
transaction.

The transaction type which is used to create an application acknowledgment is
defined by the Acknowledge Message field of the incoming Interface Transaction
Type entry. Therefore, it is possible to create a different acknowledge transaction type
for each different incoming HL7 message type received from a single destination.
This is in contrast to the accept acknowledgment, which utilizes the same transaction
type for all incoming message types from a destination.

To create an application acknowledgment, use the script generator to define the
message. Create the corresponding entry in the Interface Transaction Type File. This
name of this transaction type should then be entered in the Acknowledge Message
field of the Interface Transaction Type File entry of the incoming transaction. The
Destination of the acknowledgment Transaction Type will be the one used to transmit
outbound messages from the RPMS to the remote system.

3.3.3 Queries and Specialized Acknowledgments
The GIS is being used to support various interactive processes whereby the GIS
receives a transaction from a remote system, processes this transaction, and sends
some type of transaction back to the remote system. The transaction which is sent
back to the remote system is an application acknowledgment. The acknowledgment
message returned by the GIS is an application acknowledgment because it has been
processed by the receiving system and contains significantly more data than a typical
accept acknowledgment.

Specialized transceiver routines are required to process these types of interfaces. The
transceiver must perform some of the functions which are normally performed by the
output controller. The incoming transactions do not get placed on the output
controller queue to be processed in the background, but are processed by the
transceiver, interactively.

3.3.3.1 Query Status API
It is sometimes necessary to create query messages for which the user is waiting for
the response from the remote system. The Applications Programmer can access an
API to determine when the response has been received by the GIS.

The syntax of the call is as follows.

GIS Interface Development 85 Transaction Routing

S X=$$SRCH^INTQRY(INTSK,.INUIFARRAY)

The following is an example.

S X=$$SRCH^INTQRY(INTSK,.ARRAY)
ZW ARRAY
ARRAY(294)=N00259-122648
ARRAY(295)=E

In this array, 294 and 295 are the internal entry numbers of two outgoing query
messages triggered by a single Formatter task. A response has been received to the
first message and filed in the UIF with a message identifier of “N00259-122648”. The
second is in an error status. It is anticipated that most queries will consist of a single
outgoing message, but the design is flexible enough to support multiple messages
from a single application team trigger.

3.3.4 X12 Query Responses
The location of the trace number varies among X12 message types. The logic that
identifies the trace number is hard coded in routine INHUSEN7. Examples are as
follows.

• If the incoming message is a 271, the value in TRN02 may be the original
number, depending on the value in TRN01. If TRN01 is a 1, it indicates the value
in TRN02 is an originating trace number. If TRN01 is a 2, it indicated the TRN02
field is referencing the trace number in the original 270 query.

• Despite the above, it appears that the BHT03 is the correct trace number for a 271
or a 278.

The BGN02 is the trace number for a 834 or 824.

3.3.5 X12 Transaction Acknowledgments
As with an HL7 message, if the receiver gets an X12 message, the acknowledge (such
as a FA or 997) is specified in the “ACCEPTANCE TT field of the Destination
pointed to by the Background File.

3.3.6 X12 Functional Acknowledgments
If the incoming message is a FA or a TA1, the receiver must identify the original
outgoing message for which the response has been received.

• If the incoming message is a TA1, the identification code of the original message
is in the first field of the TA1 segment (TA101).

If the incoming message is a 997 (functional identifier of FA), the identification code
of the original message is in the first second field of the ST segment (ST02).

GIS Interface Development 86 Transaction Routing

3.4 The Bi-directional Interface
The preceding sections have focused on routing outgoing transactions which are
typically transmitted from the host system via a TCP/IP transmitter--and incoming
transactions which are typically received via a TCP/IP receiver. In many cases, a
system communicates with a remote system using both a transmitter and a receiver.
This section outlines configuration guidelines to make bi-directional communications
operational. In addition, this section references and summarizes the explanations
contained in other sections.

Figure 3-18 is an example of a configuration in which CHCS is communicating with
a single, remote DBSS system. The top half illustrates the outgoing/transmitter
communication, the bottom half illustrates the incoming/receiver communication. The
direction of the arrows show the pointer relationships.

As shown in the upper left of the diagram, many different outgoing Interface
Transaction Types can point to HL DBSS, which is a single entry in the Interface
Destination File. The Destination File entry equates to the remote system. Outgoing
transaction types such as HL DG MERGE PATIENT OUT (BB), HL DG UPDATE
OUT (BB), HL LAB DBSS ACCESSION (R), and use this destination entry. As
described in routing Outgoing Transactions, the GIS places those outgoing
transaction types on the HL DBSS destination queue.

Note also that the DBSS TRANSMITTER, which is an entry in the Background
Process Control File, also points to the HL DBSS destination. This transmitter scans
the HL DBSS destination queue for transactions to send. For each transaction sent,
the transmitter expects an Accept Acknowledgment before sending the next
transaction.

Incoming transactions from the DBSS system are received by the DBSS RECEIVER,
which is an entry in the Background Process Control File. Note in the diagram that
the receiver points to the same destination (HL DBSS) as does the transmitter. As
described in Destination-Background Process Pair, the destination includes a pointer
to the Accept Acknowledgment Transaction Type, which tells the receiver how to
respond to the incoming transaction. In the diagram, this is the HL GIS ACCEPT

ACKNOWLEDGMENT. This is the standard accept message returned by the GIS.

GIS Interface Development 87 Transaction Routing

Figure 3-18: Bi-directional Interface

Also shown on the diagram are two destinations which are linked to the DBSS
RECEIVER via a dotted line labeled Destination Determination Code. As described
in Destination-Transaction Type Pair, each incoming transaction must be given a
unique “destination” which equates to a destination in the local database. This
destination is an incoming transaction type and it’s associated script. Whereas many
outgoing transaction types point to HL DBSS as their single outgoing destination,
there is a one-to-one relationship between an incoming transaction type and a
destination.

To illustrate how this configuration works, consider three different transaction flows.

If a lab accession is made in CHCS, the transaction type HL LAB DBSS
ACCESSION creates an HL7 message. This is placed on the HL DBSS queue and
transmitted to the DBSS remote system, which returns an accept acknowledgment.
Later, after DBSS personnel have taken some action or the DBSS system has
processed the message, the DBSS system returns a message. This might be an
application acknowledgment message or HL LAB DBSS RESULT - IN. This

GIS Interface Development 88 Transaction Routing

message will be received on the CHCS DBSS RECEIVER. The HL DBSS
destination specifies that HL GIS ACCEPT ACKNOWLEDGMENT is the
transaction type needed to create the accept acknowledgment. The receiver runs the
HL GIS ACCEPT ACKNOWLEDGMENT script and returns the accept
acknowledgment to DBSS.

As the DBSS RECEIVER receives the message, it parses the message header (MSH)
to find the message type. If the type is ACK, the GIS receiver processes the message
as an incoming application acknowledgment. If the type is ORUR01, destination
determination code identifies this as a HL LAB DBSS RESULT transaction type (see
“Message Type Recognition”). This incoming transaction type is pointed to by the
HL LAB DBSS RESULT -IN destination. The GIS places the transaction in the UIF
and places a pointer to the UIF on the Output Controller queue. Subsequently, the
output controller processes the queue entry and uses the destination to identify the
incoming transaction type and run the proper script. As diagrammed in the example,
no application acknowledgment is identified in the incoming transaction type,
therefore no such acknowledgment will be returned.

Next, consider a transaction that originates on DBSS, such as an ORUR01, which
corresponds to the incoming transaction type HL LAB DBSS RESULT -IN. This
message is received, identified and placed on the output controller queue with the
transaction destination of HL DBSS UPDATE PATIENT -IN. From the receiver
destination, HL DBSS, the receiver identifies HL GIS ACCEPT
ACKNOWLEDGMENT as the script to execute to create the acknowledgment, and
the resulting transaction is returned by the receiver to DBSS.

Later, when the output controller processes this entry, it identifies the script for the
transaction type HL LAB DBSS RESULT based on the destination HL DBSS
UPDATE PATIENT -IN. In addition, from the entry in the Interface Transaction
Type file it determines that the HL GIS APPL ACKNOWLEDGMENT should be
returned to the DBSS system as the application acknowledgment. However, HL GIS
APPL ACKNOWLEDGMENT is a “generic” acknowledgment, which is pointed to
by many incoming transactions.

In turn, this transaction type points to the destination, HL APPL ACK OUT. This is a
“dummy” destination, no routine is designated in the destination so it has no method
of processing by the output controller. (Such a dummy destination is required because
the GIS will not run a script and create an entry in the Universal Interface File if there
is no destination designated in the Interface Transaction Type File).

So a key question is, how does the GIS know where to route this acknowledgment?
Normally, outgoing transactions point to an entry in the Interface Destination File to
be routed to a remote system. But in the case of simple acknowledgments, this
solution would require that multiple acknowledgment transaction types be created,
one for each remote system, each of which points to the destination for that remote
system.

GIS Interface Development 89 Transaction Routing

Instead, the GIS stores the incoming destination as part of the entry in the Universal
Interface File. An outgoing acknowledgment can then be routed to the originating
remote system (i.e. the same Interface Destination) using the following call in the
Outgoing Initial MUMPS Code field in the Script Generator Message definition.

S INDEST=$$GETDEST^INHUT(INTT,.INA,INDEST)

However, the outgoing application acknowledgment will be communicated by a
different background process, DBSS TRANSMITTER, than the original incoming
transaction, DBSS RECEIVER. Routing only works if both background processes
point to the same entry in the Interface Destination File, HL DBSS.

Note: It is recommended, though not required, that both the transmitter and the
receiver point to the same Interface Destination File entry. It is required if
selective routing is used, because there is no other way to selectively route an
acknowledgment back to the originating system.

3.5 Routing a Store-And-Forward Transaction
The GIS has the capability to route transactions from one remote system to another,
bypassing any processing of data into the database. This is called store-and-forward,
and it takes advantage of the routing capability of the GIS, but does not require the
messages to be defined using the Script Generator Message subsystem because scripts
are only used to store data into the system.

Routing store-and-forward transactions is very simple. The only table entries which
are needed are the following.

• An entry is needed in the Background Process Control File to define a
background process with a receiver routine for the incoming transaction.

• An entry is needed in the Interface Destination File. This will be pointed to by the
incoming background process. If more than one message type is being routed, one
entry will be needed for each message type.

• The same entry in the Interface Destination File can also be used for the outgoing
transactions. This will be pointed to by the outgoing background process.

• An entry is needed in the Background Process Control File to define a
background process with a transmitter routine for the outgoing transaction.

Destination Determination Code is required in the Background Process Control File
of the receiver. This code will set the destination for all incoming transactions to the
entry in the Interface Destination File used by the transmitter (the same as the
receiver). Unless some type of special processing is required within the GIS, the
destination should specify “direct delivery”. This means the incoming transaction will
be placed directly on the transmitter queue and will not be processed by the Output
Controller.

GIS Interface Development 90 Transaction Routing

3.6 Transient Connection
The GIS has the capability to run in persistent or transient mode. Persistent mode
means that the interface remains connected and is continuously transmitting and
receiving messages.

