[image: image1.png][image: image2.png]

Executive Summary

Title
Securing Databases for ColdFusion Applications
Date
February 2, 1999

Product
ColdFusion Application Server, all versions.

Target Audience
IS and IT Managers
Web Application Developers
Web Server Administrators

Abstract
ColdFusion facilitates the delivery of dynamic database content to the Web in a very short time-frame. Many of the databases supporting this content were either created for the web by non-database developers, or created for non-web based systems and later converted. In either case, there are a number of security considerations that are often neglected and are very worthy of consideration when delivering database access via the Web. This paper offers some concrete advice on securing databases using ColdFusion.

© 1998 Allaire Corporation. All rights reserved.

The information contained in this document represents the current view of Allaire Corporation on the issues discussed as of the date of publication. Because Allaire must respond to changing market conditions, this document should not be interpreted as a commitment on the part of Allaire, and Allaire cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. THE INFORMATION PROVIDED BY ALLAIRE IN THIS BULLETIN IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ALLAIRE DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL ALLAIRE CORPORATION OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, LOSS OF BUSINESS PROFITS OR SPECIAL DAMAGES, EVEN IF ALLAIRE CORPORATION OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES SO THE FOREGOING LIMITATION MAY NOT APPLY.
ColdFusion is a U.S. registered trademark and Allaire, HomeSite, and the ColdFusion logo are trademarks of Allaire Corporation.

Other product or company names mentioned herein may be the trademarks of their respective owners.

Allaire Corporation (One Alewife Center (Cambridge (MA (02140

www.allaire.com (info@allaire.com ((617) 761-2000

Table of Contents

2Executive Summary

Table of Contents
3
Introduction
4
Database Security Basics
5
Restrict User Access Rights
5
Individualize Logins
5
Review Authentication Mechanisms
6
Web-specific Database Security Considerations
7
Dynamic SQL statements
7
Parameters Affected
8
Precautions
9
Summary
11

Introduction

The task of creating Web-based database applications has become remarkably simple with the advent of products like ColdFusion. Legacy back-office databases and new ones alike can be quickly brought online, allowing selective self-service Web access to their content. Further, the ongoing evolution of database server functionality is continually extending the range of network resources exposed from within databases.

The simplicity of Web-enabling databases and creating database-driven Web applications should not obscure the importance of appropriate database security planning. With the advent of dynamic query generation, the need for stringent database security is greater than ever.

In the world of the Web, databases are often exposed directly to the Web, removing the physical system access barrier. More importantly, Web-based systems are taking on both maintenance and delivery of database information, requiring that Web application servers have the potential of running with privileged user access rights.

The Web, with all its versatility, is putting corporate database security to the test. Tight access permissions and granular, restrictive database security have become an essential consideration.

This document endeavors to both identify database security issues and provide ColdFusion specific solutions by example.

Database Security Basics

The Web hasn’t changed basic database security principles; it has simply exposed databases to a larger potentially unauthorized audience. Innocuous and mischievous users alike now have the potential to access sensitive databases remotely and often anonymously.

The key to database security remains the principle of restricting user access to only the information and database functionality that they require. There are three primary implications of this principle:

1. Minimize user access rights – Restrict each login to the minimum access required.

2. Individualize logins – Provide separate logins for each user.

3. Review authentication mechanisms – Whether users are using password logins or some other more sophisticated mechanism, the quality of the authentication mechanism directly affects the ease of impersonation.

Restrict User Access Rights

Each user should have no more access rights to database objects and actions than absolutely necessary. In this way, the user cannot accidentally or expressly perform activities to which he is not privileged. Should malicious users successfully impersonate valid users, he will be limited to the range of actions available to a particular login.

In modern databases users are often given administrative access relatively easily. In the case of desktop databases like Microsoft Access, for example, administrative access is provided to all users by default. To secure such databases, security must be explicitly activated.

Individualize Logins

Individual logins, based on both user and role permit the restriction of access privileges at the individual level and contain the exposure of any one login outside the company.

To reap the full benefit of individualized logins, all activities performed by specific users should be performed using their appropriate login. The use of impersonation by users wanting to perform database activities as though they were somebody else should be minimized.

Review Authentication Mechanisms

Authentication sophistication is driven by the security requirements of the system. For most commercial applications, username and password authentication provides adequate security.