Transient connection means that the interface will only transmit or receive messages
whenever necessary. The transmitter, running in client mode, will scan the destination
queue for transactions. A connection is made to the server when transactions appear
in the queue. All transactions in the queue are processed and the connection is closed
after a waiting period of inactivity.

The receiver, running in server mode, will allow for a client to connect whenever
necessary. Transactions are accepted until the connection is closed by the client. The
server then returns to listen mode and does not terminate until signaled to do so. Refer
to Figures 3-19 and 3.20 for a graphic representation of the transmitters and receivers.

Figure 3-19: Transmitter Processes

GIS Interface Development 91 Transaction Routing

Figure 3-20: Receiver Process

A typical transient connection will consist of one transmitter and one receiver, with
both pointing to a single destination. The transmitter should run in client mode and
the receiver in server mode.

A field for designating a transient or persistent connection for the transmitter or
receiver is in the BACKGROUND PROCESS CONTROL screen. The default value
(0) specifies a persistent connection.

 *** Background Process Entry/Edit *** Screen 1 of 3

 Name: ANATOMIC PATHOLOGY TRANSMITTER
 Active: INACTIVE Priority: 5
 Device:
 Routine: INHVTAPT
 Destination: ANATOMIC PATHOLOGY
Destination Determination Code:
D ^INHF
 Client/Server: CLIENT Connection Type: PERSISTENT
Server Ports:
5555

Client Addresses:
135.34.1.10

COMMAND: Press <PF1>H for help Insert

Figure 3-21: Background Process

GIS Interface Development 92 Transaction Routing

The connection type determines how the Background Process will handle the opening
and closing of the connection to the destination system. Persistent connection
(default) is opened initially and remains connected throughout the life of the process.
Transient connection is open only during the time of transfer. For the transmitter, the
connection is initiated when a transaction appears in the queue. The receiver will run
in server mode and listen for connection. Closing of the connection is up to the client.

GIS Interface Development 93 Selective Routing

4.0 Selective Routing

4.1 Concept of Operations
Selective Routing functionality allows a transaction/message to be routed to one or
more destinations. It can be applied to both incoming and outgoing transactions.
Selective routing is implemented via screening logic developed by application
developers. For outgoing transactions, selective routing allows application developers
to define a single message in the Script Generator Message file and link it to a single
child transaction type. This single transaction can be routed to multiple remote
systems/applications based on the selective routing logic. Conceptually, the
applications developer defines the set of all potential destinations to which a
transaction may be sent. At run time, screening logic makes conditional the delivery
of the transaction to any one member of the master set. Similarly, for inbound
transactions, the GIS receives the transaction, but will evaluate the conditions under
which the transaction will be stored in the Universal Interface File and queued on the
Output Controller Queue depending on the selective routing logic.

The GIS treats the screening logic using a “black-box” approach. Predefined input is
passed into this screening logic via input parameters. Using the input, the screening
logic returns a value to tell the GIS whether to suppress the transaction/message
routing or route the transaction/message to specified destination(s).

Application developers may specify different screening logic for the applicable
screening points within GIS processes. The screening logic is stored within
appropriate GIS control files. At any given screening point, GIS Selective Routing
will execute applicable screening logic once per message within the currently
executing GIS processes.

4.1.1 Inbound transactions
For inbound transactions, selective routing provides the capability to screen
transactions in the following GIS processes:

• Receiver (receipt of message). Within the receiver, screening logic is executed as
part of incoming transaction validation. If the transaction is suppressed, the
transaction will be stored in the Universal Interface File, but it will not be placed
on the Output Queue for processing. Selective routing will not affect the status
code returned in an accept acknowledgment--transactions which are verified and
stored receive a “CA” status whether or not screening logic prevents further
processing of the transaction. Inbound transactions may be screened by:

• Transaction Type (message type)

• Background Process (receiver process)

• Destination (remote system)

GIS Interface Development 94 Selective Routing

4.1.2 Outbound transactions
For outbound messages, Selective Routing provides the capability to screen
transactions in the following GIS processes:

• Message Replication (replicate messages of same base transaction type). Without
screening logic, the GIS Replicator uses a “base” transaction and replicates it to a
single instance of each destination defined in the Interface Replication File. This
results in one additional entry in the Universal Interface File (UIF) for each
destination. If replicator screening logic exists, the logic is used to determine
whether the GIS should replicate the “base” . Depending on how the screening
logic is applied, it is possible to suppress the “base” transaction to all destinations,
suppress any one destination, or suppress a transaction from one or more
destinations. If a transaction is suppressed, no entry is made in the UIF for that
destination, however the activity log of the “base” transaction will indicate the
suppression.

• Transmitter (delivery of message). The final screening point for outbound
transactions is the TCP/IP transmitter. At this point, the transaction will exist as
an entry in the UIF, and will be queued on a destination queue. As the transmitter
picks transactions off the destination queue, transmitter screening logic is
executed to determine whether the transaction should be transmitted. If
suppressed, the entry will be logged as “suppressed” in the activity multiple of the
base UIF.

Outbound transactions can be screened by:

• Transaction Type (both parent and child, base and replicated transaction)

• Destination (remote system)

• Background Process (transmitter process)
Support for outbound messages to multiple instances of remote systems is provided
using the Message Replication screen only.

4.2 Application Screening Logic
The screening logic should be written by application developers prefixed with the
proper name space for their application. The screening logic will be written for each
applicable GIS process. To have the GIS execute a screening logic, application
developers will place the Selective Routing (SRMC) Code in the appropriate field
in the appropriate GIS control file. An example of the screening logic format is as
follows:

D SCRN^LRGIS(.INSRCTL,.INSRDATA,.INA,.INDA)

The input and output parameters to the application screening logic are depicted in the
following table.

GIS Interface Development 95 Selective Routing

Input-Output

Input Process Output
INA Application Screening INSRDATA
INDA Logic
INSRCTL

The INA and INDA arrays can be used by the application teams to pass
screening/routing information to screening points in “downstream” GIS background
processes. For example, during outbound message processing, information is passed
via the call to ^INHF to the Format Controller, then to the Replicator and finally to
the Transmitter. Similarly, when processing outbound application acknowledgments
(associated with inbound transactions), information is passed in the application
acknowledgment from the Output Controller to the Transmitter.

4.2.1 INA Array
The INA array is accessed via @INA @(“nodename”). This array is for outbound
messages only. At the replication and transmitter screening points, only
INA(“DMISID”), INA(“MSGTYPE”) and subnodes as set by the application
developers at the completion of Outbound Script execution will be available. Thus,
any modifications to these sub-nodes of the INA array during script execution, such
as M Calls from Compiled Scripts, will be stored as part of the entry in the UIF and
will be available to subsequent screening logic.

INA Arrays - Input

Node Description
“DMISID” DMIS ID

For example;
@INA@(“DMISID”)=0125

“MSGTYPE” Message\Event Type
For example;
@INA@(“MSGTYPE”)=“ADT\A01”

4.2.2 INDA Array
The INDA array is accessed via @INDA @(“node name”). This array is for outbound
messages only. At the Replication and transmitter screening points, the INDA array
will contain the same values as at the beginning of Outbound Script execution. Thus
the @INDA@(“node name”) array will have the values which are passed as part of
the Application Program Interface Call. Any changes to the INDA array while the
script is executing will not be available to subsequent screening logic.

4.2.3 INSRCTL Array
The array INSRCTL will be used to store the screening logic control information. The
following table describes each node within the array.

GIS Interface Development 96 Selective Routing

INSRCTL Array - Input

Node Description
“INSRPROC” ID of GIS process that is currently executing. “REP” = Message Replication

Facility “XMT” = Transmitter “RCV” = Receiver For example;
INSRCTL(“INSRPROC”)=“REP”

 “INTT” Current entry in the Interface Transaction Type file as available. For
example; INSRCTL(“INTT”)=“1209”

“INDEST” Current entry in the Interface Destination file as available. For example;
INSRCTL(“INDEST”)=“41209”

“INBPC” Current entry in the Background Process Control file as available. For
example; INSRCTL(“INBPC”)=“12119”

“MSH” For inbound messages only at the Receiver. HL7 Message Header string
(not parsed). For example;
INSRCTL(“MSH”)=“MSH^\|~&^^^^^19951215055200^
^LAB\ORU^XXXX453801^D^2.3^^^NE^NE” The MSH node can be parsed
within the INSRCTL array by calling a GIS utility routine, e.g.
PARSEG^INHUT(.INSRCTL,“MSH”)

4.2.4 INSRDATA Array
The application screening logic will return nothing (it will fail $D(INSRDATA)), a
True/False value, or a list of Route IDs (destinations) for GIS to route this message.
The absence of the INSRDATA array or a returned False value indicates that there
will be no suppression and the message will be “broadcast” to all the relevant
destinations. A returned True value will indicate that the message will be suppressed
at the current screening point. A return list of route IDs in the form of
INSRDATA(“RouteID”) will indicate that the message should be routed to those
destination(s) specified by Route ID.

INSRCTL Array - Output

Node Description
top level Returned value from screening logic for Selective Routing. Possible

values are:
 False = no suppression (broadcast)
 True = suppress message
For example;
 INSRDATA=“DOG” - no suppression
 INSRDATA=“1” – suppress
Note: if INSRDATA does not exist = no suppression (broadcast)

RouteID (such as
DMIS ID)

The route IDs take precedence even if the returned value of the top
level indicates broadcast. If the returned value of the top level indicates
suppression, this node is ignored. Route ID(s) returned from the
application screening logic is stored as the first subscript. For example,
the following nodes return the DMIS ID for Madigan AMC, NH
Bremerton, and NH Oak Harbor.
INSRDATA(“0125”)=“”
INSRDATA(“0126”)=“”
INSRDATA(“0127”)=“”

GIS Interface Development 97 Selective Routing

4.3 Selective Routing (SRMC) Code Placement
Screening logic is placed in the appropriate GIS control file. Figures 4-1 through 4.-6
are examples of the data input screens for the various GIS files.

4.3.1 Interface Transaction Type File
Input screens 2 and 3 of the Interface Transaction Type File are for selective routing
information. Screens 4.1 and 4.2 are examples of these.

 *** Transaction Type Definition, Screen 2 of 2 ***
------------------------ Selective Routing Parameters ---------------------

Receiver SRMC:

Transmitter SRMC:
4
Message Replication SRMC: S INSRDATA(@INA@("DMISID"))=""

API SRMC:

Format Controller SRMC:

Output Controller (Inbound) SRMC:

Output Controller (Outbound) SRMC:

COMMAND: Press <PF1>H for help Insert

Figure 4-1: Interface Transaction Type File, Screen 2

4.3.2 Interface Destination File
Input screens 2 through 4 of the Interface Destination File are for selective routing
information. Screens 4-2 through 4-3 are examples of these.

 *** Interface Destination Definition, Screen 2 of 3 ***

Route ID:
0124

Primary Destination: HL DBSS
Default Receiving Facility:

Delivery Queue: INLHDEST

COMMAND: Press <PF1>H for help Insert

Figure 4-2: Interface Destination File, Screen 2

GIS Interface Development 98 Selective Routing

 *** Interface Destination Definition, Screen 3 of 3 ***
------------------------ Selective Routing Parameters ---------------------
Receiver SRMC:

Transmitter SRMC:

Message Replication SRMC:

Format Controller SRMC:

Output Controller (Inbound) SRMC:

Output Controller (Outbound) SRMC:

GIS Override SRMC:

COMMAND: Press <PF1>H for help Insert

Figure 4-3: Interface Destination File, Screen 3

4.3.3 Background Process Control File
Input screen 3 of the Background Process Control File is for selective routing
information. Screen 4-4 is an examples of this.

 *** Background Process Entry/Edit *** Screen 3 of 3

Receiver SRMC:

Transmitter SRMC:

COMMAND: Press <PF1>H for help Insert

Figure 4-4: Interface Destination File, Screen 3

4.4 Screening Points
Screening Points within the applicable GIS processes allow application developers to
screen transactions as they are processed. The screening points are in the receiver for
inbound transactions, and at both the replicator and transmitter for outbound
transactions. At a screening point, only one Selective Routing Code (SRMC) will be
executed. If there are multiple SRMC fields defined at a screening point, only the
SRMC with the highest precedence will be executed. The following table lists the
SRMC fields at each screening point, along with the precedence, where “1” indicates
the highest precedence.

GIS Interface Development 99 Selective Routing

Screening Logic Precedence

Screening point Prec. GIS Control File
referenced

Type of File entry SRMC field

Receiver 1 Transaction Type Inbound Transaction
Type

Receiver SRMC

(Screens inbound
transactions)

2 Background Process
Control

Receiver Receiver SRMC

 3 Destination Primary
destination

Receiver SRMC

Message
Replication Facility

1 Transaction Type Replicated
Transaction

Message
Replication SRMC

(Screens
outbound
transactions)

2 Destination Primary destination Message
Replication SRMC

 3 Transaction Type Base Transaction Message
Replication SRMC

Transmitter 1 Transaction Type Child/replicated

transaction
Transmitter SRMC

(Screens
outbound
transactions)

2 Background Process
Control

Transmitter Transmitter SRMC

 3 Destination Primary destination Transmitter SRMC

The applicable SRMC will be executed once per message within a GIS process if a
screen is defined (i.e. an entry found in SRMC fields of the appropriate GIS control
files). If all the SRMC fields are empty, no screening will be performed and normal
processing of this message will proceed. Normal processing will be “broadcast” to all
the defined destinations.

4.4.1 Receiver Screens
At the Receiver process, screening can be based on the Receiving Facility field within
the MSH segment. A GIS utility routine will be available to provide screening logic
based on minimum requirements for accepting a message at the Receiver process.
Route IDs will be set per destination associated with the background process
controller. These Route IDs will then be compared to Receiving Facility. See
“Supporting Utilities” for more information.

Acknowledgment messages received from the remote system will not be suppressed
at the receiver screening point. If suppression is needed, it must be provided in
programming logic at the time the message is processed by the Output Controller—
such as in a Lookup/Store Routine.

4.4.2 Message Replicator Screens
If a replicated message that was previously suppressed is subsequently re-queued, the
message will be re-screened at the Replicator processor using current screening logic

GIS Interface Development 100 Selective Routing

(in case the screen might now pass because patient data has changed, e.g. the patient
is now Champus-eligible).

4.5 Primary Destinations and Subordinate Destinations
Selective routing supports multiple inpatient sites as part of a single site. The
implementation of multiple destinations requires that a “primary” destination be
defined in the Interface Destination File. Other instances of the destination are
defined in the Interface Destination File, but are subordinate to the primary entry.
This is conceptually similar to the parent-child relationship within the Interface
Transaction Type File. The subordinate destinations are grouped within the primary.
For example, there are three DBSS computers in Madigan Army Medical Center
(MAMC), one for each inpatient site—Madigan, Bremerton and Oak Harbor.
Individual entries in the Destination File can be made for each of the three, but all
three can be grouped together under a primary destination. Route IDs are defined in
both primary and subordinate destinations, but only the primary destination contains
SRMC code.

4.5.1 Outbound
A one-to-one relationship from a child transaction type to a primary destination is
maintained. Using the Madigan example, a replicated transaction type named “Lab
Accession DBSS” will point to the primary destination, “HL DBSS”. The primary
destination will have two sub-destinations, “HL DBSS 2” and “HL DBSS 3”, each
with their own DMIS ID.

The relationship of these is shown in Figure 4-5. In this diagram, the base transaction,
Lab Accession DBSS, is processed by the Replicator, in which three replicant
transaction types have been defined. The two shown on the right, Lab Accession
MHCMIS and Lab Accession Clinicomp, are defined as single transactions types with
single destinations. This is identical to what would be defined for replication, even if
selective routing were not being used (Refer to “Transaction Replication to Multiple
Destinations”). With selective routing, either or both of these transactions can be
screened, but each has only one destination.

The Lab Accession DBSS transaction type is defined to have a primary destination,
HL DBSS. In addition, two other destinations are defined, HL DBSS2 and HLDBSS
3. Selective routing logic determines which one (or more) of these destinations will
receive a copy of the transaction.

GIS Interface Development 101 Selective Routing

Figure 4-5: Multiple Outbound Destinations

4.5.2 Inbound
To reduce the amount of file and table build, the destinations that contain the Route
Ids are those destinations pointed to by the background processes; not the destinations
associated with individual inbound messages. Figure 4-6 shows this relationship.

GIS Interface Development 102 Selective Routing

Figure 4-6: Multiple Inbound Destinations

4.6 Route ID and Interface Destination Mapping
To facilitate the mapping between a Route ID, such as DMIS ID or Managed Care
Support Contractor (MCSC) ID, and a destination, the Route ID field in the Interface
Destination file can be used. Multiple Route IDs will be allowed for a destination.
(Route IDs are removed prior to software deployment because there are site-specific)
Screen 4-7 is an example.

 *** Interface Destination Definition, Screen 2 of 3 ***

Route ID:
0103

Primary Destination: HL DBSS
Default Receiving Facility:

Delivery Queue: INLHDEST

COMMAND: Press <PF1>H for help Insert

Figure 4-7: Example Sub-Destination Definition, HL DBSS2

4.6.1 Creating Destination Specific MSH Segments
By default, the replication process creates identical copies of all HL7 segments in the
base transaction. However, MSH segments can be created with destination-specific or
routing-specific fields, including the Receiving Facility, Receiving Application,
Sending Facility, and Sending Application fields.

GIS Interface Development 103 Selective Routing

There are several methods which applications developers can use to create
destination-specific fields using the “Replicate Message to Destinations” data entry
screen. The Sending/Receiving Facility/Application fields can be defined in the
gallery under the “Replicate Message to Destination” option using a string value or
“@variable” format. This allows dynamic insertion of information into these fields of
the MSH segment based on the message destination. This feature is provided in
support of multiple instances of remote systems. If the “@variable” format is used,
application developers may set values using the Special Formatting field within the
Message Replication gallery under the “Replicate Message to Destination” option.
The INA array can also be set in M code or passed into the GIS in the Application
Program Interface call.

Additionally, the receiving facility field can be defined in the Default Receiving
Facility field under the “Destination Enter/Edit” option. If a string value is used to
define the sending/receiving facility/application, messages destined for a specific
remote system type will all contain the same MSH segment values, such as the same
Receiving Facility. Figure 4-8 is an example of the Replication data entry screen.

 *** Define transaction types for originating transaction type ***

The originating transaction type specifies the message which will be
replicated to the transaction type and it's designated destination
--

Transaction type: HL LAB DBSS ACCESSION (R)
Originating type: HL LAB DBSS ACCESSION (B)

Special formatting: D USERMSH^SDGIS(.INA)
Reformat MSH?: YES
 Event type: A01 Message type: ADT
Sending applic: @SA Rec. applic: @RCVAPP
 Facility: @SENDF facility: @DMISID
 Processing ID: HL7 version:
 Accept ACK: Application ACK:
 Country code:

COMMAND: Press <PF1>H for help Insert

Figure 4-8: Replicate Message to Destination screen

In the USERMSH^SDGIS code, the application developer will set values relating to
this destination as in the following example.

S @INA@(“SA”)=“XXXX”_INSUBDELIM_”MCP”
S @INA@(“SENDF”)=“CHCS”
S @INA@(“RCVAPP”)=“TSC”_INSUBDELIM_”MCP”
S @INA@(“DMISID”)=“0126”

This is the same INA array established by the application’s INHF call. It is not
necessary to reset the INA nodes if those sub-nodes contain the desired value at the

GIS Interface Development 104 Selective Routing

Replication Screening Point. In this example, special formatting code need not reset
@INA@(“DMISID”) if the desired value already exists in the “DMISID” sub-node
of the INA array.

However, if INA array values are created or modified at the screening point, they will
overwrite previous values set at the time of the application call, and any screening
logic implemented downstream of the Message Replication Screening Point (e.g.
Transmitter SRMC) will be affected.

Note that a pair of double quotes (“”) are required in a field to allow null entry to
override a previously set value.

4.6.2 MSH Facility and Application Precedence
The following table depicts the precedence used by the GIS to determine which value
to place into the MSH Sending/Receiving Facility/Receiving Application fields if the
fields are defined in more than one place.

MSH Precedence

Precedence Where Value Defined
1 The returned INA values of Special Formatting field in the Message

Replication gallery. In Screen 4.6-2, a Sending Application value can be set
with code such as the following.
@INA@(“SA”)=“XXXX”_INSUBDELIM_”MCP”

2 The value of the INMSH variable returned by Special Formatting code. For
example, if INMSH=“MSH^\|~&^XXXX^1245^TSC^T1234^ ”, the pieces in
the variable will be used to update the MSH fields.

3 The string value entered in MSH fields of the Message Replication gallery.
4 The value of the Default Receiving Facility entered in the Interface

Destination file gallery (new feature for Selective Routing)
5 The values of the Receiving/Sending Facility and Application fields entered in

the Message Definition gallery. The values in the “base” message will be
used in replicated messages.

4.7 Routing Activity Logs
The GIS provides the capability to log all the Selective Routing activity for
debugging purposes. Suppressed transactions are logged in the Activity Multiple of
the Universal Interface File (if the UIF entry exists at that screening point). If the
selective routing debug flag is turned on, suppressed transactions will also be logged
in the Interface Error file. The debug flag is located in the Interface Site Parameters
file.

4.8 Application Acknowledgment Routing
When a remote system sends messages to host system, the sender may expect to
receive both accept and application acknowledgment messages. Application

GIS Interface Development 105 Selective Routing

acknowledgments are considered to be "new" outbound messages which must be
returned to the destination that originated the inbound message. This does not require
"selective" routing because no SRMC fields are used. However, the GIS must be
configured precisely for the application acknowledgment to be returned to the correct
destination.