Password quality can be improved by choosing passwords that are not found in the dictionary, that are mixed case, that have no intrinsic meaning, and that contain numbers or other special characters.

Password expiration dates and minimum length requirements can further reduce exposure by limiting the duration of stolen logins.

Web-specific Database Security Considerations

In addition to the standard security considerations involved with databases, the Web introduces some domain-specific considerations, largely due to its dynamic and anonymous nature.

The dynamic nature of Web database access introduces opportunities for unintended incarnations of database activities. A database query with dynamic parameters may artificially be fed unexpected or deleterious parameters.

The anonymity of the Web allows users to perform actions without having to identify themselves. Positive authentication serves as a strong deterrent to performing malicious acts. Fewer intrusions would occur if intruders knew for certain that their identity would be found out.

The Web security considerations described in this section apply to many application server vendors. The examples have been provided using ColdFusion syntax in the interest of illustrating the considerations for a primarily ColdFusion audience.

Dynamic SQL statements

Description

Dynamic SQL statements can, under certain conditions, be compromised to insert unintended clauses or additional complete SQL statements. Many SQL servers support command-line shell calls, allowing almost anything to be done to the hard drive or database.

It is not necessary for hackers to have special knowledge of the table structures of the underlying database because they could simply query the database’s system tables to get the names and structures of tables in the database.

Modifying WHERE Clauses

Databases can be compromised by the insertion of unintended content in the place of a dynamic WHERE clause parameter. An example of such a where clause would be:

<CFQUERY ...>

DELETE FROM foo WHERE key = #xxx#
</CFQUERY>

where #xxx# = “17 OR key > 0”

ColdFusion parses the dynamic parameter before sending the SQL code to the database for processing. The SQL statement sent to the database in the above example is:

DELETE FROM foo WHERE key = 17 OR key > 0

The original query is intended to delete a single table row; by adding the unexpected OR clause to the dynamically supplied variable XXX, the query now deletes ALL rows in the specific table.

Adding Additional SQL Statements

Some databases allow for multiple SQL statements within the same database call. This little known feature is inherent to Microsoft SQL Server using ODBC and Sybase database using Native Drivers.

Adding an unexpected additional query statement to the URL variable can transform the following innocent select query into a delete query:

<CFQUERY ...>

SELECT * FROM foo WHERE key = #URL.bar#
</CFQUERY>

This query expects a simple integer passed in the URL:

HTTP://server/query.cfm?bar=2
By carefully finishing the SQL statement and adding an additional query line after the 2, the innocent select statement becomes a delete statement:

HTTP://server/query.cfm?bar=2;DELETE FROM MyTable

ColdFusion will insert the entire value of the bar variable into the query, sending the following combined SQL statement to the database:

SELECT * FROM foo WHERE key = 2;
DELETE FROM MyTable

The select statement will run as expected, returning a result set. After running the select statement, the unexpected delete statement will silently remove all records from the specified table.

Note that a semi-colon or other statement delimiter is not always required between distinct SQL statements. In the case of Microsoft SQL Server, a space is a sufficient statement delimiter. For such a server, the deleterious HTTP request above could be rewritten as follows:

HTTP://server/query.cfm?bar=2 DELETE FROM MyTable

This functionality is intended functionality in Microsoft SQL Server, allowing for multiple query statements to be bundled together in a primitive form of transaction. A Microsoft knowledgebase article explaining the multi-query feature of Microsoft SQL Server in more detail can be found at:

http://support.microsoft.com/support/kb/articles/q140/8/96.asp?FR=0

Stored procedures run using the CFQUERY tag against a Microsoft SQL Server or Sybase data source are also vulnerable to variable manipulation. For example, the following single parameter stored procedure can have its parameter overloaded with a second SQL statement:

<CFQUERY ...>

sp_getcustomer #URL.foo#
</CFQUERY>

where #URL.foo# = “17; DELETE FROM MyTable”

It is not the case that variables must be the last variable in the query statement to be manipulated. Vulnerable variables can be manipulated regardless of where they appear in the CFQUERY statement block.