The primary and sub-destination entries in the Interface Destination file used for
outbound messages must also be used for inbound messages (Refer to “Primary
Destinations and Subordinate Destinations”). For example, DBSS TRANSMITTER 2
and DBSS RECEIVER 2 background process entries point to the same destination
entry, HL DBSS 2. The sharing of a single destination for inbound and outbound
activity implies the sharing of a single set of Route IDs (within that destination) for
inbound and outbound screening logic. Consequently, inbound Route IDs cannot
match outbound Route Ids. Otherwise, unexpected routing may occur.

In addition, a GIS utility routine is available to support application acknowledgment
routing. It allows the caller to modify the message destination during outbound script
execution. While this routine provides the user with several options, the highest
precedence is to use the destination pointed to by the associated GIS receiver process.
Application teams can create their own application acknowledge transaction type, or
use the standard HL GIS APPLICATION ACKNOWLEDGMENT. See section on
“Supporting Utilities” for more information.

4.9 Sample Screening Logic Code
It is recommended that application code have one entry point. Within that entry point,
the application code will check the screening point and execute code appropriate to
that screening point. The following is an example of screening logic.

GIS Interface Development 106 Selective Routing

SR(LRCTL,LRDATA,LRINA,LRINDA) ; Entry point for LAB DBSS Selective Routing
 ;
 ; Called by file/table build - D SR^LRBBGI(.INSRCTL,.INSRDATA,.INA,.INDA)
 ;
 ; Input:
 ;
 ; LRINA = INA array subset after outbound script execution
 ; LRINDA = INDA array before outbound script execution
 ;
 ; LRCTL("INSRPROC") = Identifier to designate where in the process
 ; the screen is being called.
 ;
 ; LRCTL("MSH") = Inbound only.
 ; "MSH^\&^CIW\ORE^....^2.3^P^AL^AL"
 ; Used at Receiver Process screening point
 ; to determine whether message will be
 ; accepted by this system.
 ;
 ; LRCTL("INTT") = Interface Transaction Type IEN (if applicable)
 ; LRCTL("INDEST") = Interface Destination IEN (if applicable)
 ; LRCTL("INBPC") = Background Process Control IEN (if applicable)
 ;
 ; Output:
 ;
 ; LRDATA = "", 0 = broadcast
 ; LRDATA("RouteID")="" = RouteID = ID uniquely identifying outbound
 ; msg's destination
 ; E.g.
 ; LRDATA("0125")=""
 ; LRDATA("0126")=""
 ; where: 0125 = DMIS ID
 ;
 N LRSP
 S LRSP=$G(LRCTL("INSRPROC"))
 D:LRSP="API" API ; API screening point - Outbound
 D:LRSP="FC" FC ; Format Controller screening point - Outbound
 D:LRSP="OCI" OCI ; Output Controller screening point - Inbound
 D:LRSP="OCO" OCO ; Output Controller screening point - Outbound
 D:LRSP="XMT" XMT ; Transmitter screening point - Outbound
 D:LRSP=“REP” REP ; Message Replication - Outbound
 D:LRSP="RCV" RCV ; Receiver Process - Inbound
 Q
 ;
REP ; Message Replication
 N LRDFN,LRDMIS
 K LRDATA
 S LRDFN=$O(@LRINDA@(66,0))
 Q:’LRDFN
 S LRDMIS=$$DMISID^LRBBGI(LRDFN)
 S:$L(LRDMIS) LRDATA(LRDMIS)=“”
 Q
RCV ; Receiver Process - Inbound
 ;Application developers can write their own code or use the default
 ;Receiver screening logic for inbound messages provided by the
 ;Interface team.
 D RCVSCRN^INHUT(.LRCTL,.LRDATA,.LRINA,.LRINDA)
 Q

4.10 Supporting Utilities

GIS Interface Development 107 Selective Routing

The following utilities are provided in support of the Receiver processing screening
point.

GIS Interface Development 108 Selective Routing

4.10.1 PARSEG^INHUT
PARSEG(INSRCTL,INSEGNM) ; Parse a segment
 ; INPUT:
 ; INSRCTL (required):
 ; Array containing the raw segment data to be parsed
 ; located under the HL7 namespaced node represented by
 ; the second parameter.
 ; ex. INSRCTL("MSH")=...
 ; INSEGNM HL7 segment name (required):
 ; Valid HL7 segment name to be used to identify which
 ; node of the input array will be parsed.
 ; ex. PARSEG^INHUT(.INSRCTL,"MSH")
 ; where INSRCTL("MSH")="MSH^\|~&^^^^..."
 ;
 ; OUTPUTS:
 ; INSRCTL("Segment Name"_"Field number"): Field value found in
segment
 ; NOTE: This output is raw HL7 format, not FileMan format.
 ;

4.10.2 GETSEG^INHUT
GETSEG(UIF,INSEGNM,INSTANCE) ; Get segment from UIF
 ; Called by S INSRCTL("MSH")=$$GETSEG^INHUT(12345,"MSH")
 ;
 ; INPUTS:
 ; UIF (required): The IEN of the UIF from which to extract the
segment.
 ; INSEGNM (required):
 ; The valid HL7 segment name to be used to identify
 ; which node of the UIF is requested.
 ; INSTANCE (optional, default=1)
 ; The instance of the segment desired.
 ;
 ; OUTPUT:
 ; 0 If segment not found,
 ; 1 if segment found in message,
 ;
 ; INSRCTL(INSEGNM)
 ; Returns the Segment requested. (With overflow) in the INSRCTL
array
 ;

4.10.3 RCVSCRN^INHUT
RCVSCRN(INSRCTL,INSRDATA,INA,INDA) ; Default Inbound Receiver screen.
 ; Provides screening logic based on minimum requirements for
 ; accepting a message at the Receiver process.
 ;
 ; Called by: Receiver SRMC code for inbound BPC, Dest or TT entries.
 ; D RCVSCRN^INHUT(.INSRCTL,.INSRDATA,.INA,.INDA)
 ;
 ; Input:
 ; INSRCTL - array - screening logic control information
 ; "INTT" - (opt) INTERFACE TRANSACTION IEN for inbound msg
 ; "INDEST" - (req) INTERFACE DESTINATION IEN for inbound msg
 ; "INBPC" - (opt) BACKGROUND PROCESS CONTROL IEN for inbound msg
 ; "MSH" - (req) HL7 Message Header (MSH) string (not parsed)

GIS Interface Development 109 Selective Routing

 ; from inbound msg
 ; INA - (opt) Not used.
 ; INDA - (opt) Not used.
 ;
 ; Output:
 ; INSRDATA - (pbr) array - screening logic return values
 ; false = receive msg into database
 ; true = suppress receipt of msg
 ; "Route ID" - identifies system to which to route msg. Multiple
 ; entries are allowed.
 ;

4.11 Application Acknowledgment Routing
The following utilities are provided in support of routing application acknowledgment
messages to the originating instances of a remote system.

4.11.1 GETDEST^INHUT
GETDEST(INACKTT,INA,INACKDST,INACKUIF) ; $$function - Used to support
routing
 ; of Application Acknowledgment messages to the originating system
 ; when multiple instances of a remote system type exist. Only
 ; one of the input parameters (INA,INACKDST,INACKUIF) must be
 ; specified by the caller to route an Application Ack. If a valid
 ; destination cannot be identified, a fatal script error is logged
 ; and the O/P Ctlr will log an error in ^INTHER.
 ;
 ; Called by: SCRIPT GENERATOR MESSAGE file, Outgoing Initial MUMPS
 ; Code field, S INDEST=$$GETDEST^INHUT(INTT,.INA,INDEST)
 ;
 ; Input:
 ; INACKTT - (req) INTERFACE TRANSACTION TYPE IEN for Application
 ; Acknowledge. Used for error handling.
 ; INA - (req) array containing information for routing
 ; Application Acknowledge to originator's destination
 ; as specified by GIS Receiver
 ; INACKDST - (opt) INTERFACE DESTINATION IEN for outbound
 ; Application Acknowledge as specified by user
 ; INACKUIF - (opt) UNIVERSAL INTERFACE IEN for outbound Application
 ; Acknowledge. Contains destination specified for
 ; this Acknowledge at time of Acknowledge creation.
 ; Future implementation.
 ;
 ; Variables:
 ; X - scratch
 ; INERRMSG - error message to be returned in INHERR by Ack. script
 ;
 ; Output:
 ; - INTERFACE DESTINATION IEN for outbound Application Acknowledge
 ; - "" if fails to find valid destination
 ;

This section describes some of the debugging tips when an error is encountered.

1. Check the M Error Trap for any fatal system errors (D ^%ER).
2. Check the GIS Error Log for error information.

GIS Interface Development 110 Selective Routing

Menu path: SM-INT-GIS-EM-ES
Enter start and end dates based on when the error is believed to have occurred.
 Error Start Date (e.g. T@1205 = Today at 12.05pm)
 Error End Date (Now)
3. Verify GIS file/table is setup for desired routing results, e.g., Route IDs are set in
 appropriate Interface Destination file entries.
4. Verify that data is selected for desired routing results, e.g., location of the patient
 (DIV A) correlates to Route ID for the desired destination.
5. Verify that screening logic returns desired results to the GIS, e.g., if integration
 testing, use debugging techniques appropriate for background jobs.
6. Turn on Selective Routing Debug Flag in the Interface Site Parameters file and
 rerun test. If the message was suppressed:
 a) Re-check the GIS Error Log for additional error information.
 b) Examine the Activity Log Multiple of the associated message in the
 Universal Interface file and verify that:
 i) Log Action field is equal to “X”.
 ii) Log Message field contains message identifying the location of the
 SRMC that was executed at this screening point.
c) Turn off Selective Routing Debug Flag in the Interface Site Parameters file
 when debugging is complete.

User Manual 111 The GIS in Operation

5.0 The GIS in Operation
To develop and test transactions/messages, the GIS must be operational. This section
of the documentation assumes a basic understanding of the sections on Message
Definition and Transaction Routing.

Outgoing transactions are triggered by the Application Program Interface Call. This
places an entry in the format queue for the parent transaction type. The format
controller then performs the following functions.

• It picks the entry of the queue

• It identifies all child transaction types associated with the parent transaction type

• It executes runs the appropriate script

• It places an entry in the Universal Interface File (UIF)

• It places a pointer to the UIF entry in either the Output Controller Queue or one of
the Destination Queues.

5.1 Universal Interface File (UIF)
The Universal Interface File (UIF), is the central file of the GIS. All transactions are
filed in the UIF, both incoming and outgoing. This includes all acknowledgment
messages received or transmitted in response to incoming or outgoing transactions.

When developing a new transaction, or modifying/testing an existing transaction, the
first check is to verify that an entry is created in the UIF. The second check is for the
status information contained in the UIF entry.

There are several methods of viewing the UIF entry, including the FileMan Inquiry
and Search functions and the Inquire into Universal Interface File function and
Transaction Search on the GIS Transaction Control menu.

The following table list the fields of the UIF, and testing/debudding tips.

Date/Time This is the .01 field, and is the FileMan format date/time the entry is made in
the UIF. For outgoing transactions, this is the time the format controller
created and stored the transaction. For incoming transactions, it is the time
the receiver validated and stored the transaction.

Destination The pointer to the Interface Destination File. All entries in the UIF will have a
destination. For outgoing transactions, the destination is typically an
outgoing destination, which will also be pointed to by a background
transmitter process. The GIS will queue an outgoing transaction to either the
output controller queue, or a destination queue.

Status This is the last status recorded for the transaction. New transactions have a
status of “New”. Subsequently, each GIS process updates the status, and
records the activity in the Activity Log Multiple. See the section on Status
Levels for details.

User Manual 112 The GIS in Operation

Acknowledge Required Used only for outgoing transactions to indicate whether an application
acknowledgment is expected from the remote system and determines how
the status is updated.

Message ID This is the message identification number. For outgoing transactions, it is
identical to the MSH-10 field, and is normally the MTF code followed by a
number. For incoming transactions, the GIS will concatenate the first two
letters from the background job and a counter to the MSH-10 value to create
a unique identifier within the UIF, and is cross-referenced. For example, if
two transactions received from the DBSS RECEIVER background process
both have DBSRCV001423 in the MSH-10 field, the GIS will assign the
Message DBSRCV001423-DB-1 to the first and DBSRCV001423-DB-2 to
the second. The original message id, DBSRCV001423, will be stored in the
INCOMING MESSAGE ID field, which is also cross-referenced.

Ack Message
(Application)

This is a recursive pointer which points to the record in the UIF containing
the application acknowledgment received from a remote system in response
to the original transaction.

Parent Message This is a recursive pointer used for acknowledgment transactions to identify
the original transaction. Under enhanced acknowledgment, there may be
both an accept acknowledgment transaction (more than one if the transmitter
has to re-transmit until a “commit accept” status is received from the remote
system) and an application acknowledgment. All will point back to the
original transaction. This field is also used by replicated transactions, each of
which point to the original or “base” transaction.

Source Used for incoming transactions, this contains the name of the background
process which received the transaction. An example of an entry is: Incoming
Message From Transceiver: DBSS RECEIVER

Last Date/Time This specifies the most recent date/time that an outgoing transaction was
processed by the Output Controller. If the Output Controller encounters a
non-fatal error, it will automatically attempt to process the transaction again,
and will update the “Attempts” field in the UIF up to the “maximum number of
retries” as specified in the Interface Transaction Type File. This functionality
does NOT include retransmission of a transaction by a TCP/IP transmitter.

In/Out Identifies whether the transaction is incoming from a remote system or
outgoing from the host system.

Originating Transaction
Type

Used only for outgoing transactions, it contains a pointer to the entry in the
Interface Transaction Type File that created the entry in the UIF.

Attempts See description for the field, “Last Date/Time”.
Device Attempts The number of attempts of the output controller to send a transaction to a

device. This is not used for TCP/IP communications and the field is rarely
used in current implementations.

Last Activity Date This corresponds to the latest date/time entered in the Activity Log multiple.
User who Edited Identifies the user who last edited this transactions.
Priority This is the priority used to process this transaction in the output controller

queue and the destination queue. The original value is set in the Interface
Transaction Type file (unless overridden by the application call to INHF). In a
search to determine if the transaction is currently queued, the GIS will
search based on this value, along with the time-to-process,
^INLHSCH(priority,time-to-process,UIF). If the transaction is re-queued the
user may change the priority.

Sequence Number *** Not currently used *** If sequence number protocol is used, the sequence
number is stored here.

User Manual 113 The GIS in Operation

Ack Message (Accept) This is a recursive pointer which points to the record in the UIF containing
the accept acknowledgment received from a remote system is response to
the transmission of the original transaction

Time to Process Refer to the “priority” field description.
Suppress from Output If set to “yes”, the GIS will not queue this transaction to the output queue (or

a destination queue). Interactive transactions such as log-on or application
server transactions created by CIW are processed directly by the
background process instead of the output controller. This flag also prevents
such transactions from being re-queued using the “Requeue A Transaction”
option.

Activity Log Multiple Each time the GIS has an activity for a transaction, including sending or
receiving acknowledgments, the activity is logged in this multiple.

Activity Log The date/time of the activity.
Log Action The status associated with the activity.
Replicated Message Used for outgoing transactions which are replicated. For the “base”

transaction, each replicated will be logged individually.
Log Message This is a word processing field with information about the activity logged.
Incoming Message ID Used only for incoming messages, this stores the MSH-6 value from the

remote system. The field is cross-referenced to allow a search.
Message Text This multiple contains the actual text of the transaction. A typical HL7

message will be stored with the MSH segment in the first node, with
subsequent segments in subsequent nodes.

INDA Array For outgoing transactions, this multiple contains the INDA array as it existed
at the time the outgoing script completed and the entry in the UIF was
created. The values are available for Selective Routing logic in the replicator
and/or the transmitter.

INA Array For outgoing transactions, this multiple contains entries from the INA array
as it existed at the time the outgoing script completed and the entry in the
UIF was created. The values are available for Selective Routing logic in the
replicator and/or the transmitter. The values which are stored are
@INA@(“DMISID”) and @INA@(MSGTYPE”).

5.2 Interface Error File
The Interface Error File contains all errors encountered by any of the GIS processes.
When testing and debugging, it is useful to know the point in the GIS at which an
error occurred, as well as information about the error. Each error will be categorized
into one of the following GIS processes, which correspond to entries in the GIS
ERROR LOCATION file. (In version 4.5, the error locations of Input Driver is no
longer used, and no errors are logged to it).

Formatter All errors encountered by the formatter process in the routine INHFTM are
classed as formatter errors. This includes “hard” M errors and the error array
used to log outgoing script errors. Error messages added to the INHERR array
by applications programmers with a call to ERROR^INHS as part of an
outgoing script (see Error Handling) will be logged here.

User Manual 114 The GIS in Operation

Deformatter All errors encountered as the GIS parses (“deformats”) an incoming script are
classed as deformatter errors. Error messages added to the INHERR array by
applications programs with a call to ERROR^INHS as part of an incoming
script are classed as deformatter errors. The errors are logged by the INHOS
routine. Many deformatter errors are also considered transceiver errors, and a
second error log entry will be made for them.

Output Driver Errors encountered by the GIS as transactions are picked off the output
controller queue and processed by the Output Controller are classified as
Output Driver errors. This includes errors in the Replicator and selective
routing errors in the replicator process.

Receiver Receiver errors include those which are logged by both TCP/IP receivers and
transmitters, such as INHVTAPR and INHVTAPT, as well as the related
routines that validate incoming transactions.

Transceiver This logs the following types of errors. 1) “Hard” M errors within the routines
which process transactions. 2) Many deformatter errors are also logged as
transceiver errors. 3) Errors picking entries off a destination queue by
transmitter routines. 4) Errors processing mail messages.

Negative
Acknowledgment

This indicates that an error was encountered in processing an incoming
transaction.

The type of information logged in the error file depends on the data which exists in
that process. For example, the transaction type is logged for a formatter error, but is
not logged for a receiver error because the GIS does not know the transaction type in
that process. The following data fields are available in the Interface Error File.

Time of Error The .01 field of the file, this is the FileMan Date/Time.
Transaction Type This will normally be logged for Output and formatter errors.
DA of Transaction
with Error

This is only logged in the formatter, and is the internal entry number of the root
file (INDA) for the parent transaction being processed.

UIF Entry The internal entry number in the Universal Interface File. It is logged for output,
deformatter, and transceiver errors. It is also logged for all Negative
Acknowledgments.

Location of Error The GIS process in which the error occurred (See previous table).
Number of Retries Not used.
Last User Replayed Not used.
Originating User This is only used for formatter errors, and is the DUZ of the user. This is always

the Postmaster.
Destination The destination of the transaction. This is logged for output, deformatter, and

transceiver errors.
Error Resolution
Status

Errors have a status of “Unresolved” when first logged. For non-fatal errors
which the Output Controller attempts to retry, a status of “Maximum Retries
Attempted” will be logged. Certain kinds of errors can be corrected, the UIF entry
requeued, and the error status will be updated to “Resolved”.

Background Process This is the background process, such as a transmitter or receiver, in which an
error occurs.

Programmers Array Stores the INA array, if it exists.
Error Message Text This is the error array which is created by the GIS and/or by applications

developers while scripts are being run. See the section on Error Handling for
more information.

User Manual 115 The GIS in Operation

5.3 Status levels
Each transaction in the Universal Interface File will have a status. Status information
is maintained in two places in the UIF. The status field reflects the most recent status
of the transaction. There is also a status field in the Activity Multiple which records
each change in status. The Activity Multiple also records date/time of the status
change and a text field. It provides an audit trail of GIS events that relate to the
transaction. Some status codes are only used in the Activity Multiple, and the initial
status of “New” is only used at the top level.

For outgoing transactions, subsequent status levels are assigned as follows. When
transmitting outgoing HL7 transactions, the status levels are dependent upon whether
communication follows HL7 Original Processing Rules or HL7 Enhanced Processing
Rules.

Sent This status will only be assigned if an application acknowledgment is expected for the
outgoing transaction. This is indicated by a field in the Interface Transaction Type File.
The “sent” status indicates that the transaction has been transmitted to the remote
system, but nothing has been received in return. When transmitting to a remote
system, the status is updated as follows. • Original rules: The status is updated as
soon as the transmitter sends the transaction. • Enhanced rules: The status is updated
as soon as the transmitter receives an accept acknowledgment with a “CA” code (See
also the “accept ack” status).

Accept Ack This is only used if the host system and the remote system are operating under HL7
Enhanced Processing Rules, which provides that the receiving system will send an
accept acknowledgment when the transaction is placed into “safe storage” on that
system. Accept Ack indicates a “CA” code was returned by the remote system. The
status is updated by the routines which evaluate incoming acknowledgments. It is a
very transitory status because the transmitter will quickly update the status to either
“sent” or “complete”. Thus the status will rarely be seen at the top level status field of
the UIF, but will be an entry in the activity log multiple which shows a history of all
status updates.

Error This status is created under two conditions. Original Acknowledgment: An error status
is logged if the receiving system returns a negative acknowledgment. Enhanced
Acknowledgment: An error status is logged if the receiving system returns an accept
acknowledge with a “CE” or “CR” code. However, even if the receiving system returns
a “CA” code in the accept Acknowledge, a subsequent application Acknowledge with
an “AE” or “AR” code will also trigger a status of “error”.

Device Wait Not used.
Replicated
Message

This status is only used in the activity multiple of the “base” transaction which is being
replicated to multiple destinations under replication and/or selective routing. For such
transactions, the activity log multiple will contain a status of “Replicated Message” for
each replicated transaction, and the text will identify the internal entry number of the
replicated transaction. The top level “Status” field of the UIF entry will never show this
status.

Suppress This status used for transactions which are suppressed by the screening logic of
Selective Routing. This status is only used in the Activity Multiple.

User Manual 116 The GIS in Operation

Complete This status indicates that the outgoing transaction has been processed to the extent
expected. In the simplest scenario, a transaction sent to a remote system under HL7
Original Processing Rules and for which no application Acknowledge is expected will
go from a status of “New” directly to a status of “complete”. If an application
Acknowledge is expected, the status will become “complete” when a positive
acknowledgment is received from the remote system. Also, for “base” transactions
under replication and selective routing, the status of “complete” indicates that the base
transaction has been processed by the replicator and that no errors were encountered
as replicated transactions were created. Individual replicated transactions will have
their own status levels.