In the case that the vulnerable variable exists in the middle of the query block, three distinct queries must be generated. The following example calls a stored procedure taking two parameters, where the first variable is dynamic and the second is static:

<CFQUERY ...>

sp_getcustomer #URL.foo#, 4
</CFQUERY>

The URL parameter supplied could then be:

URL.foo = 2, 0;DELETE FROM MyTable; SELECT 3

The resulting SQL query call sent to the database would contain the following three queries:

sp_getcustomer 2,0;
DELETE FROM MyTable;
SELECT 3, 4

The possibility of multiple query statements is a feature supported by Microsoft and Sybase SQL Servers. Only the first SQL statement allows a return value; subsequent statements are executed silently. Some SQL Servers, like that provided by Microsoft, do not require separators between parameters. The above three lines could thus be written with spaces for separators, omitting the semi-colons.

Parameters Affected

Not all parameters are susceptible to these dynamic variable manipulations. Integers are particularly sensitive, with strings also exhibiting sensitivity in the context of the PreserveSingleQuotes() function.

Integers

Dynamic integer variables or their derivatives can generally be manipulated regardless of where they appear in a query statement; they are by far the easiest variables to compromise.

Raw Text variables

Raw text variables (i.e., unprocessed by any function) are automatically resolved to eliminate single quote characters. As such, they must be enclosed in single quotes when used in queries, and cannot be maliciously manipulated.

The following query takes a raw text value dynamically from URL.bar:

<CFQUERY ...>

SELECT * FROM foo WHERE key = ‘#URL.bar#’
</CFQUERY>

When the following mischievous value is entered for the bar variable:

HTTP://server/test.cfm?bar=AB;DELETE FROM MyTable

Results in the following innocent SQL code:

SELECT * FROM foo WHERE key = ‘AB;DELETE FROM MyTable’

Because the entire malicious SQL clause is enclosed within the single quotes, it is not treated as a separate SQL statement, and thus does not execute. Its damage is limited to cluttering the WHERE clause with an unintended string value. In the case of an insert statement, it could potentially write such unintended text to one of the database tables.

Text used in Evaluate() or DE() Functions

The evaluate() and DE() functions are potentially dangerous if portions of their contents are dynamically entered from URL or FORM variables. For example, a never-ending loop can be entered for evaluation and tax the server CPU to capacity. This results in denial of service problems.

The following command:

<CFQUERY ...>

SELECT * FROM foo WHERE key = #Evaluate(URL.bar)#
</CFQUERY>

Results in a denial of service when fed the following URL:

HTTP://server/test.cfm?bar=While(True);

The DE() function has similar repercussions.

Text used in PreserveSingleQuotes() Function

Text URL and FORM parameters which are wrapped inside a PreserveSingleQuotes() function can be compromised because they respect single quotes contained within the dynamic variable. Such variables are as vulnerable as integer variables.

The following query:

<CFQUERY ...>

SELECT *

FROM foo

WHERE key = ‘#PreserveSingleQuotes(URL.bar)#’
</CFQUERY>

When fed the following URL:

HTTP://server/test.cfm?bar=a’;DELETE FROM VeryImportant WHERE ‘a’=’a

Results in the following double query:

SELECT * FROM foo WHERE key = ‘a’;
DELETE FROM VeryImportant WHERE ‘a’=’a’

In some cases the PreserveSingleQuotes() function is necessary to store verbatim text into a database, but use of the function should be judicious and use appropriate validation.

Precautions

There are a number of relatively simple strategies for writing code that does not permit unintended use. Known mechanisms are listed below.

Call stored procedures via CFSTOREDPROC

Stored procedures called via the CFSTOREDPROC tag are not susceptible to parameter manipulation because the parameters are thoroughly type checked. Stored procedures accessed via CFQUERY are still susceptible to manipulation if the database driver in use supports multiple commands in a single SQL database call.

The following vulnerable stored procedure call:

<CFQUERY name=”GetCustomerRecord” datasource=”MSSQLServer”>

sp_getcustomer #URL.foo#
</CFQUERY>

Can be rewritten without vulnerability as:

<CFSTOREDPROC PROCEDURE=”sp_getcustomer”

DATASOURCE=”MSSQLServer”>

<CFPROCPARAM TYPE=”IN”

VALUE=”#URL.foo#”

DBVARNAME=”CustomerID”

CFSQLTYPE=”CF_SQL_INTEGER”>

<CFPROCRESULT NAME=”GetCustomerRecord”>
</CFSTOREDPROC>

Enforce appropriate database security

Enforce a policy such that queries being run on production databases have the minimum database permissions appropriate for the type of access they require. With this policy in place the scope of potentially malicious actions is severely limited.