Pending This status is triggered under two conditions. • If the output controller encounters a
non-fatal error while processing an outgoing transaction, the status of “pending” is
assigned until the output controller successfully processes the transaction or until the
maximum number of retries is reached. • A transaction which has been re-queued will
have a status of “Pending”, regardless of the prior status.

Incoming transactions are also assigned a status of “New”. Subsequent status levels
are assigned as follows. When transmitting outgoing HL7 transactions, the status
levels are dependent upon whether communication follows HL7 Original Processing
Rules or HL7 Enhanced Processing Rules.

Complete This status indicates that the incoming transaction has been successfully
processed into the local data base.

Error This status indicates that an error has been encountered processing the
incoming transaction.

Suppress This status used for transactions which are suppressed by the screening
logic of Selective Routing. This status is only used in the Activity Multiple.

5.3.1 X12 Status Levels
Original Message Status

The status of the original, outgoing message from the host system will be updated as
follows.

− The status of a message begins at NEW when first created.
− It becomes SENT once the transmitter receives a 997 or TA1 with either an A

or E status IF an application acknowledgment is expected. (This is specified in
the Interface Transaction File)

− Or, it becomes COMPLETE once the transmitter receives a 997 or TA1 with
either an A or E status IF no application acknowledgment is expected.

− If the transmitter receives a 997 or TA1 with an R status, the status of the
original message becomes K??

− If any message other than a 997 or TA1 is received by either a transmitter or
receiver, and that message has the trace number of a message in the Universal
Interface file, the status of the message will be updated to COMPLETE.
Normally this will happen once a receiver receives a response to a query.

User Manual 117 The GIS in Operation

Incoming Message Status
All incoming messages are filed in the Universal Interface File if the VALID
functionality determines that the message meets X12 requirements as listed above.
The status of incoming messages will be set as follows.

− - If the incoming message is a 997 or TA1 it will immediately be set to
COMPLETE and will not be queued on the Output Controller.

− - All other messages will be set to NEW and will be queued on the Output
Controller.

− - The status of these messages will be updated once the message has been
processed by the Output Controller. This normally means that the application
team’s lookup/store routine will run. Depending on the error code returned by
this process, the status will be updated to COMPLETE or ERROR.

5.4 Testing/Debugging Concepts and Utilities
This section of documentation lists some procedures and utilities which will assist
applications developers. The GIS includes a number of system utilities. Although
many of these are designed primarily for use by site managers, they are also valuable
tools for applications developers. In addition, the GIS includes several utilities of
special interest to debugging transactions and transaction routing.

5.4.1 Transaction Search Functions
When developing a new transaction, or modifying/testing an existing transaction, the
first check is to verify that an entry is created in the Universal Interface File (UIF),
and the second check is for the status information contained in the UIF entry. When
testing inbound TCP/IP receivers and incoming transactions, it is also useful to verify
that the receiver made an entry in the UIF.

There are several methods of viewing the UIF entry, including the FileMan Inquiry
and Search functions and the Inquire into Universal Interface File (IUIF) function and
Transaction Search (TS) functions on the GIS Transaction Control menu. The latter is
a full-screen search function which allows the user to specify a variety of search
criteria, then provides a pick list of UIF entries that match the criteria.

Screen 5-1 is an example of the initial search screen for the TS option. The prompts
on the user screen include start and end dates for the search (both date and time can
be entered), along with key fields in the Universal Interface File. When developing
new outgoing transactions, the Originating Transaction Type field is a useful field
because it limits the search to the transaction type being developed. Note that this
field is only populated for outgoing transactions, and it is not the Parent Transaction
Type passed to the INHF API, but is the child or replicated Transaction Type.

User Manual 118 The GIS in Operation

Once the search screen has been completed and filed, the GIS will display a pick list
of transactions which match the search criteria. The user then selects one or more
transactions to view. Figure 5-2 is an example of the display for a selected
transaction.

Interface Transaction Search Criteria Screen 1 of 2

START DATE: END DATE:
REL START DATE: REL END DATE:

MESSAGE ID: DIRECTION:
SOURCE:
USER:
PATIENT: EXPANDED DISPLAY: NO
MESSAGE TEXT TO SEARCH FOR:

MESSAGE TEXT SEARCH MATCH TYPE:

LISTING ORDER: Newest to Oldest CRITERIA NAME:

COMMAND: Press <PF1>H for help Insert

Figure 5-1: TS Search Screen

Transaction Search Jan 18, 2000 13:37:51 Page: 1 of 9
 Interface Transaction Search
 DATE/TIME MESSAGE ID DESTINATION
1 22 Nov 1999@131524
2 22 Nov 1999@131523 VA-51 HL ACCEPT ACK OUT
3 22 Nov 1999@131523
4 22 Nov 1999@130613
5 22 Nov 1999@130613 VA-50 HL ACCEPT ACK OUT
6 22 Nov 1999@130613 VA-7-TE-42 TEST DOUG1 DEST -IN
7 22 Nov 1999@130612
8 22 Nov 1999@130612 VA-49 HL ACCEPT ACK OUT
9 22 Nov 1999@130612 VA-7-TE-41 TEST DOUG1 DEST -IN
10 22 Nov 1999@130611
11 22 Nov 1999@130611 VA-48 HL ACCEPT ACK OUT
12 22 Nov 1999@130611 VA-7-TE-40 TEST DOUG1 DEST -IN
13 22 Nov 1999@130610
14 22 Nov 1999@130610 VA-47 HL ACCEPT ACK OUT
15 22 Nov 1999@130610 VA-7-TE-39 TEST DOUG1 DEST -IN
16 22 Nov 1999@130609
+ Enter ?? for more actions >>>
EP Expand Entry
Select Action:Next Screen//

Figure 5-2: Example TS Transaction display

For outgoing transactions, if the GIS does not create an entry in the UIF, check the
following items.

• Verify that the Format Controller is running.

User Manual 119 The GIS in Operation

• Verify that the Output Controller is running.

• The Child Transaction Type must be “active”. (In the case of replication, the
“base” Transaction Type is a child and must be active.)

• If the transaction is a “child”, the Child Transaction Type must have the “parent
transaction” field pointed to the same parent that is called from the application.

• If the transaction is a replicated transaction, the “parent” field will be blank.
Verify that the transaction points to the “base” transaction in the Interface
Message Replication File.

• The Parent Transaction Type must be “active”.

• The Child or replicated Transaction Type must point to a “destination”.

5.4.2 Error Search Functions
For both outgoing and incoming transactions, it is always helpful check for errors in
the Interface Error File. There are several functions for this, including the List
Interface Errors (LIE), the Error Search (ES) and the Error Message Summary
(EMS). The LIE lists errors between specified start and stop dates as shown in Figure
5-3.

 Interface Error Report
 18 Jan 2000@16:45
Error Location: ALL Page: 1
DATE/TIME RESOLUTION
OF ERROR MESSAGE ID STATUS DESTINATION

NOV 16,1999 14:53 VA-4 RESOLVED TEST CONTROL

 User: 0 Division: 1575

Error Message:
 Destination has no method of processing.

MESSAGE TEXT:
MSH^\|~&^^^^^19991115163314^^TST\ADT^VA-4^T^2.3^^^^
TST^SENDUVEL,HARRY ALLEN^^19430718

Figure 5-3: Example of LIE error display

The Error Search (ES) and Error Message Summary (EMS) options allows entry of
search criteria via a full-screen form. Figure 5-4 is the Interface Error Search screen.

User Manual 120 The GIS in Operation

Interface Error Search Criteria Screen 1 of 2
Error Search Criteria

ERROR START DATE: ERROR END DATE:
REL START DATE: REL END DATE:
ORIGINATING TRANSACTION TYPES:

DESTINATIONS:

ERROR LOCATION:
ERROR RESOLUTION STATUS:
ERROR TEXT TO SEACH:
SEARCH TEXT MATCH-TYPE:
LISTING ORDER: Newest to Oldest CRITERIA NAME:

COMMAND: Press <PF1>H for help Insert

Figure 5-4: Example Error Search criteria form

Once the search criteria has been entered, the Error Search displays a pick list of
errors which match the criteria and allows the user to select the errors for a more
detailed display.

The Error Message Summary consolidates errors by error text and displays one entry
for each type of error along with the number of times the error occurred, the most
recent time of the error and similar information.

5.4.3 List Queued Transactions
If an outgoing transaction exists in the Universal Interface File, but the status is still
“New”, the List Queued Transactions (LQT) utility will locate the queue on which the
transaction is queued. Figure 5-5 shows the screen used to select the queue or queues
for which queued transactions are to be displayed. Figure 5-6 shows an example of
the queue report which results from the option.

User Manual 121 The GIS in Operation

 *** List Queued Transaction - Selection Criteria ***

 Start Date: End Date:

 Direction: Cut Off Priority:

 Destination:

 Queue:

Detailed Report:

COMMAND: Press <PF1>H for help Insert

Figure 5-5: LQT Screen

SAIC WEBTOP TEST 18 Jan 2000@1656 Page 1

 List Queued Transaction Report
 From: October 20, 1999@0000 To: January 18, 2000@2400
 Queue: INLHSCH

Selection Criteria:
Queue: All
Cut Off Priority: All
Direction: All
Destination: All
Detailed: No

Date/Time Prio ID Destination

11/22@13:06 0 VA-7-TE-40 TEST DOUG1 DEST -IN
11/22@13:06 0 VA-7-TE-41 TEST DOUG1 DEST -IN
11/22@13:06 0 VA-7-TE-42 TEST DOUG1 DEST -IN
11/19@09:55 0 VA-7 TEST SEQUENCE
11/22@13:06 0 VA-7-TE-39 TEST DOUG1 DEST -IN
End of queue INLHSCH

Figure 5-6: Example LQT display

5.5 INHPSAM
INHPSAM is comprised of a suite of routines. The following routines describe how
the transactions are associated with an interface. The routine is primarily used for
distribution of transactions with software releases.

5.5.1 Preparing Transactions for Distribution
INHPSAM
The interface name and its acronym must be added to this routine.

User Manual 122 The GIS in Operation

DATACOM ;Description of DATA tag
 ;; format - ;; interface application name ^ appl
indentifier
DATA ;Data
 ;;Anatomic Pathology^AP
 ;;DBSS^BB
 ;;New Interface^NI
 ;;

The acronym must also be added as an entry in another
portion of the routine.

ALL(INST);Process all production interfaces
 ;N INVERBOS,X,INPAR
 ;S INVERBOS=1
 D APPLAR
 S INST=+$G(INST),INPAR("ACT")=INST,INPAR("REPL")=0
 F X="AP","BB","NI"
 S INPAR("APSEL",X)=""
 D TASKDEV(.INPAR,$G(INVERBOS))
 ;Q;

ONHPSA#

The interface application background processes and transaction types are added to
this routine. As long as the compiled size of the routine is under 8000, use the routine
that has the highest number. If the size is approaching 8000, create another routine
with the next sequential number.

DATA ;data - INHPSAM for description of structure
 ;;; DESTINATION: EMPTY
NI ;; DESTINATION: HL NI - OUT
 ;;4005^^HL NI - OUT
 ;;4004^^NI TRANSMITTER
 ;;4000^^NI ORDER
 ;;4000^^NI ADMIT
 ;;4000^^NI CANCEL
.
.
.
 ;;4000^^NI MERGE
 ;;4000^^INCOMING ACK^1
 ;;4000^^HL GIS ACCEPT ACKNOWLEDGEMENT^1
 ;;4000^^HL GIS APPL ACKNOWLEDGEMENT^1
 ;;
AP ;;AP Interface
 ;;4004^^AP TRANSMITTER

• It is important to note that each interface section must end with a “;;”

• Each INHPSA# routine used to identify interface elements (Transaction Types,
Background Processes) should begin with the first two lines listed above (see
DATA tag)

• Only child, replicant, acknowledgement and master file notifications should be
included in the list. Parent and base transactions are activated automatically based
on activation of the child and replicant transactions.

User Manual 123 The GIS in Operation

• The transactions for Incoming ACK, HL GIS ACCEPT
ACKNOWLEDGEMENT and HL GIS APPL ACKNOWLEDGEMENT should
always be included for each GIS HL7 interface.

• The transactions for Incoming ACK, HL GIS ACCEPT
ACKNOWLEDGEMENT and HL GIS APPL ACKNOWLEDGEMENT include
a “^1” at the end. This indicates that these transactions are also used in other
interfaces. If the interface is deactivated by INHPSAM, transactions indicated as
such will not be inactivated so that other interfaces will not be affected. Any new
Transaction Types that are used by more than one interface should also include an
“^1” at the end.

INHPSA2

This routine contains the help text. The text displays on screen after the routine is run
for activating an interface. The help text contains activation reminders for site-
specific activities . For example, this help text may include a reminder to enter the IP
address and port numbers for the background processes.

NMIS ;NMIS
 ;;Remember to enter the CLIENT IP ADDRESS and IP
 ;; PORT for the NMIS TRANSMITTER background process.
 ;;Do this through the GIS menu. GIS->FTM->BPE
 ;;Also, enter destination identifiers in the ROUTE
 ;; ID multiple of HL NI - OUT interface destination.
 ;;Do this through the GIS menu. GIS->FTM->DE
 Q

5.5.2 Activating/Deactivating an Interface
The routine INHPSAM can also be used to activate or deactivate a selected interface
in one step. The routine is called INHPSAM and is invoked by typing a command at
the MSM prompt. When invoked, a list of eligible interfaces is displayed:

>D EN^INHPSAM

 AP Anatomic Pathology
 BB DBSS

Select Interface Application:

INHPSAM contains all of the background processes and transaction types for a given
interface that must be in a status of ACTIVE in order for the interface to be started.
This routine activates the interface, but does not turn on the interface connection. By
activating the interface, several things will occur:

• The activated background process will appear in the picklist of processes when
selecting the option (GIS – BPC – S1) to start an interface.

• The activated background process will appear in the option to verify status of
interfaces (GIS – TCM – VS).

User Manual 124 The GIS in Operation

• Activated transaction types will allow the application to trigger an HL7 message.

User Manual 125 Query Response Functions

6.0 Query Response Functions
The GIS supports interactive communications with offboard workstations. This
allows clinical personnel to connect to the host system from remote workstations and
communicate interactively with the host database using HL7 formatted messages.

Implementation of this interactive function requires two background processes. The
first is the Log on Server (LoS) function. This consists of a GIS background process
which opens a TCP/IP channel and continually “listens” for log-on requests from
remote systems. The second is the Application Server (ApS), which is started by the
LoS as remote systems request a connection to the host system.

Set-up and operation of the two functions is described in more detail in the following
sections.

6.1 Log on Server
The LoS accepts requests for access from remote systems. These requests are in the
form of HL7 messages (Logon Request From Remote System). The LoS
authenticates the request using standard host system logon procedures. If the request
is valid then the LoS creates an Application Server. The LoS passes the Remote
Address, Remote Port, Security Key, and Remote User to the ApS as inputs.

The Site Operations staff are responsible for starting the LoS. The LoS can be started
on any node (machine) in the host configuration. The LoS opens an IP Port on the
local node and listens for remote connections. The LoS functions as a server in the
TCP clientserver model. There will be only one active LoS on a host configuration.
The LoS will stay active until it is signaled to stop.

The LoS may be stopped at any time. It will complete any transaction in process and
terminate. Stopping the LoS will not terminate any active ApS.

6.1.1 Background LoS Process Definition
The log-on server process is defined similar to other background processes. Screens
6-1 through 6-3 are example of the three screens used to define a LoS.

User Manual 126 The GIS in Operation

 *** Background Process Entry/Edit *** Screen 1 of 3

 Name: CIW LOGON SERVER
 Active: INACTIVE Priority:
 Device:
 Routine: EN^INHVCRL
 Destination: HL INH LOGON REQUEST FROM REMOTE SYSTEM
Destination Determination Code:
D DEST2^INHVCRL4
 Client/Server: SERVER Connection Type:
Server Ports:

Client Addresses:

COMMAND: Press <PF1>H for help Insert

Figure 6-1: Logon Server Initial background process screen

*** Background Process Entry/Edit *** Screen 2 of 3
-------------------- Parameters ---
 Open Hang: 5 Open Retries: 60
 Disconnect Hang: Disc. Retries:
 Transmitter Hang: 3
 Send Hang Time: 3 Send Retries: 3 Send Timeout: 4
 Read Hang Time: 3 Read Retries: 10 Read Timeout: 20
 End of Line: Send Maximum:
 Client Init String:

 Init Response:

 Start Of Message: End of Message:
------------- Interactive Process Parameters ------------------------------
Maximum Number of Jobs: Suppress Startup:
 Security Key Frame:

COMMAND: Press <PF1>H for help Insert

Figure 6-2: Logon Server background process screen 2

User Manual 127 The GIS in Operation

 *** Background Process Entry/Edit *** Screen 3 of 3

Receiver SRMC:

Transmitter SRMC:

COMMAND: Press <PF1>H for help Insert

Figure 6-3: Logon Screen background process screen 3

Refer to the section on the Destination-Background Process Pair for an explanation of
the use of the fields on these screens.

6.2 Application Server
The ApS is the primary process with which the remote system interacts. The ApS
runs as a background process, but it is not started from a menu option. Instead, the
application server is started by the log on server as remote systems requests a
connection to the host system. In an operational setting, there will typically be only
one log-on server process active at any given time, but many application servers--one
for each active remote user.

The ApS is created by the LoS after it receives and authenticates a request for access
from a remote system. The ApS is created on the same node on which the LoS is
currently executing. The Remote Address, Remote Port, Security Key, and Remote
User are passed as inputs from the LoS to the ApS. These are passed in from the
"Logon Request From Remote System" transaction type (Lookup/Store Routine).

As an additional security measure, the IP addresses of those remote systems which
are allowed to connect to the host system must be stored in the Client Addresses
multiple of the LoS Background Process file entry.

The remote system/user is authenticated at initiation of the ApS. The “Application
Server Logon” must be the first message received from the remote system by the
ApS. This must process successfully in order for ApS processing to continue. Only
one Application Server Logon message will be accepted. Subsequent messages of this
type within the same ApS session will receive a negative acknowledgment.

An "Application Server Logoff" message will terminate the ApS session. When this
message is received the ApS will send an acknowledgment message and terminate.
The Site Operations staff may shutdown all ApS at any time. Individual ApS may not

User Manual 128 The GIS in Operation

be terminated. When the ApS receive the signal to terminate they will complete the
processing of any transaction in progress and terminate. No notification will be sent
to the remote system.

The ApS connects to the IP port at the remote port and address specified by the LoS.
Typically, the ApS functions as a client in the TCP client-server model.

6.2.1 ApS Background Process Definition
The application server process is defined similar to other background processes.
Figures 6-4 through 6-7 are example of the three screens used to define an Aps. In the
example shown on Screen 6-5 the “Maximum Number of Jobs” is set at 75. This
indicates that up to 75 application server jobs can be active at any one time--meaning
that up to 75 workstations can be interactively communicating. If this field is null, the
default will be 9999. The actual maximum is dependent upon system resource
limitations. Also shown on this screen is that the “Suppress Startup” field is set to
“yes”. This is used by the GIS to prevent application servers from being started from
the Background Process Control menu.

The field “Security Key Frame” is a security feature of the system. The key frame is
used as a frame for the key supplied to a workstation during logon. Each workstation
that wishes to connect to a server must have this key frame defined and pass it to the
ApS with the security key provided by the LoS.

6.2.2 Variable arrays for incoming and outgoing scripts
Because the application server is communicating interactively with the remote users,
transactions are not queued on either the format controller queue or the output
controller queue. This eliminates any delay in processing. Further, the application
server maintains control over the entire message processing activity rather than pass it
to other GIS processes such as the format or output controllers. However, this
requires the application server to provide some of the functionality which is normally
provided by those controllers. For incoming transactions, the application server
identifies the proper entry in the Interface Transaction Type File and runs the
appropriate script to update the database. To respond to the remote system, the entry
in the Transaction Type File for the incoming transaction should point to an outgoing
Transaction Type in the field, ACKNOWLEGE MESSAGE. The application server
will then run the script for the outgoing transaction and transmit it back to the remote
system.

For example, an incoming transaction that queries the host database for a patient
identifier may point to an outgoing transaction which contains a message containing a
PID segment for the patient being queried.

User Manual 129 The GIS in Operation

 *** Background Process Entry/Edit *** Screen 1 of 3

 Name: PWS APP SERVER
 Active: INACTIVE Priority:
 Device:
 Routine: PWSSRVR^INHVCRV1
 Destination: HL INH APPLICATION SERVER LOGON
Destination Determination Code:
D DEST^INHVCRAP
 Client/Server: CLIENT Connection Type:
Server Ports:

Client Addresses:

COMMAND: Press <PF1>H for help Insert

Figure 6-4: Application Server Initial background process screen

 *** Background Process Entry/Edit *** Screen 2 of 3
-------------------- Parameters ---
 Open Hang: 30 Open Retries: 3
 Disconnect Hang: Disc. Retries:
 Transmitter Hang:
 Send Hang Time: Send Retries: Send Timeout:
 Read Hang Time: 1 Read Retries: Read Timeout: 60
 End of Line: Send Maximum:
 Client Init String:

 Init Response:

 Start Of Message: End of Message:

------------- Interactive Process Parameters ------------------------------
Maximum Number of Jobs: 75 Suppress Startup: YES
Security Key Frame: A1B2C3

COMMAND: Press <PF1>H for help Insert

Figure 6-5: Application Server Initial background process screen 2

User Manual 130 The GIS in Operation

 *** Background Process Entry/Edit *** Screen 3 of 3

 Receiver SRMC:

 Transmitter SRMC:

COMMAND: Press <PF1>H for help Insert

Figure 6-6: Application Server Initial background process screen 3

To facilitate the query/response functions of the applications server, the GIS provides
a method to pass variable arrays from the incoming transaction to the
acknowledgment script. The arrays are INOA and INODA. These are passed by
reference as “empty” arrays at the top of the incoming script. Applications
programmers can set values into these arrays in any of the incoming M Calls from
Compiled Scripts and the GIS will pass the values into the outgoing/acknowledgment
script as the INA and INDA arrays, where their use is identical to the INA and INDA
arrays passed if from the Application Program Interface Call. If desired, the
applications programmers can use the data in these arrays in M Calls from Compiled
Scripts such as Outgoing Initial MUMPS Code and Outgoing MUMPS Code.