The dropping of objects, deletion of records, viewing of sensitive data, execution of stored procedures and the execution of shell commands can be easily restricted on a per user basis via SQL security.

In the case where specific columns of tables are sensitive, security can be applied to only allow access to a view or a stored procedure of non-sensitive columns.

Access to the Extended Stored Procedures that allow operating system command line arguments to be executed from Microsoft and Sybase SQL Server should be restricted.

There will still be cases where even maximum setting of database security settings allow more visibility than desired for arbitrary queries. It is the responsibility of the database administrator, along with the web developer to choose which database security policy is appropriate for your particular application and to develop a comprehensive plan to enforce these policies.

Validate parameters used in dynamic SQL code

URL and FORM parameter validation is the simplest protection against malicious variable manipulation. ColdFusion offers a robust programming environment in which virtually any form of parameter validation is possible.

Most parameters have a very limited range of valid values, making validation straightforward. In the case of integer parameters, for example, verifying that they are integers before using them can greatly reduce the risk of manipulation.

In the following example, a non-numeric value of URL.CustID will result in an error, rather than a mischievous multi-statement query.

<CFIF IsDefined("URL.id")>

<CFIF IsNumeric(URL.id)>

<CFQUERY ...>

SELECT * FROM Customers WHERE ID = #URL.CustID#

</CFQUERY>

<CFELSE>

ERROR: Parameter was not numeric.

</CFIF>

</CFIF>

Another form of validation involves wrapping integer variables in the CFML Val() function when used in SQL statements. If the variable starts with an integer, the result of the function is that integer, if the variable does not start with an integer, the result is 0.

<CFQUERY ...>

SELECT * FROM Customers WHERE ID = #Val(URL.CustID)#
</CFQUERY>

Avoid free-form URL and FORM variables

By collecting dynamic parameters using radio buttons, select lists, or other restricted selection mechanisms, the flexibility for ad-hoc parameter manipulation is greatly reduced over using standard text entry input boxes.

Avoid using URLs for the passing of potentially dangerous parameters.

Force form sequences programmatically

FORM variables can be manipulated, in part, by the substitution of user contrived forms in a form entry process. For example, if a Web application has a restrictive parameter selection form that posts to a delete query form, the delete query form should verify that it is being called by the designated calling form, and not from another random form that contains the same form variables.

Restrict query privileges in the ColdFusion administrator

In addition to database level restrictions enforceable at the database level, database activities can be restricted at the data source level from the ColdFusion administrator.

The use of multiple data sources referencing the same physical database can further augment the granularity of restrictions. For example, simple select operations might be performed under a highly restricted data source, while database activities that involve manipulating database contents can be performed using a second data source having the appropriate permissions.

A default login can also be provided for each data source within the administrator. The selection of a non-privileged default login forces an explicit login by ColdFusion query pages accessing the data source. This option is especially recommended on servers hosting multiple applications.

For databases with integrated security such as Microsoft SQL Server, the ColdFusion service should NOT be run as a highly privileged SQL Server user. Although this circumnavigates the need to honestly address security at a more granular level to enable queries, it also compromises runtime security.

Summary

The Web, combined with application server products like ColdFusion, makes databases more accessible than ever before. This heightened accessibility accentuates the need for tight database security, often uncovering security oversights in existing database systems.

Database security doesn’t stop at the database. ColdFusion developers should actively employ sound database security practices in their applications and in the administration of ColdFusion servers. As powerful database features become more accessible, the need for sound security practices in ColdFusion applications will continue to rise.

As part of Allaire’s ongoing commitment to security awareness, we have created the Security Zone as a source of security information for ColdFusion developers. It is accessible from our web site:

http://www.allaire.com/security
And an e-mail address dedicated to security related issues:

secure@allaire.com

�

Technical Brief

Securing Databases for ColdFusion Applications

February 2, 1999

Securing Databases for ColdFusion Applications

14
© Allaire Corporation 1999. All rights reserved.