6.2.3 ApS User Time Out
The ApS includes a time out feature similar to the FileMan timed read function. The
ApS will wait the number of seconds defined in the Timed Read field of the USER
file for input from the remote system. If the remote system has not communicated in
this period of time, the ApS will close the connection. Set the user’s time out value
sufficiently large to avoid premature shutdown.

6.3 Transaction Re-queue Warning
While the GIS provides the capability to re-queue a message for retransmission using
the menu option, RT—Re-queue a Transaction, certain messages must NEVER be re-
queued! Interfaces where an offboard system is requesting log-on to the RPMS would
be one such case. Requeuing transactions has the potential to cause a runaway
process. The GIS sets a flag in the SUPPRESS FROM OUTPUT field of the
transaction entries in the Universal Interface File. This will prevent them from being
re-queued using the REQUEUE A TRANSACTION menu option. Do not bypass this
and queue a flagged transaction manually.

User Manual 131 The GIS in Operation

6.4 Testing/Debugging hints
The following procedure should be followed to test an offboard interface that requests
logon to the RPMS.

• Be sure the GIS is active: Menu Path:
SM-INT-GIS-FTM-SPE Set INTERFACE SYSTEM ACTIVE to YES

• Be sure a server port is defined for the LoS: Menu Path:
SM-INT-GIS-FTM-BPE->XXXX LOGON SERVER

• Be sure a client port/address is defined for the ApS: Menu Path:
M-INT-GIS-FTM-BPE->YYYY APP SERVER

• Start the XXXX LOGON SERVER.
Menu Path: SM-INT-GIS-BPM-S1->XXXX LOGON SERVER

If the preceding steps have been followed, but YYYY logon to XXXX fails:

• Check M error trap for fatal system errors (D ^%ER).

• Check GIS error log for error information.
Menu Path: SM-INT-GIS-EM-ES

• Ensure that the User data and associated Provider data is correct for this user, for
example:

− valid Access/Verify code
− user account is active (not beyond termination date)
− login attempt is being made w/in prohibited times for this user
− default division exists for user
− default division is one of this user's allowable divisions (if specified)
− user is an authorized HCP

Restart the LoS

User Manual 132Data Transforms and Character Conversion

7.0 Data Transforms and Character Conversion
Data Transforms can be defined in two different places in the GIS.

• The “Outgoing Tranform” and “Incoming Transform” fields in the Script
Generator Data Type file. These allow transforms to be applied to all fields of a
particular type, such as an HL date type or a composite person type.

• The “Outgoing Transform” and “Incoming Transform” fields in the Script
Generator Field File. These allow transforms to be applied to a single field,
regardless of it’s type.

If a field transform exists, it over-rides any transform in the data type file.

The HL7 standard also specifies that delimiter characters should be converted. For
example, the ampersand is used in some HL7 implementations as part of the delimiter
set. Because the ampersand may also exist in the transmitted date (e.g. Smith & Jones
Insurance Co.), the embedded ampersand in data must be converted by the
transmitted system into a different character and converted back into the ampersand
when the receiving system processes the message into it’s data base. In the GIS, this
is accomplished by setting the “Encoding Characters Conversion“ flag in the Script
Generator Field File.

User Manual 133 Appendix A

Appendix A:
 GIS Interface Menu

TCM Transaction Control Menu
 IUIF Inquire into Universal Interface File (UIF)
 PT Purge Transactions
 LQT List Queued Transactions
 RT Requeue a Transaction
 EIT Edit an Interface Transaction
 MTC Mark Transaction Complete
 TS Transaction Search
 AMS Average Message Size
 TRA Throughput Analyzer

FTM File and Table Menu
 TTE Transaction Type Enter/Edit
 DE Destination Entry/Edit
 SPE Site Parameter Enter/Edit
 BPE Background Process Entry/Edit
 RMD Replicate Message to Destinations

 EM Error Menu
 LIE List Interface Errors
 PE Purge Errors
 ES Error Search/Sort/Print
 EMS Error Message Summary

 BPC Background Process Control Menu
 IBP Inquire to a Background Process
 S1 Startup a Background Process
 SA Start all Background Processes
 SH1 Shutdown a Process
 SHA Shutdown All Background Processes
 VS Verify Status of Background Processes
 QSIZ Display Queue Size
 TOP Top Entries in Queues
 BMON Background Process Monitor

SM Script Menu
 ES Enter/Edit a Script
 PS Print a Script
 CS Compile a Script
 RS Recompile All Scripts

 SGM Script Generator Menu
 MM Message Menu
 MD Message Definition
 MI Message Inquiry
 MB Brief Message Inquiry
 MP Message Print
SM Segment Menu
 SD Segment Definition
SI Segment Inquiry
SP Segment Print
FM Field Menu
FD Field Definition
FI Field Inquiry
FP Field Print
DM Data Type Menu
DD Data Type Definition

User Manual 134 Appendix A

DI Data Type Inquiry
DP Data Type Print
G1 Generate Scripts for a Message
GA Generate All Messages

	1.0 System Overview
	1.1 Primary System Components
	1.1.1 Application
	1.1.2 Formatter
	1.1.3 Transaction Type
	1.1.4 Interface Script File
	1.1.5 Receiver
	1.1.6 UIF--Universal Interface File
	1.1.7 Interface Destination File
	1.1.8 Output Controller
	1.1.9 Transmitter
	1.1.10 Application Deformatter
	1.1.11 System Control

	1.2 Transaction Flow Through the GIS
	1.2.1 Outbound Transactions
	1.2.2 TCP/IP Transmitters/Receivers
	1.2.3 TCP/IP Transmitters/Receivers
	1.2.4 Interactive transactions

	1.3 Quick Guide
	1.3.1 Create the message
	1.3.2 Send the message (outgoing)
	1.3.3 Receive the message (incoming)
	1.3.4 Route the message (store-and-forward)

	2.0 Interface Message Design
	2.1 Script Generator: HL7
	2.1.1 HL7 Summary
	2.1.2 Field Data Types
	2.1.3 Field Definition
	2.1.3.1 Field Data Location
	2.1.3.2 Field Data Location for Set ID Fields
	2.1.3.3 Field Data Location for Word Processing Fields
	2.1.3.4 Field Data Location Using Special Variables

	2.1.4 Segment Definition
	2.1.5 Message Definition
	2.1.6 Message/Transaction Type Link
	2.1.7 Incoming vs. Outgoing Transactions

	2.2 Script Generator X12 Modifications
	2.2.1 Field Data Types
	2.2.2 Field Definition
	2.2.3 Segment Definition
	2.2.4 Message Definition
	2.2.5 Compiled X12 Script Characteristics
	2.2.5.1 Create Sequence Number

	2.3 Programmer APIs
	2.3.1 Programmer-Defined Lookup/Store Options
	2.3.2 M Calls From Compiled Scripts
	2.3.2.1 Variable arrays used in M Calls

	2.3.3 Error handling

	2.4 Generate/Compile Scripts
	2.5 Error Conditions
	2.6 Message Definition Hints

	3.0 Transaction Routing
	3.1 Outgoing Transactions
	3.1.1 Parent Transaction Type Definition
	3.1.2 Application Program Interface (API) Call
	3.1.3 Child Transaction Type Definition
	3.1.4 Destination Definition
	3.1.5 Destination for the Background Process
	3.1.6 Transaction Replication To Multiple Destinations

	3.2 Incoming Transactions
	3.2.1 Destination-Transaction Type Pair
	3.2.2 Destination-Background Process Pair
	3.2.3 HL7 Message Type Recognition (Destination Determination)
	3.2.4 X12 Message Recognition
	3.2.5 X12 Validation
	3.2.6 Functional Identifiers (Message Type) and Message Recognition

	3.3 Responses to Incoming Transactions
	3.3.1 HL7 Accept Acknowledgments
	3.3.2 HL7 Application Acknowledgments
	3.3.3 Queries and Specialized Acknowledgments
	3.3.3.1 Query Status API

	3.3.4 X12 Query Responses
	3.3.5 X12 Transaction Acknowledgments
	3.3.6 X12 Functional Acknowledgments

	3.4 The Bi-directional Interface
	3.5 Routing a Store-And-Forward Transaction
	3.6 Transient Connection

	4.0 Selective Routing
	4.1 Concept of Operations
	4.1.1 Inbound transactions
	4.1.2 Outbound transactions

	4.2 Application Screening Logic
	4.2.1 INA Array
	4.2.2 INDA Array
	4.2.3 INSRCTL Array
	4.2.4 INSRDATA Array

	4.3 Selective Routing (SRMC) Code Placement
	4.3.1 Interface Transaction Type File
	4.3.2 Interface Destination File
	4.3.3 Background Process Control File

	4.4 Screening Points
	4.4.1 Receiver Screens
	4.4.2 Message Replicator Screens

	4.5 Primary Destinations and Subordinate Destinations
	4.5.1 Outbound
	4.5.2 Inbound

	4.6 Route ID and Interface Destination Mapping
	4.6.1 Creating Destination Specific MSH Segments
	4.6.2 MSH Facility and Application Precedence

	4.7 Routing Activity Logs
	4.8 Application Acknowledgment Routing
	4.9 Sample Screening Logic Code
	4.10 Supporting Utilities
	4.10.1 PARSEG^INHUT
	4.10.2 GETSEG^INHUT
	4.10.3 RCVSCRN^INHUT

	4.11 Application Acknowledgment Routing
	4.11.1 GETDEST^INHUT

	5.0 The GIS in Operation
	5.1 Universal Interface File (UIF)
	5.2 Interface Error File
	5.3 Status levels
	5.3.1 X12 Status Levels

	5.4 Testing/Debugging Concepts and Utilities
	5.4.1 Transaction Search Functions
	5.4.2 Error Search Functions
	5.4.3 List Queued Transactions

	5.5 INHPSAM
	5.5.1 Preparing Transactions for Distribution
	5.5.2 Activating/Deactivating an Interface

	6.0 Query Response Functions
	6.1 Log on Server
	6.1.1 Background LoS Process Definition

	6.2 Application Server
	6.2.1 ApS Background Process Definition
	6.2.2 Variable arrays for incoming and outgoing scripts
	6.2.3 ApS User Time Out

	6.3 Transaction Re-queue Warning
	6.4 Testing/Debugging hints

	7.0 Data Transforms and Character Conversion
	Appendix A:

