VA FILEMAN
PROGRAMMER MANUAL

Version 22.0
March 1999
Revised Sept 2011

Department of Veterans Affairs
Office of Information and Technology
Product Development

Revision History

o NOTE: The following table displays the revision history for this document.

Table i: Documentation revision history

Date Description Authors
09/06/11 | Documentation updates: Oakland, CA Office of
Included notation in the documentation for the three APIs I(rgﬁ:rg?tmn Field Office
listed below, identifying that they perform numeric lookups '
the way ~DIC performs them when the lowercase “n” flag is ¢ Maintenance Project
set. Manager—Jack
« FINDADIC(): Finder Schram
- . e Developer—Gary
e S$$FINDI”DIC(): Finder (Single Record) Beuschel
N i
* LIST"DIC(): Lister e Technical Writer—
Susan Strack
05/18/11 | Documentation updates: Oakland, CA Office of
Enhanced the FileMan APl named: TURNONADIAUTL to '(rgﬁ:rg)"’ft'on Field Office
allow disabling auditing for specified fields in a file. '
¢ Maintenance Project
Manager—Jack
Schram
e Developer—Gary
Beuschel
e Technical Writer—
Susan Strack
06/15/10 | Documentation updates: Oakland, CA Office of
Added the documentation for the LOCK"DILF() API in the I(r(ljflc::rg)a}tmn Field Office
Database Server (DBS) Calls section within this manual. '
e Maintenance Project
Manager—Jack
Schram
e Developer—Gary
Beuschel
e Technical Writer—
Susan Strack
04/21/10 | Documentation updates: Oakland, CA Office of
Corrected descriptive text in the "FIND*DIC(): Finder" I(rgf)':rg)a}tmn Field Office
procedure, in the C flag, last paragraph, added "comma- '
piece", and that it uses only comma for a delimiter. e Maintenance Project
Manager—Jack
Schram
e Developer—Gary
March 1999 VA FileMan iii

Revised Sept 2011

Programmer Manual
Version 22.0

Revision History

Date Description Authors
Beuschel
e Technical Writer—
Susan Strack
02/23/10 | Documentation updates: Oakland, CA Office of
. - _ Inf tion Field Offi
e Updated "File Characteristics Nodes" for "SCR" in . orma.t on e ce
(OIFO):
Chapter 14.
D i ati | ref dated e Maintenance Project
) ocument organizational references updated. Manager—Jack
e Added outline numbering for all heading levels. Schram
e Added table and figure captions in all sections. e Developer—Gary
Beuschel
o Reformatted document to follow current standards
and guidelines. e Technical Writer—
Thom Blom
12/08 Documentation updates for Patch DI*22*152 Oakland, CA OIFO:
¢ New VA FileMan format control parameter. For e Maintenance Project
developers who call the VA FileMan Classic API Manager—Jack
"DIWP, by adding the character X to the input Schram
parameter DIWF, vertical bar (|) character(s) in Devel SKi
word-processing text are displayed exactly as they * Oeve tc))per— P
are stored, (i.e., no window processing will take rmsby
place) e Technical Writer—
e The character "X" has been added to input Susan Strack
parameter DIWF of the VA FileMan Classic API
ADIWP: Formatter.
e The character "x" has been added to the Field
Definition 0-Node, piece 2 in the Attribute
Dictionary.
e Athird example has been added to the VA FileMan
Database Server (DBS) APl UPDATE"DIE():
Updater, illustrating adding a new subentry to a
menu option.
06/07 Documentation updates: Oakland, CA OIFO:
Update documentation to include an example of adding a ¢ Maintenance Project
subentry using the VA FileMan UPDATE”DIE API. Manager—Jack
Schram
e Developers—Skip
Ormsby and Ba Tran
e Technical Writer—
Susan Strack
06/06 Documentation updates: Oakland, CA OIFO:
Updated documentation to make current with online format ¢ Maintenance Project
of the same manual at: Manager—Jack
e . , Schram
http://vista.med.va.gov/fileman/docs/pm/index.shtml
e Technical Writer—
iv VA FileMan March 1999

Programmer Manual
Version 22.0

Revised Sept 2011

http://vista.med.va.gov/fileman/docs/pm/index.shtml

Document Revision History

Date Description Authors
Susan Strack
01/05 Documentation updates: Oakland, CA OIFO:
Updates to Recursive DIE calls description in the ¢ Maintenance Project
Introduction text of the "Classic VA FileMan API" chapter. Manager—Jack
Schram
e Technical Writer—
Susan Strack
12/04 Documentation updates: Oakland, CA OIFO:
e Updated documentation in compliance with new e Maintenance Project
conventions for displaying TEST data. See Manager—Jack
Orientation section for details. Schram
e Also added documentation in support of Patch e Technical Writer—
DI*22*95 -- API to create a new cross-reference. Susan Strack
e /DIKCBLD: Build an M routine that makes a call to
CREIXN~DDMOD.
e CREIXN"DDMOD: New-Style Cross-Reference
Creator.
03/99 VA FileMan 22.0 original software and documentation Oakland, CA Office of
release. Information Field Office
(OIFO):
e Maintenance Project
Manager—Jack
Schram
e Developer— Michael
Ogi and Tami Winn
e Technical Writers—
Thom Blom and
Susan Strack

Patch Revisions

For the current patch history related to this software, please refer to the Patch Module on FORUM.

March 1999

VA FileMan

Revised Sept 2011 Programmer Manual

Version 22.0

Revision History

Vi

VA FileMan
Programmer Manual
Version 22.0

March 1999
Revised Sept 2011

Contents

LAV o] I 1151) Y2 SS iii
FIQUIES BN TADIES ...t XiX
(@110 -1 o] [OOSR XXV
1. INEFOAUCTION ...ttt b b 1-1

1.1 WHhat IS VA FIHEMAN? ...t 11

1.2 FUNCLIONAl DESCIIPLIONevveiiciece ettt 1-1

1.3 Standalone VA FIlEMAaN.........oiiiiee e 1-2

. VIO APS ...t b bbbt h et b b b n e 1
2. ClasSiC VA FIEMAN AP ...ttt sttt see e nne s 2-1

2.1 INEFOAUCTION ... ettt b enes 2-1

2.2 Classic Calls Cross-referenced Dy Categoryccoerirerenieieeiieiinise e 2-2

2.3 Classic Calls Presented in Alphabetical Order............cccoooviiiiiiiiniiiecee 2-6

2.3.1 X ADD("DD"): Internal to External Date............cccoeveveieecieie e, 2-6

2.3.2 ENADDIOL: MesSage LOAUETcocvveieeiiiieiieecic et 2-8

2.3.3 "DIAC: File Access Determination..............cocverereerenenieseseee e 2-13

2.34 ENADIB: User Controlled Editingccccoeevveviieiieve e 2-14

2.35 ADIC: LOOKUP/AU........coeoiieiiecice et 2-15

2.3.6 IXADIC: LOOKUP/AUG ...ttt 2-30

2.3.7 DO/DICL: File INformation SEtUP.......ccovvvrirenieieieisisese e 2-33

2.3.8 MIXADICL: LOOKUP/AUG ..ot 2-34

2.3.9 WAIT/ADICD: WaIt MESSAJESc.vevveviriiriinierienieieieesiesie e 2-37

2.3.10 FILEADICN: Ad......coiiiiceececc ettt 2-38

2.3.11 YNADICN: YES/NO c..cveieiiieieiietesie e 2-41

2.3.12 DQ"DICQ: Entry Display for LOOKUPSccceevvevieiiiieiecieeie et 2-42

2.3.13 DT”DICRW: FM Variable Setup........ccccererieieiniiieneseseeeeseee e 2-43

2.3.14 ENDID: Data Dictionary LiSting.........ccccccvereriiiiieiinieie e seeie e 2-44

2.3.15 ADIE: EQIt DALA....c.ccveieieieieieeiee et 2-45

2.3.16 "DIEZ: INPUT Template Compilation...........ccocovvreneieieiiniieneneceees 2-56

2.3.17 EN"DIEZ: Input Template Compilation............ccccooereieininiiiininciene 2-57

2.3.18 "DIK: Delete ENLIIESccviiriiriiiiiiieieieeseseste et 2-58

March 1999 VA FileMan vii

Revised Sept 2011

Programmer Manual
Version 22.0

Contents

viii

2.3.19
2.3.20
23.21
2.3.22
2.3.23
2.3.24
2.3.25
2.3.26
2.3.27
2.3.28
2.3.29
2.3.30
2.3.31
2.3.32
2.3.33
2.3.34
2.3.35
2.3.36
2.3.37
2.3.38
2.3.39
2.3.40
2.3.41
2.3.42
2.3.43
2.3.44
2.3.45
2.3.46
2.3.47
2.3.48
2.3.49
2.3.50
2.3.51
2.3.52
2.3.53

ENADIK: REINGEX ...ttt 2-60
ENIADIK: REINUEX ...cvvivieeieiieiieiese et 2-61
EN2ADIK: REINUEX ..cvvivieiieiieiieiesie et 2-62
ENALLADIK: REINAEX ...vveveiiiiiiiesierieieeeese e 2-63
ENALL2'DIK: REINAEX ..cvvviiviiiiiieieiees et 2-65
IXADIK: REINAEX ..ttt sttt neens 2-67
IXIADIK: REINAEX ..ttt 2-68
IX2ADIK: REINAEX ..ottt 2-69
IXALLADIK: REINGEX ..vuviviieiieieieieeee et eeneanas 2-70
IXALL2ADIK: REINUEX ...ovveieieieieiieeee st 2-72
ADIKZ: Cross-reference Compilationccccceviiviiiiiiieic s, 2-73
ENADIKZ: COMPIIE ..o 2-74
SSROUSIZENDILF: ROULING SIZE.....vovvevieiiciiiieiiesieieeeeee e 2-75
ADIM: M Code Validationccoeveirininiieneseeescse s 2-76
DTADIO2: Date/Time ULHILYcoeiiiieiiiiec e 2-77
ADIOZ: SOrt/COMPIIE ... 2-78
ENIADIP: Print Data.......ccccviveiieieieieesisesesesiesieee s 2-79
ADIPT: Print Template Display.........cccccevveviiiiieiiiiiecccceee e 2-94
DIBTADIPT: SORT Template Displayccccooerviiiiiniiniiiicicceee 2-95
ADIPZ: PRINT Template Compilationcccceoevininiineneneieeeee 2-96
ENADIPZ: Print Template Compilation............ccccooveveieiieie i, 2-97
DADIQ: DISPIAY ...ocvicveiie it 2-98
DTADIQ: DiISPIAY ...ttt 2-99
ENADIQ: DISPIAYvecveivicieecie sttt st 2-100
Y/ADIQ: DISPIAY ..ottt 2-101
ENADIQL: Data Retrievalc.coooviiiriiiieeceee e 2-102
L | = Vo [OSSPSR 2-106
ENADIS: Search File ENFIES........coocoiiieiiii s 2-121
EN”DIU2: Data Dictionary Deletionccocovvrereieieiiiiiicsceeene 2-123
ENADIWE: TeXt EQItiNgccvcveiieiiieieccieee e 2-125
ADIWF: FOrm DOCUMENE PrINT........ccoiiiiiiiciiese e 2-128
ENIMDIWF: Form Document Print........ccocovviiiieneieisesce e 2-130
EN2'DIWF: Form Document Print..........ccoccovoveienienieeiene e 2-131
ADIWP: FOMMALLEL ...ttt s 2-133
ADIWW: WP PIINT .ot 2-135
VA FileMan March 1999

Programmer Manual Revised Sept 2011

Version 22.0

Contents

2.3.54 %DT: Introduction to Date/Time FOrMAtSccccevverireninienenenenesieens 2-136
2.3.55 "%DT: Internal to External Date...........ccooveieriiieiiiieee e 2-137
2.3.56 DD"%DT: Internal to External Date...........ccooovieeiiienieiiiiee e 2-141
2.3.57 "%DTC: Date/Time Uityccoocveveiiiii e 2-142
2.3.58 CNWDTC: Date/Time ULIItY ...oooveeeiiie e 2-143
2.359 COMMAN%DTC: Date/Time Utility.......ccoovviviieiiieieiecce e 2-144
2.3.60 DW?%DTC: Date/Time ULtyccoooeeeiiiieie e 2-146
2.3.61 H"%DTC: Date/Time ULHLYccooiiiiiiiiece e 2-147
2.3.62 HELP"%DTC: Date/Time ULIlityccoveiviiiiieieieiesee e 2-148
2.3.63 NOW"%DTC: Date/Time ULility......ccooovviiiiiiiiieieicce e 2-149
2.3.64 SMADTC: Date/Time Uityccooveiiiieiiiice e 2-150
2.3.65 YMD"%DTC: Date/Time ULIity.....ccccovvviviiiiiiieieiceee e 2-151
2.3.66 YX"%DTC: Date/Time ULtycccoveveiiiiiieiceeceee e 2-152
2.3.67 Y%XYNHORCR: Array MOVING......cooiiiiiieiecie e 2-153

3. Database SErver (DBS) APl.........o e e 3-1
3.1 100 104 AT] o USSR 3-1
3.2 HOW t0 USE the DBS CallS.......coiiieeiiee et 3-2
321 Format and Conventions of the CallS............ccocoveriiiniiiiiieeeeeias 3-2

3.2.2 IENS: Identify Entries and SUDENTIIESccooeiveiiiiiiinee e 3-3

3.2.3 FDA: Format of Data Passed to and from VA FileMan...........cc.ccecvvvrnenne. 3-4

3.24 Documentation CONVENTIONScvviiiiiiiienie et nnens 3-5

3.3 How the Database Server (DBS) communicates..........cccovevieieiecie i 3-6
331 (@ T 1 SR 3-6

3.3.2 How Information IS REtUINEdcceieieiiiieiese e 3-6

3.3.3 CONENES OF ATTAYS ...veevieiie et ene 3-7

3.34 Obtaining Formatted Text from the Arrays..........ccceeereieieinininenenens 3-10

3.35 Cleaning Up the OULPUL ATTAYS......cc.eiveieieiiisesiesiesresieeees e 3-10

3.3.6 Example of Call to VA FileMan DBS..........c.ccccooeveiiiin e, 3-11

3.4 DataBase Server Calls Cross-referenced by Categorycocevevvevrieiinenesennenns 3-12
3.5 Database Server (DBS) Calls Presented in Alphabetical Order)............ccocovervenne. 3-14
3.5.1 CREIXN~DDMOD: New-Style Cross-Reference Creatorc.ccccveueen 3-15

3.5.2 DELIX"DDMOD: Traditional Cross-reference Deletecc.ccocervnenene. 3-26

353 DELIXN~DDMOD: New-Style Index Deletecccervevvriviivrinerieriennn, 3-29

354 FILESECA"DDMOD: Set File Protection Security Codes...........ccccvevvenene. 3-32
March 1999 VA FileMan iX

Revised Sept 2011

Programmer Manual
Version 22.0

Contents

3.5.5

3.5.6

3.5.7

3.5.8

3.5.9

3.5.10
3.5.11
3.5.12
3.5.13
3.5.14
3.5.15
3.5.16
3.5.17
3.5.18
3.5.19
3.5.20
3.5.21
3.5.22
3.5.23
3.5.24
3.5.25
3.5.26
3.5.27
3.5.28
3.5.29
3.5.30
3.5.31
3.5.32
3.5.33
3.5.34
3.5.35
3.5.36
3.5.37
3.5.38
3.5.39

BLD DIALOG(): DIALOG EXLraCtor..........cccoevvevveieiieriesieeiesieseesieneenns 3-35
$SEZBLD"DIALOG(): DIALOG Extractor (Single Ling)........cc.cccceueeee. 3-42
MSG"DIALOG(): OUtPUL GENEIALONeevivireieeeeeeeie s 3-44
FINDADIC(): FINGEI ..ottt 3-48
$SFINDINDIC(): Finder (Single RECOrd)cccvvevereeririririiiiiiiseeeeeane, 3-70
(I SR I [(R 1 (- USRS 3-83
FIELD”DID(): DD Field RetrieVer........ccccccevveiieieie e 3-103
FIELDLSTADID(): DD Field List Retriever..........ccccevcevvvviveveseeieseenne 3-105
FILEADID(): DD File REFEVET ...cveveierierciesiecie e 3-106
FILELSTADID(): DD File LiSt REtrieVer.......cccccvverieieieeiice e 3-108
$SGETINDID(): Attribute REIHEVETc.cvvivcveiicieeiseiee e 3-109
CHKADIE(): Data CheCKETccveiiiiiiiiirieie e 3-111
FILEADIE(): FIIEI .o 3-113
HELPADIE(): HEIPEI ..ot 3-117
SSKEYVALNDIE(): Key Validatorccccovviiniieiiieisesene e 3-120
UPDATENDIE(): UPAAtEr......ccveieieieieeiieece e 3-122
VALADIE(): Validatorccoeiveieicicese e 3-131
VALS/DIE(): Fields Validatorccccceevveiiiiiiicicce e 3-135
WPADIE(): Word Processing Filer...........ccovieieiiieiiiiineseeneeeins 3-140
CLEAN/DILF: Array and Variable Clean-upccccocvovnininencinnnnn 3-142
$$CREFMDILF(): Root Converter (Open to Closed Format).................. 3-143
DANDILF(): DA() Creatorc.ccveveiiiiecieceece ettt 3-144
DT/ADILF(): Date CONVEITE......c.ociiuiiiiriieieriesieieeeiese e 3-145
FDANDILF(): FDA LOAUE ..ot 3-148
SSHTMLADILF(): HTML Encoder/DeCOdErcccovverveieeneninierienienens 3-150
SEIENSADILF(): IENS Creator......cccoveveieieieiesesesiesieeeese e 3-151
LOCKADILF(): Lock Global Referencecccooevveiveieieiiniiiiccn 3-152
$$OREFMDILF(): Root Converter (Closed to Open Format) 3-153
$SVALUEILINDILF(): FDA Value Retriever (Single)........ccccovvreeninnne 3-154
VALUESADILF(): FDA Values RetrieVer...........ccoeeeveiiiniiiicneens 3-155
SSEXTERNALANDILFD(): Converter to External..........ccccccevevreerinnne 3-157
$SFLDNUMADILFD(): Field Number Retriever...........ccococvveerieerennene 3-162
PRDDILFD(): Package Revision Data Initializercc.ccocoovnennne. 3-163
RECALLMDILFD(): Recall Record NUMDbErccocvveviiieiiieeie e, 3-164
SSROOTADILFD(): File ROOt RESOIVENccoovveiiiiieieieirecie e 3-165
VA FileMan March 1999

Programmer Manual Revised Sept 2011

Version 22.0

I. ScreenMan

4.

March 1999

Revised Sept 2011

Contents

3540 $SVFIELD/DILFD(): Field Verifiercccccovviieiiniieeeeeneeen, 3-167
3.5.41 $SVFILEADILFD(): File Verifier ..o 3-168
3.5.42 $$GETINDIQ(): Single Data RetrieVer..........cocoovievrciineiincineeeen, 3-169
3543 GETS"DIQ(): Data REtrHEVENcc.eiiiieiieciieie e 3-173
... 1
SCPEENIMAN FOIIMS ...ttt ettt e sb e e sttt e s beesbeesbeeseneas 4-1
4.1 INEFOAUCTION ...ttt 4-1
4.2 Form Layout: FOrmMS and PageS.........cccueviiiiiieieiieie et se e e et 4-1
421 FOMM SETUCTUIE. ... 4-1

422 Linking Pages Of & FOIMooviiiiiiiieeee e 4-2

4.3 FRATUIES ...t bbbt b et bbb n e 4-4
431 Displaying Multiples in Repeating BIOCKS...........c.cccoeiiiiiiiiiiiniiciccens 4-4

4.3.2 FOrmM-Only FIeldsooiiiiiieee e 4-6

4.3.3 Relational Navigation: Forward POINEErS.........c.ccevvvieveiecc e 4-7

4.3.4 Relational Navigation: Backward POINErScccccovevveieie i, 4-10

435 ComMPULE FIEIAS ... 4-10

4.3.6 The DDSBR Variable........ccccoviiiiieieicisece e 4-13

4.3.7 The DDSSTACK Variable...........ccovveiiiiiiiicesesiseeese e 4-14

4.3.8 Data Filing (When Is It Performed?)..........ccocooiiiiiiiinininceeeeee 4-15

4.4 Form Property REFEIENCEc.cvviiiieeece e 4-16
44.1 FOIM PrOPEITIES ...ttt st s ra e b e 4-16

4.4.2 PaQE PrOPEITIESviciicie ettt sttt re et 4-17

443 BIOCK PrOPEITIES ...ttt 4-19

4.4.4 FIEld PrOPEItIESeoveciecie ettt st st s 4-21

45 ScreenMan MenU OPLIONS........ccuviveieieieee e sre e 4-26
451 Edit/Create @ FOMM ..o 4-26

45.2 RUN @ FOMNLc bbbt 4-26

453 Delete @ FOMM ... 4-27

45.4 Purge UnuSed BIOCKSccoiiiiiiiieicicieie e 4-29

4.6 Callable ROULINES ..ottt e ees 4-31
4.7 Programmer Mode ULHHTIES..........cccveiiiiic s 4-32
4.7.1 ADDGF .ottt 4-32

4.7.2 CLONENDDS ...ttt sttt eenen 4-32

473 PRINTADDS ...ttt 4-35

VA FileMan Xi

Programmer Manual
Version 22.0

Contents

Xii

4.7.4 RESETADDS.....coe ettt 4-36
ScreenMan FOrmM EdITOrooiiiiiiii ettt 5-1
51 INEFOTUCTION ...ttt st esteereeneenne s 5-1
5.2 INVOKiNg the FOrmM EditOr.........c.coviiiiieci e 5-1
5.3 COMMANG SUMIMAIYveiviiieiieiee ettt et e e st e ste e besbeereenbesreeneenre e 5-2

53.1 Navigating on the Main Screen and Block Viewer Screenc.ccccoeee.... 5-2

5.3.2 Quick Page Navigation..........c.cccviiveiiiiiie e 5-3

5.3.3 MoVing SCreen EIBMENLSccviiviiiee e 5-3

5.34 Adding, Selecting, and Eiting...........cccoovvriiiniieneeesese e 5-4
5.4 THE MAIN SCIEEIM ...ttt sttt ettt e et neeseesreeneenee s 5-5

54.1 Exiting, Quitting, Saving, and Obtaining Helpcccoco oo, 5-5
5.5 The BIOCK VIBWET SCIEEN......c..iiuieiieieeieee sttt see e enee e 5-6
5.6 Navigating on the FOrm Editor SCreensccocvvviiiineniieeisse e 5-7
5.7 GOING 10 ANOLNEE PAQEviivici e e 5-7
5.8 Adding Pages, BIocks, and Fields.........cccccooviiiiiiicicccc e 5-8

581 AGAING PAGES. ...ttt 5-8

5.8.2 AAAING BIOCKS ... 5-8

5.8.3 W o [0 T aTo =] o RSSO 5-9
5.9 Selecting and Moving Screen EIements..........ccoeoeieiniininenesenceee e 5-10

591 Selecting Screen EIBMENtS ... 5-10

5.9.2 Moving Screen EIBMENESooviveiiiicie e 5-10
5.10 Editing PrOPErtiBS......ccvciiiieeice sttt sttt ettt be s sreane s 5-12

5.10.1 Editing Field PrOPerties.coooiiiiiiiiiieieieese e 5-12

5.10.2 Editing BIOCK Propertiesccccvevueiiiiiciiii et 5-14

5.10.3 Editing Page Propertiescccccviiveieiiiieeie et 5-15

5.10.4 Editing FOrm Propertiescooeiereieiieisisesesie s 5-17
5.11 Choosing an0tNer FOIMcoiiiiiiiiiiiese e 5-18
5.12 Deleting Screen Elements (Fields, Blocks, Pages, and FOrms)..........ccccccvvveveriennnne 5-19
SCPEENIMAN AP ...ttt ettt sbe e she e sae et e beebeesbeesteeas 6-1
6.1 INEFOTUCTION ...ttt seeereeee e 6-1
6.2 INVOKE SCIEENIMIAN.......iviiiiiiieiieitsit ettt et 6-1

6.2.1 ADIDS ..ttt bbb 6-1
6.3 RetrieVe/STUTT FIElUS......cveieee e 6-4

6.3.1 SECETADDSVAL() vttt 6-4

VA FileMan March 1999
Programmer Manual Revised Sept 2011

Version 22.0

Contents

6.3.2 PUTADDSVAL() vttt et 6-6

6.3.3 BECETADDSVALF() vttt 6-8

6.3.4 PUTADDSVALF() cveeeieeeeee ettt 6-9

6.4 HEIP IMIESSAGES. ...ttt ettt sttt sttt et e e be e be s e e aeste e e e sreeraesaenne s 6-11

6.4.1 HLPADDSUTL() coveteiiiitisieste ettt 6-11

6.4.2 MSGADDSUTL() eeveeveeiesiesiesiesiesie et sie st ssesresre e seeneens 6-11

6.5 RETTESN SCIEEN.....eiictiee bbb 6-13

6.5.1 REFRESH/DDSUTL() veveetertiriirieniesierieesese st 6-13

6.6 RUN-TIME FIelt STALUS......ccviiieiiciiie e 6-14

6.6.1 REQ/ADDSUTL()euveveieierieesiesesiesiesieieaesa e sse st see e saesaesassssressesseseessenens 6-14

6.6.2 UNED/DDSUTL() voveereerinterieniesiesie et 6-15

L @ 1 1= gl AN SRS 1

A X To L 1 T 1N = SRS SSSRSSS 7-1

7.1 INEFOAUCTION ... ettt et ens 7-1

7.1.1 TURNONADIAUTL(): Utility to Enable/Disable Auditing............c..c........ 7-1

7.1.2 LASTADIAUTL(): Who Last Changed Data.............ccocvverereneneneieinnns 7-3

7.1.3 CHANGED"DIAUTL(): Historical Data Retriever...........c.ccoccovrereiiennnn. 7-4

8. BIOWSEE AP bbbt b e b e sre e e e 8-1

8.1 BrOWSEN (DDBR)......cotiiiieiieiieiesie sttt 8-1

8.1.1 ENADDBR. ...ttt 8-1

8.1.2 BROWSEDDBRoootiiiiiiieieieee sttt nne 8-3

8.1.3 WPADDBRottt et 8-6

8.1.4 DOCLISTADDBR ...ttt sttt e e snre e 8-9

8.1.5 BETESTADDBRT ..ottt 8-12

8.1.6 CLOSENDDBRZIS ...ttt 8-13

8.1.7 OPENNDDBRZIS ...ttt 8-14

8.1.8 POSTADDBRZIS ...ttt e 8-15

9. IMPOort and EXPOIrt TOOIS.......coi ittt st e nrenae s 9-1

9.1 INEFOTUCTION ...ttt sreereeneenne s 9-1

9.1.1 FILEADDMP: Data IMPOIt.......cccooviirieieieieeee e 9-1

9.1.2 EXPORT/ADDXP: Data EXPOIt......ccceiiveiieeiieiieiie sttt 9-7

10, EXEFACT TOO ..ottt bbbttt 10-1

101 INEFOTUCTION ...t 10-1

March 1999 VA FileMan xiii
Revised Sept 2011 Programmer Manual

Version 22.0

Contents

Xiv

10.1.1 ENADIAXU: EXIraCt Data........cccoeiviiieiiiiiieniesiieie e 10-1

10.1.2 EXTRACTADIAXU: EXIract Data........c.ccevvrerererenieieieieiesese e seeneeens 10-4

I T T =T =T g Loy AN SR 11-1
111 INEPOTUCTION ottt 11-1
1111 ADIFG: INSTAIIET .o 11-1

11.1.2 EN"DIFGG: GENEIALONcccuieitieiiieiiie ittt 11-3

oY1 [o] o 1= oo] SR 1
12, DI ProgramMEr ACCESSeiiuiiiieeiieesieeieeieesstesstessteesseessessseessesssssasssasseessesssesssessessssesnnes 12-1
13. ~DIKCBLD: Build an M Routine that Makes a Call to CREIXN*"DDMOD............... 13-1
I TR0 - 1 OSSR 13-1

14, GloDal File STFUCTUIE......cc.iiiiiicec bbb 14-1
It 1011 oo 104 A T o OSSPSR 14-1

14.2 Data Storage CONVENTIONSccuiiiiriirieieieiee sttt 14-1

14.3 File's Entry in the Dictionary of FileS ..o 14-1

144 File HEAUEKccveeicee et 14-2

14.5 File ENtries (Data STOrAQgE)coururerrirrerrerieeeisesieste st 14-3

I O (0TS (] {=] £ o0 USRS 14-4

AT INDEX FIB oottt sttt 14-5

148 KEY FIlE oottt sttt ne e ens 14-5

14.9 ATDULE DICHIONAIY ..ovoiviiiiieeiee e 14-6
14.9.1 File CharaCteriStiCs NOUES.........cerirverieieieisese e 14-6

14.9.2 Field Definition 0-NOEcocvriiiriiiiee e 14-10

14.9.3 Other Field Definition NOGES.........cccevviviieiiieee e 14-12

14.9.4 How to Read the Attribute Dictionary: An Examplec.cccoovvvevennnnne. 14-15

15. Advanced File DefiNitiON ..ot s 15-1
I 700 A 11 (o (11 T] o PR 15-1

15.2 File GIoDal StOrage.......ccccoviiiiiieiesesere s 15-1
15.2.1 Storing Data in a Global other than "DIZccccovvvivieviviiiie e 15-1

15.3 Field Global STOrage........cccooviiviieiiieiiiisie s 15-3
15.3.1 Assigning a Location for Fields Stored within a Globalc....... 15-3

15.3.2 Storing Data by Position within a Node............cccccevviiiiiiiiii e 15-4

15.4 Assigning Sub-Dictionary NUMDEIScccoiiiiiiieiiiiee s 15-5

VA FileMan March 1999

Programmer Manual Revised Sept 2011

Version 22.0

Contents

155 COMPULEA EXPIrESSIONS......viitiieeriiiiiiesteetee e te e e e steete st e ste st esresreensesresneeeesre e 15-6

1551 COMPULEH DALESceeiiiieiiriiiieieeiee e 15-6

1552 COMPULE POINTEISoeiiiiiiiisieieie e 15-6

15.5.3 Computed MUILIPIESccoii e 15-6

156 MUMPS Dala TYPE....eiiieiiiiiieitee ittt sttt sra e s e ettt esraeenaeanaeenee e e 15-8

15.7 Screened Pointers and Set 0f COAESooveiiiiiie i 15-8

15.8 INPUT TranSfOrmMocoiiiiiiicieiccsee s 15-9

15.8.1 INPUT Transforms and the Verify Fields Option..........c.ccccccveveivenennnn, 15-10

15.9 OUTPUT TranSTOrM ...ccee ittt s e 15-10

15.10 Special LOOKUP PrOgramsccocuiiiiriiieiieieisisesiesie e 15-11

15.11 POSt-SEIECtION ACTIONiiiieieiieiisie e 15-11

T80 AU (o [A O] 1o 11 T o SRR 15-11

15.13 Editing @ CroSS-refereNnCecouiiiiiirieieieieie et 15-12

15.14 EXeCUtable HEIP c..ocveiiiee e s 15-12

16, Trigger CrosS-refErENCEScoviiiie ettt e sb et e anas 16-1

G TS0 A 1011 €00 14 AT o USSR 16-1

16.2 ATrigger on the SAME FIlE ... 16-2

16.3 Triggers for DIfferent FileScccoviiiiieie e e 16-5

A B AN @ 1 | - SRR 17-1

17.1 DIALOG File: USEr MESSAQESccuvivireriiieieieieisiesie st st 17-1

17.0.1 INEFOTUCTION ...vivtiiiieeee s 17-1

17.1.2 Use 0f the DIALOG File......cccoiiiiiiiiiieisesese e 17-2

17.1.3 Creating DIALOG File ENIIESccveiiiieiiiiinise e 17-2

17.2 Internationalization and the DIALOG File.......c.cccooviiiiiiiniiieeec 17-5

17.2.1 Role of the VA FileMan DIALOG File in Internationalization................. 17-5

17.2.2 Use of the DIALOG File in Internationalization...............cccccoocvniiviiennnnnn. 17-5

17.2.3 Creating Non-English Text in the DIALOG File........ccccccooiiviiiiiiiicnens 17-6

17.3 VAFileMan LANGUAGE Fil€ ..ottt s 17-7

I 0 R 1911 oo [FTox 1 (o] o SRRSO 17-7

17.3.2 Use 0of the LANGUAGE Fil€......cccooeiieieieiiice e 17-7

17.3.3 Creating LANGUAGE File ENtri€sccccooviieiiii e 17-8

18. VAFileMan Functions (Creating)cccovviieieieeiie it 18-1

S 00 R 1011 0o 1041 o] o OSSR 18-1

18.2 FUNCLION FIle ENIIES ...viviiieieieiieiieie et 18-1

March 1999 VA FileMan XV
Revised Sept 2011 Programmer Manual

Version 22.0

Contents

XVi

19.

DIFROM ...t bbb bbbttt bbb e 19-1
S TSR 11 (o [1 11T] o SR 19-1
19.2 EXPOItING DALAc.coviiviiiriieeieie e 19-2
19.2.1 Preparing To RUN DIFROM........ccccoi it 19-2
19.2.2 PACKAGE File and DIFROMccccooiiimiininineneneees s 19-2

19.3 Order Entry and DIFROM ..ot 19-8
19.4 RUunning DIFROM (SRS 1-17) c.viiuiiieieciieiie sttt s 19-9
19.4.1 Starting DIFROM.......cooiiiiic ettt 19-9
19.4.2 Preliminary Validations............ccoeiiiiiiiiniiineieeeieese e 19-10
19.4.3 Package 1dentifiCationcooerieiiiniiiseneeee e 19-10
19.4.4 Identifying the INit ROULINEScccooviiiiiiicece e 19-10
19.4.5 Specifications for EXported FIleScoviiiiiiiiiiiiiri e 19-10
19.4.6 Entering Current VVersion INformationccocooeviiiniininienencieneens 19-11
19.4.7 Including Templates (No Package File ENtry)ccccoevveviiicvcie e, 19-11
19.4.8 Including Other Package COMPONENtS.........ccccevverierieeee s sre e 19-11
19.4.9 EXPOrting File SECUNLYcoeieiiiiiiisese e 19-12
19.4.10 Specifying ROULINE SIZE.........coeiiiiiiiesiereeee e 19-12
19.4.11 DIFROM Gathers Miscellaneous Package Componentsccccecu..... 19-12
19.4.12 DIFROM Builds Routines Containing Data Dictionaries...............c........ 19-13
19.4.13 DIFROM Builds Routines Containing Data Valuesc.cccccoveiinnne 19-14
19.4.14 DIFROM Builds Routines Containing Security Access Codes 19-14
19.4.15 DIFROM Gathers Templates and FOrmSsccccoeeeveieevevecviene e, 19-15
19.4.16 DIFROM Completes Building Routines of Package Components........... 19-15
19.4.17 DIFROM Completes the Code that Runs the Init..........c.ccccoceevieiiinennnnn 19-15

195 IMPOItING DALAvccvveiiiiecic et sttt pe e 19-16
19.6 DIFROM: Running an INIT (Steps 1-16)cccovvvririririenieieieieeeesese e 19-16
19.6.1 Preliminary STEPScocoviiiiriiirerieeee e 19-16
19.6.2 Check of Version NUMDET..........ccceriiiiiiiinenese e 19-17
19.6.3 Running Environment Check Routine (DIFROM and DIFQ Variables).19-17
19.6.4 Determining Install Status of DDs and Data............cccccevvivninincneniennen. 19-17
19.6.5 Determining Install Status of Security COdESccccvveveviveiiereieeriennan, 19-19
19.6.6 Determining Install Status of other Package Components...........c..c........ 19-19
19.6.7 Starting the UPALe..........ooeiieieiiiiiiinese e 19-19
19.6.8 Running the Pre-init after User Commit Routine...........c.cccccoveveivenennnn, 19-19

VA FileMan March 1999

Programmer Manual Revised Sept 2011

Version 22.0

Contents

19.6.9 Installing Data DiCtiONAri€s.........cccovevveiiiieie e 19-20

19.6.10 INStAlliNG DALAcveiiiiieiciiiiiee e 19-21

19.6.11 ReindexXing the Files..........coiiiiiiiie e 19-22

19.6.12 Installing Other Package COMPONENESccevvieerieiieie s 19-23

19.6.13 General PrOCESSINGccveiiiierieiteeiesiecteeste ettt s 19-23

19.6.14 SpeCial PrOCESSING......ccuiiviriiieieieieisese e 19-24

19.6.15 Running the Post-Initialization ROULINEcccccveveiiice i, 19-26

19.6.16 Recording the Install on the Target SYstemcccccvvveieieiiecve e 19-26

20. Appendix A—VA FileMan Error COOES..........coviiiiiiiiincieieeeee e 20-1

20.1 INEFOTUCTION ..ottt 20-1

20.2 EITON COUBS ...vviiiiie ettt sttt ettt st e st e e e st e e ae et e ste e e e s bestaesbesteenaenrens 20-2

GHOSSANY ...ttt bbb b et R bbbt e e Glossary-1
10T 1= PR Index-1
March 1999 VA FileMan Xvii

Revised Sept 2011

Programmer Manual
Version 22.0

Contents

XViii VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Figures and Tables

Figures
Figure 1-1. Type of M SYStEM PrOMPL......c.oiiiieiiciece sttt sreenaesreare s XXviii
Figure 2-1. X *"DD("DD"): Internal to External Date eXamplecccooiiiiienineneceeses s 2-6
Figure 2-2. EN*"DDIOL—Sample .ARRAY input parameter array Nameccceeervereeienenenenesneneens 2-9
Figure 2-3. EN*"DDIOL—Sample GLOBAL_ROOOT input parameter (1 0f 2)cccceevvveviiieiicennn, 2-9
Figure 2-4. EN"DDIOL—Sample GLOBAL_ROOOT input parameter (2 0f 2)cccceevvveieieincennn, 2-9
Figure 2-5. Write Identifier node—Sample WRITE Statementccooviiiiiiieieisise e 2-10
Figure 2-6. Write Identifier node—USIiNg ENADDIOLccceiiiiiiiiiieiecee e 2-10
Figure 2-7. Loader—Passing 0ne liNe OF tEXEccvcviiiiiieic e e 2-10
Figure 2-8. Loader—Sample output in SCroll MOGE............cciiiiiiiiiieii e 2-10
Figure 2-9. Loader—Sample output in DBS MOGE..........cccoiiiiiiiieiiiriee e 2-11
Figure 2-10. Loader—Sample of passing @ teXt arraycccccvevieiiiieeriie e se et 2-11
Figure 2-11. Loader—Sample of passing a global containing teXt...........cccccevviiiieieccce e 2-11
Figure 2-12. EN*DDIOL—Sample formatting fOr @rrayscccoouviriierineneneieisese e 2-12
Figure 2-13. "DIC & "DIE—Sample code to use *DIC to interactively select a top-level record and create
a subentry; and use ~DIE to edit fields in the SUDENLIYccooveiii i 2-27
Figure 2-14. "DIC—Sample code to display a list of entries from two different files starting with different
TEEEETS (1 OF 2) 1.ttt bbb ettt b 2-28
Figure 2-15. "DIC— Sample code to display a list of entries from two different files startingwith different
TEEEETS (2 OF 2) 1.ttt 2-28
Figure 2-16. “"DIC—Displaying entries from the pointing file using the "AC" index (1 of 2)................ 2-29
Figure 2-17. "DIC—Displaying entries from the pointing file using the "AC" index (2 of 2)................ 2-29
Figure 2-18. Sample VA FileMan informational messages: "Wait" type messages.........cccoeevverververnenne. 2-37
Figure 2-19. Sample code using incremental 10CKSccoooieiiiiiiiie e 2-50
Figure 2-20. Sample code to calculate Y based 0N X ... 2-51
Figure 2-21. Specific fields in MUKIPIEScvooviieee e 2-51
Figure 2-22. Editing a SUDIle dIreCHIYooviiiie e 2-52
Figure 2-23. "DIC—Sample INPUT temMPIate..........cocoiiiiiiiiiiicceeees e 2-53
Figure 2-24. Sample array when DIEFIRE contains an L and a key is invalidc.ccccoovevviviiecnnnne. 2-54
Figure 2-25. "DIE—Sample code setting the variable X to the string "BADKEY", if any of the Keys is
10177 11T PSR 2-55
Figure 2-26. "DIK—Sample code looping to delete several entries.........ccccevveieieieeiiiie i 2-59
March 1999 VA FileMan Xix
Revised Sept 2011 Programmer Manual

Version 22.0

Figures and Tables

Figure 2-27. "DIK—Sample code deleting fields from a file.........c..ccoovviieiiiriiciiec 2-59
Figure 4-1. DDSSTACK variable—Sample page liNkS...........ccooooiiiiiieee s 4-3
Figure 4-2. Sample of two subfields of a multiple displayed in a repeating blocK.............cccoovvriniiennne. 4-4
Figure 4-3. Relational navigation: fOrward POINTEIS...........ccviieieiiiiec e 4-7
Figure 4-4. ScreenMan MENU OPLIONScviiiiieitiiieie sttt ae e te e e saeste e e e sreanes 4-26
Figure 4-5. ScreenMan—Run & FOIrmM OPLIONcoooiiiiiiiiiie s 4-26
Figure 4-6. Delete a FOrm OPLION ..o st a et sreeres 4-27
Figure 4-7. Delete a Form option—Report of all blocks used on the formcccoceveiiiiiiincicie, 4-27
Figure 4-8. Delete a Form option—Delete DIOCKS ..o 4-28
Figure 4-9. Delete a Form option—Delete blocks with or without confirmation..............c..cccoeiine. 4-28
Figure 4-10. Delete a Form option—Deleting blocks without confirmation..............c.cccccoevevviiiciene. 4-28
Figure 4-11. Purge Unused BIOCKS OPTIONc.viuiiiiiiiiiiieiieeeeee e 4-29
Figure 4-12. Purge Unused Blocks option—Report of unused blocks on any forms............cc.ccocevenns 4-29
Figure 4-13. Purge Unused Blocks option—Delete blocks with or without confirmation...................... 4-29
Figure 4-14. Purge Unused Blocks option—Delete blocks without confirmationccccceevivennee. 4-30
Figure 4-15. CLONE"DD—Sample dialogue t0 COPY @ FOrMcoooiiiiiiiieiceceesee e 4-32
Figure 4-16. CLONE"DD—Report showing blocks used on a formcccccevviiiniinineneninees 4-33
Figure 4-17. CLONE"DD—Assigning new form and block names............ccocvveiiiiie i, 4-33
Figure 4-18. CLONE"DD—CIONING 8 TOIMNoouiiiiiiiiiiieieeees s 4-34
Figure 4-19. PRINTADDS—Printing @ fOIMccooiiiiiiiieci e 4-35
Figure 5-1. EDIT/CREATE A FORM option—Invoking the Form Editor...........ccccccovvivievieieciicie i, 5-1
Figure 5-2. EDIT/CREATE A FORM option—Selecting a file.......cccccovvviiiiiiieii e 5-1
Figure 5-3. EDIT/CREATE A FORM option—Selecting & formc.coeveieniiiinineneneeeeeees 5-2
Figure 5-4. FOrm EditOr—IMain SCIEEN.........cccveiii ettt sttt sre e be e aesne e 5-5
Figure 5-5. BIOCK VIBWET SCIEENcviiiieeie ettt sttt e be st e steste e e s beeneetenneens 5-6
Figure 5-6. Form Editor—G0ing t0 anOtNer PAJE..........ccuviiiiiiierieieee e 5-7
Figure 5-7. FOrm Editor—AddiNg 8 PAGEeovereeeeiieiisiisie sttt 5-8
Figure 5-8. Form Editor—Adding a page confirmationcccoovvviiiiiiicie e 5-8
Figure 5-9. Form Editor—Adding @ DIOCK..........c.coviiiiiiiie s 5-8
Figure 5-10. Form Editor—Adding a block confirmationcccceoeiiiiiiineceese e 5-9
Figure 5-11. Form Editor—Adding a blIoCK 10 @ PAgEeovveiicieie e 5-9
Figure 5-12. Form Editor—Adding fIeldsccooiiiiiiiiccc e 5-9
Figure 5-13. Form Editor—Editing field Properties ... 5-12
Figure 5-14. Form Editor—Other Parameters.........c.coeieeieie ittt st ens 5-13
Figure 5-15. Editing bIOCK PrOPEItIEScviiiiiicie ettt st sreens 5-14
XX VA FileMan March 1999

Programmer Manual Revised Sept 2011

Version 22.0

Figures and Tables

Figure 5-16. Editing Page PrOPEITIES.ucuiii ittt re e be e e sbesteeeesreenes 5-15
Figure 5-17. Editing "Pop-Up" page COOMTINGLEScoieririeriiieieieisie et 5-16
Figure 5-18. Editing fOrm PrOPertiesccoieiiiiieiiiiisese s 5-17
Figure 5-19. Form Editor—Choosing another TOrm ..o 5-18
Figure 5-20. FOrm Editor—=Select fOrM..........covoiiiiie et 5-18
Figure 5-21. FOrm EditOr—=Save CRANQES.cviiiiiiiiriiieieeeee st 5-18
Figure 5-22. Form Editor—Choosing another fOrmcccocoiiiiicic e 5-19
Figure 13-1. "DIKCBLD—Sample User dialogUe............ceieiieiiiiiiiee et 13-2
Figure 14-1. *DIC global—Sample file entry in the dictionary of filescccoeviiiiiiniiiice 14-1
Figure 14-2. *DIC global—Sample file security protection COUES...........c.curererereiiniiniiserese e 14-2
Figure 14-3. "DIC global—Sample file deSCrPLOrScciiiiieiiiiir e 14-2
Figure 14-4. File CharacteristicsS NOJeS—POSt-ACLION.cceireiiiiiiiie e 14-6
Figure 14-5. File Characteristics Nodes—Data Dictionary Audit............ccoceveriieieiiniiniinenese e 14-6
Figure 14-6. File Characteristics Nodes—Special LOOKUP.........cccccevviriiiiiiie et 14-7
Figure 14-7. File Characteristics Nodes—Field 1dentifiers ..o 14-7
Figure 14-8. File Characteristics Nodes—WTrite 1dentifiersccooiiiiiiieiiec s 14-8
Figure 14-9. File Characteristics NOJeS—CroSS-TeferenCeS.........ccouririrerierieieieieese e 14-8
Figure 14-10. File Characteristics NOUES—SCIEENScecviiiiieesie et e ettt eas 14-9
Figure 14-11. File Characteristics NOdes—Version NUMDETcociiieiinenieieisinese e 14-9
Figure 14-12. File Characteristics Nodes—Distribution Packagecccceeereiiiiiininineneseeens 14-9
Figure 14-13. File Characteristics Nodes—Package Revision Data............c.cccceeeevvevieiiieiiiesie e 14-10
Figure 14-14. SAMPIE DD NOUES......c.ciieiiiieie sttt e et e e be e e e sbesteesaesteesaesreares 14-15
Figure 15-1. Assigning a location for fields stored within a global..............c.ccoooeiiiiiiiis 15-3
Figure 15-2. Storing data by position Within @ NOGe...........cccccveviiiiiiccc e 15-4
Figure 15-3. Sample dialogue assigning sub-dictionary NUMDEIScccoveveiievi i 15-5
Figure 15-4. Computed Multiples—Sample dialogue to create a Computed Pointer from the PATIENT

file (#2) to the NEW PERSON file (#200) that points to the last user who edited the patient 15-7
Figure 15-5. Computed Multiples—Sample dialogue to create a Computed Date that gives the patient's

NEXE DIFENTAY ...ttt 15-7
Figure 15-6. Sample INPUT transform COUEoouiiiiiiieieieice s 15-9
Figure 15-7. Sample INPUT transforms and the Verify Fields option............cccccovvvvieeviiiiiie v 15-10
Figure 15-8. Sample OUTPUT transform COUEcoviiiiiiiiiiieic st se et st sre e 15-10
Figure 15-9. Sample OUTPUT transform code with computed eXpressionccocvvrerenencneennnn 15-11
Figure 16-1. Trigger cross-references—Creating trigger........cccvveiiiieveieiiee et 16-2
Figure 16-2. Trigger cross-referenCes—SET 10gIC.......cciiviiiiiiiiiiii i 16-2
March 1999 VA FileMan XXi
Revised Sept 2011 Programmer Manual

Version 22.0

Figures and Tables

Figure 16-3. Trigger cross-references—HKILL 10QIC......ccooiiiiiiiiiiiiiiccecece e 16-3
Figure 16-4. Trigger cross-references—COoNAItIONScccoieiiiiieiiisese e 16-3
Figure 16-5. Trigger cross-references—Deletion reStriCtions...........ccovvierinereneneieeesesese e 16-3
Figure 16-6. Trigger cross-references—DEeSCHPLIONc.ccvvieiiiiiie e 16-4
Figure 16-7. Trigger cross-references—Confirmationcccccoviiiieii i 16-4
Figure 16-8. Trigger cross-references—Sample dialogue to create a Trigger cross-reference on a field16-5
Figure 17-1. Sample dialogue creating a new entry in the DIALOG file (#.84)cccccevvvvevvivinennene, 17-4
Figure 17-2. Sample dialogue to create non-English text in the DIALOG file (#.84)........cccccevvvenenen. 17-6
Figure 18-1. Sample code that takes an internally stored format in a variable and transforms it............ 18-1
Figure 18-2. Sample function to display date-valued fields and expressions in the DAY-MONTH-YEAR
FOIMIAL ... b bbb b bbbt b b bbbt ne e 18-1
Figure 18-3. Sample function WithOUt @rgUMENTS............coeiiiiiiieiiiee e 18-2
Tables
Table 1-1. VA FileMan routine variables and default Values.............ccccovviiiiiininiicc s XXIX
Table 1-2. VA FileMan routine global referenCes.........coviviieii i XXX
Table 2-1. Classic Calls—LooKUP/AUING ENLFIES.covoiiiiiiiiieicieeees e 2-2
Table 2-2. Classic Calls—ENtry EitiNg.........ccccoiiiiieiieiisee e 2-2
Table 2-3. Classic Calls—Prompting/MESSA0ESecvveiuiiierieieeie sttt e e seeee e e e sre e sre e e sresreeseesreanes 2-2
Table 2-4. ClassiC Calls—PrINTING........ccoiiiiiiii e 2-3
Table 2-5. ClassiC Calls—TeMPIALES...........coiiieie e 2-3
Table 2-6. ClassiC Calls—CroSS-TEfEIENCES.civiiiiiiiirire e 2-4
Table 2-7. Classic Calls—Date/Time ULHITIES..........cooiiiiiriiiieseeiese e 2-4
Table 2-8. ClassiC CallS—ULHTIES..........ceeiiieiiee et st e e enes 2-5
Table 2-9. Loader—Processing text based 0N MOE...........coooviiiiiiiiiic 2-8
Table 2-10. Y(0) in the code set into the DIC("V") variablec.cccoviveiiiiece e 2-53
Table 2-11. DIEFIRE variable SEttiNgS........ooiiiiiiiiiiieee e 2-54
Table 2-12. "DIK—Reindexing qUICK FEfEreNCEccooiiiiiieieeee s 2-58
Table 2-13. EN"DIK—Reindexing qUiCK referenCe..........ccovveviiiiiciice e 2-60
Table 2-14. EN1"DIK—Reindexing qUICK FeferenCe..........cccveiviieiiciiie e 2-61
Table 2-15. EN2"DIK—Reindexing qUICK refErenCe...........ccooerierieiiiiisieeses s 2-62
Table 2-16. ENALL"DIK—Reindexing quick referencCe........ccovvieiiiiiiiecieie e 2-63
Table 2-17. ENALL2"DIK—Reindexing qUIiCK referenCe.........ccoveviiiieeiice e 2-65
Table 2-18. IX*DIK—Reindexing qUICK refereNCe..........cccoiiivirieieiiise s 2-67
xxii VA FileMan March 1999
Programmer Manual Revised Sept 2011

Version 22.0

Figures and Tables

Table 2-19. IX1"DIK—Reindexing qUICK FefEreNCEe........ccceiveieieiece e 2-68
Table 2-20. IX2"DIK—Reindexing qUICK refErenCe...........ocooiiiiiieiciiseeseeeee e 2-69
Table 2-21, IXALL"DIK—Reindexing qUICK referenCecceveiieieiiiiiiseseneeeeee e 2-70
Table 2-22. IXALL2"DIK Reindexing qUICK referenCeccoviiieiiii i 2-72
Table 3-1. IENS—PIaCENOIUET COURScuviuiriiiiiieieieec bbb 3-3
Table 3-2. DataBase Server (DNS) calls cross-referenced by Categoryccoovvvvviiieiiiininencnn 3-12
Table 3-3. BLD"DIALOG—Output variables returNedcccoevveiiiiiiiieiccece e 3-37
Table 4-1. Variables Available in Repeating BIOCKS..........cccce i 4-5
Table 4-2. Block properties that apply only to repeating BIOCKSccooviiiiiiiiicic 4-5
Table 4-3. Properties of FOrm-Only FIeladS.........ccooviiiiiiiiiiieee e 4-6
Table 4-4. Valid formats for DD FIelUS........ooiiiiiiecec e 4-8
Table 4-5. Valid formats for FOrm Only fIeldsS..........cocoiiiiiiiiiee e 4-9
Table 4-6. Syntax for computed expression atom that references a DD fieldc.ccoooovovriiieiieiennne 4-11
Table 4-7. Syntax for computed expression atom that references a Form Only field..............cccccoceee 4-12
Table 4-8. Assumptions when pieces of DDSBR are Null..........cccccooovviiiiieiciecc e 4-14
Table 4-9. FOIM PrOPEITIESouiiiieiiiiiitiit ettt bbbttt bt 4-16
Table 4-10.Page PrOPEITIESc..cviiieiiiiitiite sttt ettt 4-17
Table 4-11.Block PropertieSs—FORM Flle........cooiiiiii et 4-19
Table 4-12.Block PropertieS—BLOCK fIle.........oiiiiiiieeee e 4-20
Table 4-13.FIelU PrOPEITIES.c.eiiieiieiitetee ettt bt 4-21
Table 4-14. Valid default values for multiple fields ... 4-22
Table 4-15. Descriptions of field-level pre and post aCtiONSccccveieiiecieie e 4-25
Table 4-16. Variables available in field-level pre and post aCtions............cccevviiiiiiinencccee 4-25
Table 5-1. Form Editor—Navigating: Cursor navigation to the Main screen and the Block Viewer screen
... 5-2
Table 5-2. Form Editor—Navigating: Key sequences for quick page navigationccccvevrvrennennen. 5-3
Table 5-3. Form Editor—Key sequences to move SCreen lementsccoovvvererenenieinsiesenese e 5-3
Table 5-4. Form Editor—Key sequences to add, select, and edit.............cccevveveiievieii e 5-4
Table 5-5. Form Editor—General key sequences to: exit, quit, save, and obtain help...........cc.cccceverennee. 5-6
Table 5-6. Form Editor—Navigating: Cursor movement and keyboard combination...............cc.ccoeevvennen. 5-7
Table 5-7. Form Editor—General key sequences to: move screen elements...........ccocevevvevieieveernennnnn, 5-10
Table 5-8. Form Editor—Shortcuts at the CAPTION Prompt........ccccoeiiiiieieieeie e sre e 5-12
Table 14-1File header—DeSCriPLOr STFNGcoveiveieiiirieesiese et 14-2
Table 17-1. LANGUAGE file (#.85)—LangUageentriesS..........cccovvieiiiiiiieeriseeieseseesiesre e sre e 17-7
Table 17-2. LANGUAGE file (#.85)—O0ther fieldS..........ccccoviiiiiiicce e 17-8
March 1999 VA FileMan xxiii

Revised Sept 2011 Programmer Manual
Version 22.0

Figures and Tables

Table 19-1. DIFROM fields used during the package eXpOrt PrOCESS........ccoveverereeiieseseeiesieeeesre e, 19-3
XXiV VA FileMan March 1999
Programmer Manual Revised Sept 2011

Version 22.0

Orientation

How to Use this Manual

Throughout this manual, advice and instruction are offered about VA FileMan database management
system, Application Program Interfaces (APIs), Direct Mode Utilities, and other developer-related
information that VA FileMan 22.0 provides for overall Veterans Health Information Systems and
Technology Architecture (VistA) application developers.

This manual is a full reference for all entry points in VA FileMan's APIs:

Classic VA FileMan
Database Server (DBS)
ScreenMan API
Browser

Import Tool

Extract Tool

Filegrams

This manual shows how to use features of VA FileMan that are likely to be used by developers and IRM
staff. In most cases you must have programmer access (DUZ(0)="@") to use these features:

Global File Structure

Advanced File Definition

ScreenMan Forms and using the ScreenMan Form Editor
VA FileMan Functions

DIALOG File

DIFROM

Intended Audience

The intended audience of this manual is all key stakeholders. The stakeholders include the following:

Office of Information and Technology (OIT)—VistA legacy development teams.

Information Resource Management (IRM)—System administrators at Department of Veterans
Affairs (VA) sites who are responsible for computer management and system security on the
VistA M Servers.

Information Security Officers (ISOs)—Personnel at VA sites responsible for system security.
Product Support (PS).

March 1999 VA FileMan XXV
Revised Sept 2011 Programmer Manual

Version 22.0

Orientation

Legal Requirements

There are no special legal requirements involved in the use of VA FileMan.

Disclaimers

This manual provides an overall explanation of VA FileMan and the functionality contained in VA
FileMan 22.0; however, no attempt is made to explain how the overall VistA programming system is
integrated and maintained. Such methods and procedures are documented elsewhere. We suggest you
look at the various VA Internet and Intranet Websites for a general orientation to VistA. For example,
visit the Office of Information and Technology (OIT) VistA Development Intranet Website:

http://vista.med.va.gov

constitute endorsement by the Department of Veterans Affairs (VA) of this Website or
the information, products, or services contained therein. The VA does not exercise any
editorial control over the information you may find at these locations. Such links are
provided and are consistent with the stated purpose of the VA.

ﬁ DISCLAIMER: The appearance of external hyperlink references in this manual does not

Documentation Conventions

This manual uses several methods to highlight different aspects of the material:

e Various symbols are used throughout the documentation to alert the reader to special information.
The following table gives a description of each of these symbols:

Table ii. Documentation symbol descriptions

Symbol Description
o NOTE/REF: Used to inform the reader of general information including
references to additional reading material.

CAUTION/RECOMMENDATION/DISCLAIMER: Used to caution the reader to
take special notice of critical information.

o Descriptive text is presented in a proportional font (as represented by this font).
e Conventions for displaying TEST data in this document are as follows:

— The first three digits (prefix) of any Social Security Numbers (SSN) will begin with either
"000" or "666".

— Patient and user names will be formatted as follows: [Application Name]PATIENT,[N] and
[Application Name]USER,[N] respectively, where "Application Name™ is defined in the
Approved Application Abbreviations document and "N" represents the first name as a
number spelled out and incremented with each new entry. For example, in VA FileMan (FM)

XXVi VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Orientation

test patient and user names would be documented as follows: FMPATIENT,ONE;
FMPATIENT, TWO; FMPATIENT, THREE; etc.

e Sample HL7 messages, "snapshots"” of computer online displays (i.e., roll-and-scroll screen or
character-based screen captures/dialogues) and computer source code, if any, are shown in a non-
proportional font and enclosed within a box.

— User's responses to online prompts will be boldface.

— References to "<Enter>" within these snapshots indicate that the user should press the Enter
key on the keyboard. Other special keys are represented within < > angle brackets. For
example, pressing the PF1 key can be represented as pressing <PF1>.

— Author's comments, if any, are displayed in italics or as "callout” boxes.

NOTE: Callout boxes refer to labels or descriptions usually enclosed within a box,
which point to specific areas of a displayed image.

e This manual refers in many places to the MUMPS (M) programming language. Under the 1995
American National Standards Institute (ANSI) standard, M is the primary name of the MUMPS
programming language, and MUMPS will be considered an alternate name. This manual uses the
name M.

o Descriptions of direct mode utilities are prefaced with the standard M ">" prompt to emphasize
that the call is to be used only in direct mode. They also include the M command used to invoke
the utility. The following is an example:

>D P~DI
e The following conventions will be used with regards to APIs:

— Headings for developer API descriptions (e.g., supported for use in applications and on the
Database Integration Committee [DBIC] list) include the routine tag (if any), the caret ("")
used when calling the routine, and the routine name. The following is an example:

EN~DIB

— For APIs that take input parameter, the input parameter will be labeled "required” when it is a
required input parameter and labeled "optional™ when it is an optional input parameter.

— For APIs that take parameters, parameters are shown in lowercase and variables are shown in
uppercase. This is to convey that the parameter name is merely a placeholder; M allows you
to pass a variable of any name as the parameter or even a string literal (if the parameter is not
being passed by reference). The following is an example of the formatting for input
parameters:

HELPADIE(FILE, IENS,FIELD,FLAGS,msg_root)

— Rectangular brackets [] around a parameter are used to indicate that passing the parameter is
optional. Rectangular brackets around a leading period [.] in front of a parameter indicate that
you can optionally pass that parameter by reference.

— All APIs are categorized by function. This categorization is subjective and subject to change
based on feedback from the development community. Also, some APIs could fall under
multiple categories; however, they are only listed once under a chosen category.

APIs within a category are first sorted alphabetically by Routine name and then within

March 1999 VA FileMan XXVii
Revised Sept 2011 Programmer Manual
Version 22.0

Orientation

routine name are sorted alphabetically by Tag reference. The "$$", "/, or "~%" prefixes on
APIs is ignored when alphabetizing.

o All uppercase is reserved for the representation of M code, variable names, or the formal name of
options, field/file names, and security keys (e.g., DIEXTRACT).

NOTE: Other software code (e.g., Delphi/Pascal and Java) variable names and file/folder
names can be written in lower or mixed case.

Non-standard M Features

Z-commands and Z-functions are avoided throughout VA FileMan routines. For certain purposes
(e.g., allowing terminal breaking and spooling to a Standard Disk Processor [SDP] disk device), VA
FileMan executes lines of non-standard M code out of the MUMPS OPERATING SYSTEM file (#.7).
The non-standard code used (if any) depends on the answer to the prompt:

Figure 1-1. Type of M system prompt

TYPE OF MUMPS SYSTEM YOU ARE USING:

This prompt appears during the DINIT initialization routine. Answering OTHER to this question will
ensure that VA FileMan uses only standard M code.

VA FileMan also makes use of non-standard M code that is stored in the %ZOSF global. If VA FileMan
is installed on a system that contains Kernel, it uses the %ZOSF global created by Kernel. If it is being
used without Kernel (i.e., standalone), the necessary %ZOSF nodes are set for many operating systems by
running DINZMGR in the manager account.

REF: For details, please refer to the "System Management™ chapter of the VA FileMan
Advanced User Manual.

String-valued subscripts (up to 30 characters long) are used extensively but only in the $ORDER collating
sequence approved by the MUMPS Development Committee (MDC). Non-negative integer and fractional
canonic numbers collate ahead of all other strings.

The $ORDER function is used at several points in VA FileMan's code. VA FileMan routines assume that
reference to an undefined global subscript level sets the naked indicator to that level, rather than leaving it
undefined. In all other respects, the VA FileMan code conforms to the 1995 ANSI Standard for the M
language with Type A extensions.

XXViii VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Orientation

Routine, Variable, and Global Names

In keeping with the convention that all programs which are a part of the same application or utility
package should be namespaced, all VA FileMan routine names begin with DI or DD. (The "Device
Handling for Standalone VA FileMan" section of the VA FileMan Advanced User Manual explains that
some DI* routines are renamed in the management account.) The DINIT routine initializes VA FileMan.
The DI routine itself is the main option reader.

REF: For more information on the DI routine, see the "~DI: Programmer Access" chapter in
this manual.

Except in DI, the routines do not contain unargumented or exclusive KILL commands. All multi-
character local variable names created by VA FileMan routines begin with % or the letter D, or consist of
one uppercase letter followed by one numeral (except that 10(0), by convention, contains the $I value of
the signon device). Since VA FileMan uses single character variable names extensively, do not use them
in code that is executed from within VA FileMan programming hooks unless their use is documented in
the hook's description or you NEW them. Also, do not expect single character variables to return
unchanged after calling a VA FileMan entry point.

The following local variables are of special importance in the VA FileMan routines:

Table 1-1. VA FileMan routine variables and default values

Variable | Description Default Value
DT If defined, it is assumed to be the current date. For Today's date; derived from $H
example:

June 1, 1987 is DT=2870601.

DTIME If defined, it is the integer value of the number of seconds 300
the user has to respond to a timed read.

DUz If defined, it is assumed to be the User Number; a positive | O
number uniquely identifying the current user.

DUZ(0) If defined, it is assumed to be the FileMan Access Code,
which is a character string describing the user's security
clearance with regard to files, templates, and data fields
within a file.

o REF: See the "Data Security" chapter in the VA
FileMan Advanced User Manual.

Setting DUZ(0) equal to the at-sign ("@") overrides all
security checks and allows special programmer features
that are described later. If the user's M implementation
supports terminal break, a developer is allowed to break
execution at any point, whereas a user who does not have
programmer access can only break during output routines.

U If defined, it is equal to a single caret (""") character. A
March 1999 VA FileMan XXiX
Revised Sept 2011 Programmer Manual

Version 22.0

Orientation

VA FileMan routines explicitly refer to the following globals:

Table 1-2. VA FileMan routine global references

Global Description

DD All attribute dictionaries.
DDA Data dictionary audit trail.
DI Data types.

"DIA Data audit trail.

"DIAR Archival activity and Filegrams.

"DIBT Sort templates and the results of file searches.
"DIC Dictionary of files.

DIE Input templates.

ADIPT Print templates and Filegram templates.

ADIST ScreenMan forms and blocks and Alternate Editors.

ADISV Most recent lookup value in any file or subfile (by DUZ).

DIZ Default location for new data files as they are created.

ADOPT Option lists.

"DOSV Statistical results.

"%ZOSF | M vendor-specific executable code.

The routines use the "UTILITY and “"TMP globals for temporary scratch space. The ~XUTL global is
also used if you are running some M implementations.

Delimiters within Strings

The caret (") character is conventionally used to delimit data elements which are strung together to be
stored in a single global node. A corollary of this rule is that the routines almost never allow input data to
contain carets; the user types a caret (") to change or terminate the sequence of questions being asked.

Within ~-pieces, semicolons (*;") are usually used as secondary delimiters, and colons (**:") as tertiary
delimiters.

VA FileMan routines use the local variable U as equal to the single caret ("/") character.

Canonic Numbers

VA FileMan recognizes only canonic numbers. A canonic number is a number that does not begin or end
with meaningless zeroes. For example, 7 is a canonic humber, whereas 007 and 7.0 are not.

XXX VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Orientation

How to Obtain Technical Information Online

Exported VistA M Server-based software file, routine, and global documentation can be generated
through the use of Kernel, MailMan, and VA FileMan utilities.

NOTE: Methods of obtaining specific technical information online will be indicated where
applicable under the appropriate topic.

o REF: Please refer to the VA FileMan Technical Manual for further information.

Help at Prompts

VistA M Server-based software provides online help and commonly used system default prompts. Users
are encouraged to enter question marks at any response prompt. At the end of the help display, you are
immediately returned to the point from which you started. This is an easy way to learn about any aspect of
the software.

Obtaining Data Dictionary Listings

Technical information about VistA M Server-based files and the fields in files is stored in data
dictionaries (DD). You can use the List File Attributes option [DILIST] on the Data Dictionary Utilities
menu [DI DDU] in VA FileMan to print formatted data dictionaries.

REF: For details about obtaining data dictionaries and about the formats available, please refer
to the "List File Attributes” chapter in the "File Management" section of the VA FileMan
Advanced User Manual.

Assumptions about the Reader

This manual is written with the assumption that the reader is familiar with the following:
e VistA computing environment:
— Kernel—VistA M Server software
— VA FileMan data structures and terminology—VistA M Server software
e Microsoft Windows environment

¢ M programming language

March 1999 VA FileMan XXXi
Revised Sept 2011 Programmer Manual
Version 22.0

Orientation

Reference Materials

Readers who wish to learn more about VA FileMan should consult the following:
¢ VAFileMan Release Notes (PDF format)

VA FileMan Installation Guide (PDF format)

¢ VAFileMan Technical Manual (PDF format)

¢ VAFileMan Getting Started Manual (PDF and HTML format)

¢ VAFileMan Advanced User Manual (PDF and HTML format)

¢ VAFileMan Programmer Manual (this manual; PDF and HTML format)

VistA documentation is made available online in Microsoft Word format and in Adobe Acrobat Portable
Document Format (PDF). The PDF documents must be read using the Adobe Acrobat Reader, which is
freely distributed by Adobe Systems Incorporated at the following Website:

http://www.adobe.com/

VistA software documentation can be downloaded from the VA Software Document Library (VDL)
Website:

http://www.va.gov/vdl/

VistA documentation and software can also be downloaded from the Product Support (PS) anonymous
directories:

Preferred Method download.vista.med.va.gov

This method transmits the files from the first available FTP server.
e Albany OIFO ftp.fo-albany.med.va.gov
e Hines OIFO ftp.fo-hines.med.va.gov
e Salt Lake City OIFO ftp.fo-slc.med.va.gov

XXXii VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

http://www.adobe.com/
http://www.va.gov/vdl/

1. Introduction

1.1 Whatis VA FileMan?

VA FileMan creates and maintains a database management system that includes features such as:
e Areport writer
e A data dictionary manager
e Scrolling and screen-oriented data entry
e Text editors
e Programming utilities
e Tools for sending data to other systems

e File archiving

VA FileMan can be used as a standalone database, as a set of interactive or "silent" routines, or as a set of
application utilities; in all modes, it is used to define, enter, and retrieve information from a set of
computer-stored files, each of which is described by a data dictionary.

VA FileMan is a public domain software package that is developed and maintained by the Department of
Veterans Affairs. It is widely used by VA medical centers and in clinical, administrative, and business
settings in this country and abroad.

1.2 Functional Description

VA FileMan functions as a Database Management System (DBS) with powerful Application Program
Interfaces (APIs) and provides useful utilities for application developers. VA FileMan can be used as a
database management system for data entry and output and its DBS calls are utilized in application
packages with tools like Filegrams, auditing, archiving, and statistics.

¢ Database Management System (DBS)—As a database management system (DBS), VA
FileMan supports the entering, editing, printing, searching, inquiring, transferring, cross-
referencing, triggering, and verifying of information. It includes special functions to create new
files, modify an existing file, delete entire files, re-index files, and create or edit templates.

o Application Program Interfaces (AP1s)—As an application program interface (API), the
Database Server routines manage interactions between the application software and the database
management system "silently,” that is, without writing to the current device. Package developers
use DBS calls to update the database in a non-interactive mode. Information needed by the VA
FileMan routines is passed through parameters rather than through interactive dialogue with the
user. Information to be displayed to the user is passed by VA FileMan back to the calling routine
in arrays. This separation of data access from user interaction makes possible the construction of
alternative front-ends to the VA FileMan database (e.g., a windowed Graphical User Interface
[GuI)).

e Utilities—As a set of utilities, VA FileMan provides tools like the Filegram, which is a tool that
moves file records from one computer to another; archiving, which is a tool that stores data onto

March 1999 VA FileMan 1-1
Revised Sept 2011 Programmer Manual
Version 22.0

Introduction

an offline storage medium; auditing, which is a tool that tracks changes to data in a field or to the
file's structure (the data dictionary); and statistics, which is a tool that accumulates totals and
subtotals of individual fields.

VA FileMan has several levels of users, ranging from a data entry person who enters, edits, inquires or
prints information, to a software application developer or Information Resource Management (IRM) staff
member who uses all of its database management system features and utilities.

Developers should consider this manual the list of VA FileMan-supported ("documented™) routines and
Application Program Interface (API) calls eligible for developer use. These routines and APIs provide the
following (to list a few):

e File lookup and re-indexing

o Data edit, print, display, and retrieval
e Filegrams

e File entry deletion

e A reader program

e Data dictionary deletion

e Word-processing

e Conversion of date and time values

e Software package export

e Linked option processing

1.3 Standalone VA FileMan

VA FileMan is designed to be used either with Kernel or as a standalone application running under a
variety of implementations of ANSI standard M. If VA FileMan is used without Kernel, the basic DBMS
features of VA FileMan all work as described in the manuals. However, there are some features

(e.g., bulletin-type cross references, print queuing, and Filegrams) that do not work without portions of
Kernel. Whenever Kernel is needed to support a particular VA FileMan feature, that fact is mentioned in
the manuals.

The installation of VA FileMan 22.0 is not integrated with the installation of Kernel. The VA FileMan
Installation Guide contains instructions on how to install VA FileMan, both for standalone sites and for
sites running Kernel.

o REF: For specific information regarding standalone VA FileMan (i.e., device handling, setting
10 variables, manually setting ~%ZOSF nodes, and setting up a minimal NEW PERSON file
[#200]), please refer to the "FileMan System Management" topic in the VA FileMan Advanced
User Manual.

1-2 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

l. Major APIs

March 1999
Revised Sept 2011

VA FileMan
Programmer Manual
Version 22.0

Major APIs

I-2 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

2. Classic VA FileMan API

2.1 Introduction

Certain modules within VA FileMan are callable by other M routines. This is true of these Classic VA
FileMan routines, which are referred to as "Callable Routines" and are described in this chapter.

Database Server (DBS) calls are also callable by other M routines. However, these "silent" calls differ
from the Classic VA FileMan routines in that they separate interaction with the database from interaction
with the end-user. In Classic VA FileMan's roll and scroll mode, interaction with the end-user was closely
tied to the code that actually changed the database, but, with VA FileMan's DBS calls, no WRITEs to the
current device are done. Interaction with the user is managed by package developers from within their
own code, calling VA FileMan whenever interaction with the database is needed. These DBS calls are
described in the "Database Server (DBS) API" chapter in this manual.

When using both the Classic VA FileMan callable routines and the DBS calls, you must keep in mind the
variable-naming conventions listed below. If you have local variables that you wish to preserve by a call
to any of the routines described here, you should be sure to give them multi-character names beginning
with letters other than D.

It is your responsibility as a developer to clean up (KILL) documented input and output variables used in
a VA FileMan call, when the call is finished. The few situations in which your input variables are KILLed
during the VA FileMan call are mentioned in the following sections. Developers also need to be alert to
the fact that Classic VA FileMan APIs are not recursive. A classic example is situation where your
routine is being called from a cross reference, the client, and you want to alter the contents of another
field/fields either within the parent file or field/fields outside the parent file, in which case the developer
would use the proper Database Server (DBS) call.

After making an API call, always check for failed calls. For example, when using ~DIC for lookups,
always check for the error condition Y=-1 before doing anything else; when using the reader, always
check DUOUT, DIRUT, and DTOUT before doing anything else. When a call provides a way to check
for error conditions, it means that there are some circumstances where the call will not succeed! Checking
for errors after such a call allows you to handle the errors gracefully.

privilege to become a programmer in VistA. Programmer access allows you to work
outside many of the security controls enforced by VA FileMan, enables access to all VA
FileMan files, access to modify data dictionaries, etc. It is important to proceed with
caution when having access to the system in this way.

ﬁ CAUTION: Programmer access in VistA is defined as DUZ(0)="@". It grants the

March 1999 VA FileMan 2-1
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

2.2 Classic Calls Cross-referenced by Category

Table 2-1. Classic Calls—Lookup/Adding Entries

Category: Lookup/Adding Entries

Entry Point Description

ADIAC File Access Determination.

ADIC Starts w/or uses only B cross-references.

IX"DIC Starts w/or uses user-specified cross-references.
MIX"DIC1 Uses user-specified cross-references.
FILEADICN Adds new entry to file.

DQ"DICQ Entry Display for Lookups.

Table 2-2. Classic Calls—Entry Editing

Category: Entry Editing

Entry Point Description

"DIE Data input for a file.
EN"DIB User Controlled Editing.
ADIK Delete Entries.
EN”~DIQ1 Data Retrieval.
EN*DIWE Text Editing.

Table 2-3. Classic Calls—Prompting/Messages

Category: Prompting/Messages

Entry Point Description
"DIR Response Reader.
EN"DDIOL Message Loader.
WAIT~DICD Wait Messages.
YN”DICN Reader for a YES/NO response.
HELP"%DTC Displays help prompt based on date.
2-2 VA FileMan March 1999

Programmer Manual
Version 22.0

Revised Sept 2011

Table 2-4. Classic Calls—Printing

Classic VA FileMan APIs

Category: Printing

Entry Point Description

EN1"DIP Prints Data.

D"DIQ Converts internal date to external.

DTADIQ Like D"DIQ. Then writes converted date.
EN"DIQ Displays captioned range of data.

Y~DIQ Converts internal data to external.

Entry Point Description

ENADIS Searches File Entries.

"DIWF Form Document (Doc).

EN1"DIWF Form Doc-Calling app knows doc file.
EN2"DIWF Form Doc-Calling app knows entry in doc file.
DIWP Formats and outputs text lines.

DIww Outputs text left in "UTILITY($J3,"W") by "DIWP

Table 2-5. Classic Calls—Templates

Category: Templates

Entry Point Description

"DIEZ INPUT template compile—User interactive.

EN"DIEZ INPUT template compile—No user interaction.

"DIOZ SORT template compile.

"DIPT PRINT template display.

DIBTADIPT SORT template display.

"DIPZ PRINT template compile—User interactive.

EN"DIPZ PRINT template compile—No user interaction.
March 1999 VA FileMan

Revised Sept 2011

Programmer Manual
Version 22.0

2-3

Classic VA FileMan APIs

Table 2-6. Classic Calls—Cross-references

Category: Cross-references

Entry Point Description

EN/DIK Re-indexes cross-references of a field for one file entry. KILL and
SET logic.

EN17DIK Re-indexes cross-references of a field for one file entry. SET logic,
only.

EN2/DIK Executes KILL logic for one or more cross-references on a field for
one file entry.

ENALL"DIK Re-indexes all file entries for cross-references on a specific field.
SET logic, only.

ENALL2"DIK Executes KILL logic for one or more cross-references on a field for
all file entries.

IX"DIK Re-indexes all cross-references of the file for only one file entry. KILL
and SET logic.

IX1"DIK Re-indexes all cross-references of the file for only one file entry. SET
logic, only.

IX2"DIK Executes KILL logic of all cross-references for one entry at all file
levels at and below the one specified in DIK.

IXALLMDIK Re-indexes all cross-references for all file entries. SET logic, only.

IXALL2"DIK Executes KILL logic for all file entries.

"DIKZ Compiles cross-references into M routines.

Entry Point Description

EN"DIKZ Recompiles a files cross-references-No user intervention.

Table 2-7. Classic Calls—Date/Time Utilities

Category: Date/Time Utilities

Entry Point Description
X ~DD("DD") Converts external to internal.
DT/DIO2 Writes external from internal.
"oDT Validates date/time input. Convert to internal.
DD"%DT Converts internal to external.
"oDTC Returns # days between two dates.
C"%DTC Adds/subtracts # days from date. Return VA FileMan and $H
formats.
DW"%DTC Similar to H"%DTC. Except outputs name of the day.
H”%DTC Converts VA FileMan to $H format.
NOW"%DTC Returns current date/time in VA FileMan and $H formats.
2-4 VA FileMan March 1999

Programmer Manual

Version 22.0

Revised Sept 2011

Classic VA FileMan APIs

Category: Date/Time Utilities

Entry Point Description

S"%DTC Computes seconds after midnight into decimal part of VA FileMan
date.

YMD"%DTC Converts $H to VA FileMan format.

YX"%DTC Passes back printable and VA FileMan formats from $H.

Table 2-8. Classic Calls—UJtilities

Category: Utilities

Entry Point Description

DO"DIC1 Sets up VA FileMan file information.

DT~DICRW Sets up VA FileMan required variables.

EN"DID Prints/displays DD listing.

$SROUSIZEDILF Returns maximum routine size.

ADIM Validates M code.

COMMA"N%DTC Formats number to string w/commas.

EN”DIU2 Deletes a file's DD.

%XY"%RCR Moves arrays between locations.
March 1999 VA FileMan

Revised Sept 2011

Programmer Manual
Version 22.0

2-5

Classic VA FileMan APIs

2.3 Classic Calls Presented in Alphabetical Order

This section lists and describes the VA FileMan Classic Calls in alphabetical order. The table previous to
this page cross-references the Classic Calls by category.

2.3.1 XADD("DD"): Internal to External Date

Introduction to Date/Time Formats: %DT

This introduction pertains to this and the %DT calls. %DT is used to validate date/time input and convert
it to VA FileMan's conventional internal format: "YYYMMDD.HHMMSS", where:

e YYY is number of years since 1700 (hence always 3 digits)
e MM is month number (00-12)
o DD is day number (00-31)
e HH is hour number (00-23)
e MM is minute number (01-59)
e SSis the seconds number (01-59)
This format allows for representation of imprecise dates like JULY 78 or 1978 (which would be

equivalent to 2780700 and 2780000, respectively). Dates are always returned as a canonic humber (no
trailing zeroes after the decimal).

There are two ways to convert a date from internal YYYMMDD format to external format—this call and
DD"%DT. (This is the reverse of what %DT does.) Simply set the variable Y equal to the internal date
and execute *DD("DD").

Example

Figure 2-1. X *DD("'DD"): Internal to External Date example

>S Y=2690720.163 X ~DD("'DD') W'Y
JUL 20,1969@1630

This results in Y being equal to JUL 20,1969@16:30. (No space before the 4-digit year.)

2-6 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

Input Variable

Y (Required) This contains the internal date to be converted. If this has five or six decimal
places, seconds will automatically be returned.

Output Variable

Y Y is returned as the external form of the date.

REF: See also DT"DIO2 API, which takes an internal date in the variable Y and writes out its
external form.

March 1999 VA FileMan 2-7

Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

2.3.2 ENADDIOL.: Message Loader

ENADDIOL is designed as a replacement for simple WRITE statements in any part of the data dictionary
that has a programming "hook" (e.g., executable help).

As alternate user interfaces are developed for accessing VA FileMan databases, developers are faced with
the issue of removing embedded WRITE statements from their data dictionaries. Direct WRITEs should
be removed, since they might cause the text to display improperly in the new interface. This separation of
the user interface from the database definition helps you to prepare your databases for access by any new
interface, such as a Graphical User Interface (GUI).

The environment in which the Loader is called determines how it processes the text it is passed.

Table 2-9. Loader—Processing text based on mode

Mode How the Text Is Processed

Scrolling Text is written to the screen.

ScreenMan | Text is written in ScreenMan's Command Area.

DBS Text is loaded into an array.

In DBS mode, the specific array where the text is placed depends on which DBS call is made and whether
an output array was specified in the DBS call.

For example, if a call is made to the Validator (VAL"DIE), and the INPUT transform of the field makes a
call to the Loader, the text is placed into "TMP("DIMSG",$J). If a call is made to the Helper
(HELP"DIE), and the executable help of the field makes a call to the Loader, the text is placed into
ATMP("DIHELP",$J). If the call to Validator or the Helper uses the MSG_ROOT parameter, the text is
placed in the array specified by MSG_ROOT.

RECOMMENDATION: No line of text passed to the Loader should exceed 70 characters
t:s in length.

Formats

ENADDIOL(VALUE, """, FORMAT)
ENADD 0L (. ARRAY)

ENADDIOL("™"*,GLOBAL_ROOT)

2-8 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

Input Parameters

VALUE

ARRAY

GLOBAL_
ROOT

FORMAT

March 1999
Revised Sept 2011

(Optional) If there is just one line of text to output, it can be passed in the first
parameter.

(Optional) If there is more than one line of text to output, stored in a local array, then
the first parameter of the call is the name of the local array passed by reference and that
contains string or numeric literals, where:

Figure 2-2. EN"DDIOL—Sample .ARRAY input parameter array name

ARRAY(1) = string 1
ARRAY(2) = string 2 ...
ARRAY(n) = string n

Formatting instructions can also be included in this array.

o REF: See "Formatting for Arrays™ in the "Details and Features" topic.

(Optional) An alternate way to pass the text to the call is in a global root. In that case,
the first parameter is null, and the second parameter contains the name of the global
root that contains string or numeric literals, where:

Figure 2-3. ENADDIOL—Sample GLOBAL_ROOOT input parameter (1 of 2)

@GLOBAL_ROOT@(1,0) = string 1
@GLOBAL_ROOT@(2,0) = string 2 ...
@GLOBAL_ROOT@(n,0) = string n

Or

Figure 2-4. ENADDIOL—Sample GLOBAL_ROOOT input parameter (2 of 2)

@GLOBAL_ROOT@(1) = string 1
@GLOBAL_ROOT@(2) = string 2 ...
@GLOBAL_ROOT@(n) = string n

Formatting instructions can also be included in this global array.

o REF: See "Formatting for Arrays™ in the "Details and Features" topic.

(Optional) Formatting instructions controlling how the string is written or placed in the
array. You can specify:

One or more new lines before the string (!, I, 11, etc.)
Horizontal position of string (?n)

FORMAT can be any number of "I characters optionally followed by "?n", where n is
an integer expression. The default FORMAT is "1".

VA FileMan 2-9
Programmer Manual
Version 22.0

Classic VA FileMan APIs

This parameter can only be used when call format is used to pass a single string or
numeric literal to EN*DDIOL. To pass formatting instructions when text is passed as
an array or global o EN*DDIOL.

o REF: See "Formatting for Arrays" in the "Details and Features" topic.

Example 1

Suppose a Write Identifier node contains the following WRITE statement:

Figure 2-5. Write ldentifier node—Sample WRITE statement

ADD(Fi lenumber,0," ID™,"W1™)=W " *,$P(~(0),U,2)

An equivalent statement converted to use EN*DDIOL is:

Figure 2-6. Write ldentifier node—Using EN~DDIOL

~DD(Filenumber,0," D", "W1"")=D ENADDIOL(" " $P("(0),U,2),"","?0™)

Example 2

The executable help of a field passes one line of text by value to the Loader as illustrated below:

Figure 2-7. Loader—Passing one line of text

>D ENADDIOL(*'This is one line of text.',6 ', "11212")

If the call is made in scroll mode (e.g., “DIE executes the executable help), below is an example of what
the Loader writes to the screen:

Figure 2-8. Loader—Sample output in scroll mode

This i1s one line of text.

If the call is made in DBS mode, the Helper (HELP/~DIE) executes the executable help. The text is placed
into the “"TMP global as shown below:

2-10 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

Figure 2-9. Loader—Sample output in DBS mode

~TMP('DIHELP™,$J3,1)=""
ATMP('DIHELP",$J3,2)="" This is one line of text.”

Example 3

Below is an example of passing an array of text to the Loader:

Figure 2-10. Loader—Sample of passing a text array

>S A(L)="First line."

>S A(2)="Second line, preceded by one blank line or node."
>S AQ2,"F™M)="11m

>S A(3)="More text on second line."

>S A(3,"F'")="7?55"

>D ENADDIOL(.A)

Example 4

Below is an example of passing a global that contains text to the Loader:

Figure 2-11. Loader—Sample of passing a global containing text

>S ~GLB(1)="First line."

>S ~GLB(2)="Second line, preceded by one blank line or node."
>S ~GLB(2,"F™)="11"

>S ~GLB(3)="More text on second line."

>S ~GLB(3,""F'")="?55"

>D ENADDIOL("™™,""~GLB™)

March 1999 VA FileMan 2-11
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

Details and Features

Formatting for
Arrays

2-12

When you pass an array or a global to EN*DDIOL, you can also pass formatting
instructions for each line of text in your array or global. These instructions control
how the string is written or placed in the output array. You can specify:

One or more new lines before the string (!, !, 11, etc.)
Horizontal position of string (?n)

Place the formatting instructions for a line of text in an "F" node descendent from the
node containing the text. The value of each "F" node can be any number of "!"
characters optionally followed by "?n", where n is an integer expression. The default
FORMAT is "I".

For example:

Figure 2-12. EN~*DDIOL—Sample formatting for arrays

A(l) = string 1
A(L,"F'") = format (e.g., "1?35", "?10", etc.)
~G(1,0) = string 1

~G(1,"F'™) = format
~N"G(1) = string 1
~G(1,"F'™) = format

o NOTE: If you use format (1) to pass a single string of text to EN*"DDIOL, you
can pass the formatting instructions in the third parameter FORMAT.

VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.3 ADIAC: File Access Determination

This entry point determines if a user has access to a file.

Input Variables

DIFILE (Required) The file number of the file on which you want to verify file access.
DIAC (Required) Use one of the values listed below to verify the specified type of file
access:
"RD" Verify READ access to a specific file.
"WR" Verify WRITE access to a specific file.
"AUDIT" Verify AUDIT access to a specific file.
"DD" Verify DD access to a specific file.
"DEL" Verify DELETE access to a specific file.
"LAYGO" Verify LAYGO access to a specific file.
Output Variables
DIAC DIAC returns either a0 or a 1:
1 Indicates that the user has that type of access to the file.

o NOTE: If the user's DUZ(0)="@", the value 1 is always returned.

0 Indicates that the user does not have access of that type to the file.
% The % variable returns exactly the same values as DIAC.
March 1999 VA FileMan 2-13
Revised Sept 2011 Programmer Manual

Version 22.0

Classic VA FileMan APIs

2.3.4 ENADIB: User Controlled Editing

Invokes the Enter or Edit File Entries option [DIEDIT] of VA FileMan to edit records in a given file,
allowing the user to select which fields to edit.

Input Variables

DIE (Required) The global root of the file in the form "GLOBAL(or "GLOBAL (# or the
number of the file.

DIE("NOM) (Optional) Allows the developer control of the use of the caret in an edit session. If
this variable does not exist, unrestricted use of the caret for jumping and exiting is
allowed.

The variable may be set to one of the following:

"OUTOK™ Allows exiting and prevents all jumping.
"BACK" Allows jumping back to a previously edited field and does not
allow exiting.
"BACKOUTOK" Allows jumping back to a previously edited field and allows
exiting.
"Other value" Prevents all jumping and does not allow exiting.
DIDEL (Optional) Allows you to override the Delete Access on a file or subfile. Setting

DIDEL equal to the number of the file before calling DIE allows the user to delete
an entire entry from that file even if the user does not normally have the ability to
delete. This variable does not override the DEL-nodes described in the Global File
Structure chapter.

2-14 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.5 "DIC: Lookup/Add

Given a lookup value, this entry point searches a file and either finds a matching entry, adds an entry, or
returns a condition indicating that the lookup was unsuccessful.

o REF: See also the IX*DIC and MIX”DIC1 APIs for a comparison of how they each perform
lookups.

Except for the DIC("W") variable, which is KILLed, the DIC input array is left unchanged by ~DIC.

Input Variables

DIC (Required) The file number or an explicit global root in the form
AGLOBAL(or "GLOBAL(X,Y,.
DIC(0) (Optional) A string of alphabetic characters which alter how DIC responds.

At a minimum this string must be set to null. A detailed description of
these characters can be found later in this section, under DIC(0) Input
Variables in Detail.

o NOTE: If DIC(0) is null or undefined, no terminal output will be
generated by the DIC routine.

The acceptable characters are:

Flag Short Description
A Ask the entry; if erroneous, ask again.
B Only the B index is used when doing lookup to files

pointed-to by starting file.
Cross-reference suppression is turned off.

Echo information.

m m O

Forget the lookup value.

Ignore the special lookup program.

Primary Key is used as starting index for the lookup.
Learning a new entry is allowed.

Multiple-index lookup allowed.

Internal Number lookup allowed (but not forced).
Only find one entry if it matches exactly.

Question erroneous input (with two ??).

wu O oz r X

Suppresses display of .01 (except B cross-reference
match) and of any Primary Key fields.

—

ConTinue searching all indexes until user selects an entry
or enters ™ to get out.

March 1999 VA FileMan 2-15
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

U Untransformed lookup.

V Verify that looked-up entry is OK.

X EXact match required.

4 Zero node returned in Y(0) and external form in Y(0,0).

X If DIC(0) does not contain an A, then the variable X must be defined equal
to the value you want to find in the requested index(es). If a lookup index
IS on a pointer or variable pointer field, VA FileMan will search the "B"
index on the pointed-to file for a match to the lookup value X (unless the
developer uses the DIC("PTRIX") array to direct the search to a different
index on the pointed-to file).

If the lookup index is compound (i.e., has more than one data subscript),
then X can be an array X(n) where "n" represents the position in the
subscript. For example, if X(2) is defined, it will be used as the lookup
value to match to the entries in the second subscript of the index. If only
the lookup value X is passed, it will be assumed to be the lookup value for
the first subscript in the index, X(1).

DIC("A") (Optional) A prompt that is displayed prior to the reading of the X input. If
DIC("A") is not defined, the word Select, the name of the file,
[i.e., $P("GLOBAL(0),""",1)], a space, the LABEL of the .01 field, and a
colon will be displayed. If the file name is the same as the LABEL of the
.01 field, then only the file name will be displayed. DIC(0) must contain an
A for this prompt to be issued. For example, if the (ficticious)
EMPLOYEE file had a .01 field with the LABEL of NAME, VA FileMan
would issue the following prompt:

Select EMPLOYEE NAME:

By setting DIC("A")="Enter Employee to edit: ", the prompt would be:

Enter Employee to edit:

Notice that it is necessary for the prompt in DIC("A") to include the colon
and space at the end of the prompt if you want those to be displayed.

If the lookup index is compound (i.e., has more than one data subscript),
then DIC("A") can be an array DIC("A",n) where "n" represents the
position in the subscript. For example, DIC("A",2) will be used as the
prompt for the second subscript in the index. If only the single prompt
DIC("A") is passed, it will be assumed to be the prompt for the first
subscript in the index DIC("A",1).

If DIC("A",n) is undefined for the 'nth’ subscript, then the ‘Lookup Prompt’
field for that subscript from the INDEX file (#.11) will be used as the
prompt, or if it is null, the LABEL of the field from the data dictionary.

2-16 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

DIC("B")

DIC("DR")

DIC("P")

March 1999
Revised Sept 2011

Classic VA FileMan APIs

(Optional) The default answer that is presented to the user when the lookup
prompt is issued. If a terminal user simply presses the <Enter> key, the
DIC("B") default value will be used, and returned in X. DIC("B") will only
be used if it is non-null.

If the lookup index is compound (i.e., has more than one data subscript),
then DIC("B") can be an array DIC("B",n) where "n" represents the
position in the subscript. For example, DIC("B",2) will be used as the
default answer for the prompt for the second subscript in the index. If only
the single default answer DIC("B") is passed, it will be assumed to be the
default answer for the prompt for the first subscript in the index
DIC("B",1).

When calling DIC with LAYGO allowed, you can specify that a certain set
of fields will be asked for in the case where the user enters a new entry.
This list is specified by setting the variable DIC("DR") equal to a string
that looks exactly like the DR string of fields that is specified when calling
ADIE. Such a list of what VA FileMan calls forced identifiers overrides
any identifiers that would normally be requested for new entries in this file.

o NOTE: As of VA FileMan 22.0, the developer is no longer required
to set DIC("P"). The only exception to this is for a few files that are
not structured like a normal VA FileMan file, where the first
subscript of the data is variable in order to allow several different
‘globals' to use the same DD. An example of this is the VA FileMan
Audit files where the first subscript is the file number of the file
being audited.

This variable is needed to successfully add the FIRST subentry to a
multiple when the descriptor (or header) node of the multiple does not
exist. In that situation, DIC("P") should be set equal to the subfile number
and subfile specifier codes for the multiple.

o REF: See the "File Header" topic in Chapter 14, "Global File
Structure™ in this manual.

If the descriptor node for the multiple already exists, DIC("P™) has no
effect.

In order to automatically include any changes in the field's definition in
DIC("P"), it is best to set this variable to the second ~-piece of the 0-node
of the multiple field's definition in the DD.

o REF: See the "Field Definition 0-Node" topic in Chapter 14,
"Global File Structure™ in this manual.

Thus, for example, if file 16150 had a multiple field #9, set DIC("P") like
this:

>S DIC("'P')=$P("DD(16150,9,0),"",2)

VA FileMan 2-17
Programmer Manual
Version 22.0

Classic VA FileMan APIs

o REF: For more information, see "Adding New Subentries to a
Multiple."

DIC("PTRIX"fp.t) DIC("PTRIX" f,p,t)=d where
=d

f is the from (pointing) file number,

p is the pointer field number,

t is the pointed-to file number, and

d is an """ delimited list of index names.

When doing a lookup using an index for a pointer or variable pointer field,
this new array allows the user to pass a list of indexes that will be used
when searching the pointed-to file for matches to the lookup value. For
example, if your file (662001) has a pointer field (5) to File #200 (NEW
PERSON), and you wanted the lookup on File #200 to be either by name
("B" index), or by the first letter of the last name concatenated with the last
4 digits of the social security number (*BS5" index):
DIC("PTRIX",662001,5,200)="B~BS5". Note that if the call allows
records to be added to a pointed-to file, then the list in the "PTRIX" entry
should contain the "B" index. However, the "B" index would not need to
be included in the list if the first index in the "PTRIX" array entry is a
compound index whose first subscript is the .01 field.

DIC("S") (Optional) DIC(*"S") is a string of M code that DIC executes to screen an
entry from selection. DIC("'S") must contain an IF statement to set the
value of $T. Those entries that the IF sets as $T=0 will not be displayed or
selectable. When the DIC("S™) code is executed, the local variable Y is the
internal number of the entry being screened and the M naked indicator is at
the global level @(DIC_"Y,0)"). Therefore, to use the previous example
again, if you wanted to find a male employee whose name begins with
FMEMPLOYEE, you would:

>S DIC="AEMP(**,DIC(0)="QEZ",X="FMEMPLOYEE"
>S DIC("S"):"I $P(A(O),U,2):""M ------
>D ~DIC

DIC("T™) (Optional) Present every match to the lookup value, quitting only when
user either selects one of the presented entries, enters to quit, or there
are no more matching entries found.

Currently, if one or more matches are found in the first pass through the
indexes, then VA FileMan quits the search, whether or not one of the
entries is selected. Only if no matches are found in the first pass does VA
FileMan continue on to try transforms to the lookup value. This includes
transforms to find internal values of pointers, variable pointers, dates or
sets.

Another feature of the "T" flag is that indexes are truly searched in the

2-18 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

DIC("V")

March 1999
Revised Sept 2011

Classic VA FileMan APIs

order requested. If, for example, an index on a pointer field comes before
an index on a free-text field, matches from the pointer field will be
presented to the user before matches to the free-text field.

When used in combination with the "O" flag, all indexes will be searched
for an exact match. Then, only if none are found, will VA FileMan make a
second pass through the indexes looking for partial matches.

If the .01 field is a variable pointer, it can point to entries in more than one
file. You can restrict the user's ability to input entries from certain files by
using the DIC("V") variable. It is used to screen files from the user. Set the
DIC("V") variable to a line of M code that returns a truth value when
executed. The code is executed after someone enters data into a variable
pointer field. If the code tests false, the user's input is rejected; VA
FileMan responds with ?? and an audible sound ("beep").

If the lookup index is compound (i.e., has more than one data subscript),
and if any of the subscripts index variable pointer fields, then DIC("V",n)
can be passed where "n" represents the subscript position of the variable
pointer field in the index. For example, if DIC("V",2) is passed in, it will
be used as the screen for files pointed-to by the variable pointer field
indexed in the second subscript of the index. If only the entry DIC("V") is
passed, it will be assumed to be the variable pointer file screen for the first
subscript in the index, DIC("V",1).

When the user enters a value at a variable pointer field's prompt, VA
FileMan determines in which file that entry is found. The variable Y(0) is
set equal to information for that file from the data dictionary definition of
the variable pointer field. You can use Y(0) in the code set into the
DIC("V") variable. Y(0) contains:

"-Piece Contents

Piece 1 File number of the pointed-to file.

Piece 2 Message defined for the pointed-to file.

Piece 3 Order defined for the pointed-to file.

Piece 4 Prefix defined for the pointed-to file.

Piece 5 y/n indicating if a screen is set up for the pointed-to file.

All of this information was defined when that file was entered as one of the
possibilities for the variable pointer field.

For example, suppose your .01 field is a variable pointer pointing to files
1000, 2000, and 3000. If you only want the user to be able to enter values
from files 1000 or 3000, you could set up DIC("V") like this:

>S DICC'V'™)="1 +Y(0)=1000! (+Y(0)=3000)"

VA FileMan 2-19
Programmer Manual
Version 22.0

Classic VA FileMan APIs

DIC("W™) (Optional) An M command string which is executed when DIC displays
each of the entries that match the user's input. The condition of the variable
Y and of the naked indicator is the same as for DIC("S"). If DIC("W") is
defined, it overrides the display of any identifiers of the file. Thus, if
DIC("W™)="", the display of identifiers will be suppressed.

o NOTE: DIC("W") is KILLed by "DIC calls.

DIC("?N" file#)=n The number "n" should be an integer set to the number of entries to be
displayed on the screen at one time when using "?" help in a lookup.
Usually, file# will be the number of the file on which you're doing the
lookup. However, if doing a lookup using an index on a pointer field, and
if DIC(0) contains "L", then the user also is allowed to see a list of entries
from the pointed-to file, so in that case file# could be the number of that
pointed-to file. For example, when doing a lookup in test file 662001, if
the developer wants only five entries at a time to be displayed in question-
mark help, set DIC("?N",662001)=5

DIC("?PARAM", (Optional) Used to control entries displayed during online "?" help only. If
file#,"INDEX")= provided, this index will be used to display the entries from the file
Index name specified by file#. Otherwise, VA FileMan uses the first lookup index

specified for the *DIC call. This value is used as the INDEX parameter to
the Lister call to display the entries.

o REF: See documentation for LISTADIC API for more information.

DIC("?PARAM", (Optional) Used to control entries displayed during online "?" help only.

file#,"FROM",n)=v This array can be set to define a starting value for an entry in the lookup

alue index used to list entries from the file. Integer value "n" is associated with
the "n™ data value subscript in the index (e.g., regular old-style indexes
always have just one indexed data value so "n" would be 1). If a starting
value is defined for subscript "n," then starting values must also be defined
for all of the subscripts preceding "n."

This information is used to set the FROM parameter for a call to
LISTADIC in order to display the entries in the file specified by file#.
Therefore, the entries must meet the same rules as the FROM parameter
described in that call.

o REF: See documentation for LISTADIC API for detailed
information.

If DIC(0) contains an "L" and the first indexed field is a pointer, then after
displaying the current entries on the file, VA FileMan allows the user to
see entries on the pointed-to file. In that case, the developer may request
starting values for any pointed-to file in the pointer chain. If the user enters
"Avalue" when asked whether they wish to see the entries in the file, the
value entered by the user will override the starting list value passed by the
developer in this array.

DIC("?PARAM", (Optional) Used to control entries displayed during online "?"* help only.
file#,"PART",n)=va This array can be set to define partial match value(s) for each of the "n"

2-20 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

lue

DLAYGO

Output Variables

Y

Y(0)

March 1999
Revised Sept 2011

Classic VA FileMan APIs

subscripts on the lookup index used during online help. The information is
used to set the PART parameter for a Lister call to display the entries.

o REF: See documentation for LISTADIC API for more information.

As with DIC("?PARAM" file#,"FROM",n), if DIC(0) contains "L", the
developer can define partial match values for any pointed-to file in the
pointer chain.

(Optional) If this variable is set equal to the file number, then the users will
be able to add a new entry to the file whether or not they have LAYGO
access to the file. This variable, however, does not override the checks in
the LAY GO nodes of the data dictionary. Those checks must still prove
true for an entry to be added.

o NOTE: In addition, DIC(0) must contain L to allow addition of
entries to the file.

DIC always returns the variable Y. The variable Y is returned with one of
these three formats:

Y=-1 The lookup was unsuccessful.

Y=N"S N is the internal number of the entry in the file and S
is the value of the .01 field for that entry.

Y=N"S"1 N and S are defined as above and the 1 indicates that

this entry has just been added to the file.

This variable is only set if DIC(0) contains a Z. When the variable is set,
it is equal to the entire zero node of the entry that was selected.

VA FileMan 2-21
Programmer Manual
Version 22.0

Classic VA FileMan APIs

Y(0,0)

DTOUT
DUOUT

2-22

This variable also is only set if DIC(0) contains a Z. When the variable is
set, it is equal to the external form of the .01 field of the entry.

The following are examples of returned Y variables based on a call to the
(ficticious) EMPLOYEE file stored in "EMP(:

>S DIC="~EMP("',DIC(0)=""QEZ" ,X=""FMEMPLOYEE"
>D ~DIC

Returned are;

Y = "7"FMEMPLOYEE,ONE"
Y(0) = "FMEMPLOYEE,ONE™M"2231109"2
Y(0,0) = "FMEMPLOYEE,ONE"

If the lookup had been done on a file whose .01 field points to the
EMPLOYEE file, the returned variables might look like this:

Y = "32n7" [Entry #32 in this file and #7
in EMPLOYEE file.]

Y(0) "77RX 23547~0N HOLD™

Y(0,0) "FMEMPLOYEE,ONE"™ [.01 field of entry 7

in EMPLOYEE file]

Contains the value of the field where the match occurred.

If the lookup index is compound (i.e., has more than one data subscript),
and if DIC(0) contains "A" so that the user is prompted for lookup values,
then X will be output as an array X(n) where "n" represents the position in
the subscript and will contain the values from the index on which the
entry was found. Thus, X(2) would contain the value of the second
subscript in the index. If possible, the entries will be output in their
external format (i.e., if the subscript is not computed and does not have a
transform). If the entry is not found on an index (example, when lookup is
done with X="" (the space-bar return feature)), then X and X (1) will
contain the user input, but the rest of the X array will be undefined.

This is only defined if DIC has timed-out waiting for input from the user.

This is only defined if the user entered a caret.

VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

DIC(0) Input Variables in Detail

The effects of the various characters which can be contained in DIC(0) are described below:

A DIC asks for input from the terminal and asks again if the input is erroneous. A
response of null or a string containing ” is accepted. Input is returned in X when
DIC quits. If DIC(0) does not contain the character A, the input to DIC is assumed
to be in the local variable X.

B Without the B flag, if there are cross-referenced pointer or variable pointer fields in
the list of indexes to use for lookup and if DIC(0) contains "M" and there is no
screening logic on the pointer that controls the lookup on the pointed-to file, then:

For each cross-referenced pointer field, VA FileMan checks all lookup indexes in
each pointed-to file for a match to X (time-consuming);

If X matches any value in any lookup index (not just the "B" index) on the pointed-
to file and the IEN of the matched entry is in the home file's pointer field cross-
reference, VA FileMan considers this a match. This may perhaps not be the lookup
behavior you wanted (see "Examples").

The B flag prevents this behavior by looking for a match to X only in the B index
(.01 field) of files pointed to by cross-referenced pointer or variable pointer fields.
This makes lookups quicker and avoids the risk of VA FileMan matching an entry
in the pointed-to file based on some unexpected indexed field in that file.

C Normally, when DIC does a lookup and finds an entry that matches the input, that
entry is presented to the user only once even if the entry appears in more than one
cross-reference. This is called cross-reference suppression and can be overridden
by including a C in DIC(0). If, for example, a person with the name
FMPATIENT,20 is an entry in a file, then his name will appear in the B cross-
reference of the file. If he has a nickname of TWENTY, which is in the C cross-
reference of the file, then when a user enters TWENTY as a lookup value, the
name, FMPATIENT,20, will appear only once in the choices. But if there isa C in
DIC(0), then FMPATIENT,20 will appear twice in the choices; once as a hit in the
B cross-reference and again as a hit in the C cross-reference.

E The file entry names that match the input will be echoed back to the terminal
screen; and if there is more than one such name, the user will be asked to choose
which entry is wanted. E is important because it is the way to tell DIC that you are
in an interactive mode and are expecting to be able to receive input from the user.

F Prevents saving the entry number of the matched entry in the *DISV global.
Ordinarily, the entry number is saved at *"DISV(DUZ,DIC). This allows the user to
do a subsequent lookup of the same entry simply by pressing the SpaceBar and
<Enter> key. To avoid the time cost of setting this global, include an F in DIC(0).

I If DIC(0) contains I, any special user-written lookup program for a file will be
ignored and DIC will proceed with its normal lookup process.

You can write a special lookup program to be used to find entries in a particular
file. This special program can be defined by using the Edit File option [DIEDFILE]
of the Utility Functions menu [DIUTILITY].

o REF: For more information, see the “Special Lookup Programs" topic in

March 1999 VA FileMan 2-23
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

Chapter 15, "Advanced File Definition" in this manual.

When a lookup program is defined, VA FileMan will bypass the normal lookup
process of DIC and branch to the user written program. This user written lookup
program must respond to the variables documented in this section and provide the
functionality of DIC as they pertain to the file.

K This flag causes "DIC to use the Uniqueness index for the Primary Key as the
starting index for the lookup, rather than starting with the B index. (If developers
want to specify some other index as the starting index, then they can specify the
index by using the "D" input variable, and either the IX*DIC or the MIX~DIC1
call instead of ~DIC.)

L If DIC(0) contains L and the user's input is in valid format for the file's .01 field,
then DIC will allow the user to add a new entry to the file at this point (Learn-As-
You-GO), as long as at least one of these four security-check conditions is true:

The local variable DUZ(0) is equal to the @-sign.

If Kernel's File Access Security System (formerly known as Kernel Part 3) is being
used for security, the file is listed in the user's record of accessible files with
LAYGO access allowed.

If file access management is not being used, a character in DUZ(0) matches a
character in the file's LAY GO access code or the file has no LAY GO access code.

The variable DLAYGO is defined equal to the file number.

o NOTE: Even if DIC(0) contains L and one of these security checks is
passed, LAYGO will not be allowed if a test in the data dictionary's LAYGO
node fails.

M If DIC(0) contains M, DIC will do a multiple lookup on all of the file's cross-
references from B on to the end of the alphabet. For example, if a given file is
cross-referenced both by Name and by Social Security Number, and the user inputs
000-45-6789, DIC, failing to find this input as a Name, will automatically go on to
look it up as a Social Security Number.

o REF: For finer control in specifying the indexes used for lookup, see the
alternate lookup entry points IX*DIC and MIX"DICL.

N If DIC(0) contains N, the input is allowed to be checked as an internal entry
number even if the file in question is not normally referenced by number.
However, input is only checked as an IEN if no other matches are found during
regular lookup.

If DIC(0) does not contain an N, the user is still allowed to select by entry number
by preceding the number with the accent grave character (*). When a ™ is used, the
lookup is limited to internal entry numbers only.

Placing N in DIC(0) does not force IEN interpretation; it only permits it. In order
to force IEN interpretation, you must use the accent grave (~) character.

o NOTE: With this flag, when DIC(0) contains an L, users may be allowed to
force the internal entry number when adding new entries to the file. If the
2-24 VA FileMan March 1999

Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

user enters a number N that is not found on any of the cross-references, and
if the .01 field is not numeric and the file is not DINUMed, and if VA
FileMan can talk to the users (DIC(0)['E"), then the user will be asked
whether they want to add the new entry, and will be prompted for the value
of the .01 field. The entry will be added at the record number N that was
originally entered by the user. Note that if there is a .001 field on the file, the
number N must also pass the INPUT transform for the .001 field.

n If the lowercase "n" flag is put into DIC(0), then if the lookup value is numeric and
if a lookup is done on a free text or set of codes field, partial matches on pure
numerics will be found. Suppose a free text field has records with the values 2,
223, and 22A, and the lookup value is 2. Without the flag, only the records with the
values 2 and 22A are found. With the flag, all three are found.

0] If DIC(0) contains the letter O, then for each index searched, FileMan looks first
for exact matches to the lookup value before looking for partial matches. If an
exact match is found, then FileMan returns only that match and none of the partial
matches on the index. Thus if an index contained the entries
'FMEMPLOYEE,ONE' and 'FMEMPLOYEE, TWO' and if the user typed a lookup
value of ' FMEMPLOYEE,ONE', then only the ' FMEMPLOYEE,ONE' entry would
be selected, and the user would never see the entry 'FMEMPLOYEE, TWO'.

o NOTE: If partial matches but no exact matches are found in the first
index(es) searched, but if exact matches are found in an index searched later,
then the partial matches from the first index(es) are returned along with the
exact match from the later index(es).

Q If DIC(0) contains Q and erroneous input is entered, two question marks (??) will
be displayed and a "beep" will sound.
S If DIC(0) does not contain S, the value of the .01 field and Primary Key fields (if

the file has a Primary Key) will be displayed for all matches found in any cross-
reference. If DIC(0) does contain S, the .01 field and Primary Key fields will not
be displayed unless they are one of the indexed fields on which the match was
made.

T "T flag in DIC(0). Present every match to the lookup value, quitting only when
user either selects one of the presented entries, enters ™ to quit, or there are no
more matching entries found.

Currently, if one or more matches are found in the first pass through the indexes,
then VA FileMan quits the search, whether or not one of the entries is selected.
Only if no matches are found in the first pass does VA FileMan continue on to try
transforms to the lookup value. This includes transforms to find internal values of
pointers, variable pointers, dates or sets.

Another feature of the "T" flag is that indexes are truly searched in the order
requested. If, for example, an index on a pointer field comes before an index on a
free-text field, matches from the pointer field will be presented to the user before
matches to the free-text field. When used in combination with the "O" flag, all
indexes will be searched for an exact match. Then, only if no matches are found,
will VA FileMan make a second pass through the indexes looking for partial
matches.

March 1999 VA FileMan 2-25
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

U Normally the lookup value is expected to be in external format (for dates, pointers
and such). VA FileMan first searches the requested index for a match to the user
input as it was typed in. Then, if no match is found, VA FileMan automatically
tries certain transforms on the lookup value.

For instance, if one of the lookup indexes is on a date field, VA FileMan tries to
transform the lookup value to an internal date, then checks the index again. The U
flag causes VA FileMan to look for an exact match on the index and to skip any
transforms. Thus, the lookup value must be in VA FileMan internal format. This is
especially useful for lookups on indexed pointer fields, where the internal entry
number (i.e., internal pointer value) from the pointed-to file is already known.

Ordinarily this flag would not be used along with the "A", "B", "M", "N" or "T"
flags. In many cases it makes sense to combine this with the X" flag.

\Y If DIC(0) contains V and only one match is made to the user's lookup value, then
they will be asked "OK?" and they will have to verify that the looked-up entry is
the one they wanted. This is an on the fly way of getting behavior similar to the
permanent flag that can be set on a file by answering "YES" to the question "ASK
'OK' WHEN LOOKING UP AN ENTRY?".

o REF: For more information, see the Edit File option [DIEDFILE] described
in the VA FileMan UTILITY option in the VA FileMan Advanced User
Manual.

X If DIC(0) contains X, for an exact match, the input value must be found exactly as
it was entered. Otherwise, the routine will look for any entries that begin with the
input X. Unless "X-act match' is specified, lowercase input that fails in the lookup
will automatically be converted to uppercase, for a second lookup attempt. The
difference between X and O (described above) is that X requires an exact match. If
there is not one, either DIC exits or tries to add a new entry. With O, if there is not
an exact match, DIC looks for a partial match beginning with the input.

4 If DIC(0) contains Z and if the lookup is successful, then the variable Y (0) will
also be returned. It will be set equal to the entire zero node of the entry that has
been found. Another array element, Y(0,0), is also returned and will be set equal to
the printable expression of the .01 field of the entry selected. This has no use for
Free Text and Numeric data types unless there is an OUTPUT transform. However,
for Date/Time, Set of Codes and Pointer data types, Y(0,0) will contain the
external format.

Adding New Subentries to a Multiple

You can use *DIC or FILEADICN to add new subentries to a multiple. In order to add a subentry, the
following variables need to be defined:

DIC Set to the full global root of the subentry. For example, if the multiple is one
level below the top file level: file's_root,entry#,multiple_field's_node,
DIC(0) Must contain "L" to allow LAYGO.
DIC("P") Set to the 2nd piece of 0-node of the multiple field's DD entry.
2-26 VA FileMan March 1999
Programmer Manual Revised Sept 2011

Version 22.0

Classic VA FileMan APIs

o NOTE: As of VA FileMan 22.0, the developer is no longer required to
set DIC("P™). The only exception to this is for a few files that are not
structured like a normal VA FileMan file, where the first subscript of
the data is variable in order to allow several different ‘globals' to use the
same DD. An example of this is the VA FileMan Audit files where the
first subscript is the file number of the file being audited.

DA(2)... Set up this array such that DA(1) is the IEN at the next higher file level above
DA(n) the multiple that the lookup is being performed in, DA(2) is the IEN at the
next higher file level (if any), ... DA(n) is the IEN at the file's top level.

A RECOMMENDATION: The value of the unsubscripted DA node
should not be defined when doing lookups in a subfile—that's
the value you're trying to obtain!

1. Figure 2-13 is an example of code that:
e Uses *DIC to interactively select a top-level record.
e Uses *DIC to select or create a subentry in a multiple in that record.
e Uses *DIE to edit fields in the selected or created subentry.

The file's root in this example is *DI1Z(16150,', the multiple's field number is 9, and the multiple is found
on node 4. The code for this example follows:

Figure 2-13. "DIC & “"DIE—Sample code to use “DIC to interactively select a top-level record and create a
subentry; and use ~DIE to edit fields in the subentry

; a call is made to DIC so the user can select an entry in the file

é DIC="~D1Z(16150,",DIC(0)=""QEAL"™ D ~DIC
I Y=-1 K DIC Q ;quit if look-up fails

a second DIC call is set up to select the subentry

DA(1)=+Y ;+Y contains the internal entry number of entry chosen
DIC=DIC_DA(1)_",4," ;the root of the subfile for that entry
DIC(0)=""QEAL"™ ;LAYGO to the subfile is allowed
DIC("'P™)=$P("DD(16150,9,0),"~",2) ;returns the subfile# and specifiers
~DIC 1 Y=-1 K DIC,DA Q ;user selects or adds subentry

e NONOGREOGNGERD

a DIE call is made to edit fields in subfile

DIE=DIC K DIC ;DIE now holds the subfile®"s root

DA=+Y ;+Y contains the internal entry number of subentry chosen
DR="1;2" D ~DIE ;edit fields number 1 and 2

DIE,DR,DA,Y Q

PN NN RN

March 1999 VA FileMan 2-27
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

2. File #662002 has a .01 field that points to the NEW PERSON file (#200). In this example, you will

use input arrays in DIC("?PARAM",662002,"FROM" 1) to start the list of entries in the "B" index of
File #662002 with the letter "M". Since DIC(0) contains "L" (user can add entries to the pointed-to
File #200), VA FileMan will also display entries from the NEW PERSON file (#200), so you use
DIC("?PARAM",200,"PART",1) to display only entries that start with the letter "S".

Figure 2-14. "DIC—Sample code to display a list of entries from two different files starting with different

letters (1 of 2)

>S DIC="D1Z(662002,DIC(0)="AEQZL"
>S DIC("'?PARAM™, 200, " PART",1)="5"
>S DIC("'?PARAM", 662002, ""FROM™*, 1)="M""

>D ~DIC

Figure 2-15. *"DIC— Sample code to display a list of entries from two different files startingwith different

letters (2 of 2)

Select FMEMOPLOYEE,NINETY POINT TO NEW PERSON PERSON NAME: ?7?

Choose from:

FMEMPLOYEE,NINE MAR 02, 1948 PROGRAMMER NF OIFO PROGRAMMER
FMEMPLOYEE,FIVE APR 03, 1948 TEAM LEAD FF PROGRAMMER
FMEMPLOYEE,EIGHT AUG 28, 1948 PROJECT MANAGER EF PROGRAMMER

FMEMPLOYEE,SIX JUN 12, 1955 COMPUTER SPECIALIST SF PROGRAMMER
FMEMPLOYEE,ONE NOV 11, 1961 SYSTEMS ANALYST OF PROGRAMMER
FMEMPLOYEE, THREE MAY 05, 1965 TEAM LEAD SF PROGRAMMER
FMEMPLOYEE,FOUR JAN 01, 1969 COMPUTER SPECIALIST FF
FMEMPLOYEE,TWO JUL 07, 1977 COMPUTER SPECIALIST SF PROGRAMMER

Choose from:
SHARED,MAIL
FMEMPLOYEE , FOURTY
FMEMPLOYEE, TEN
FMEMPLOYEE, THIRTY

FMEMPLOYEE ,SEVEN AUG 28, 1949 COMPUTER SPECIALIST SF PROGRAMMER

You may enter a new FMEMOPLOYEE,NINETY POINT TO NEW PERSON, if you wish

o NOTE: Data names have been "scrubbed" for privacy.

2-28 VA FileMan
Programmer Manual
Version 22.0

March 1999
Revised Sept 2011

Classic VA FileMan APIs

3. Inthis example, you are using the same files as in "Example B"; you will display entries from the
pointing File #662002, using the "AC" index, which sorts the entries by TITLE, then by NAME. In
this case, you will limit the number of entries displayed at one time from both File #662002 and File
#200 to 5.

Figure 2-16. “"DIC—Displaying entries from the pointing file using the ""AC" index (1 of 2)

>S DIC=""DIZ(662002,",DIC(0)="AEQZL"
>S DIC("*?PARAM™*, 662002, " INDEX"")=""AC"
>S DIC("?N™,662002)=5

>S DIC("*?N"",200)=5

>D ~DIC

Figure 2-17. "DIC—Displaying entries from the pointing file using the ""AC" index (2 of 2)

Select FMEMOPLOYEE,NINETY POINT TO NEW PERSON PERSON NAME: ?7?

Choose from:

TEAM LEAD FMEMPLOYEE,SIXTY MAR 01, 1875 TEAM LEAD SF PROGRAMMER

SYSTEMS ANALYST FMEMPLOYEE,ONE NOV 11, 1961 SYSTEMS ANALYST OF PROGRAMMER
TEAM LEAD FMEMPLOYEE,SEVENTY FEB 05, 1950 TEAM LEAD SF

COMPUTER SPECIALIST FMEMPLOYEE,SEVEN AUG 28, 1949 COMPUTER SPECIALIST SF
COMPUTER SPECIALIST FMEMPLOYEE,FOUR JAN 01, 1969 COMPUTER SPECIALIST FF

You may enter a new FMEMOPLOYEE,NINETY POINT TO NEW PERSON, if you wish
Answer with NEW PERSON NAME

Do you want the entire NEW PERSON List? Y <Enter> (Yes)
Choose from:

FMEMPLOYEE, EIGHTY EF PROGRAMMER
FMEMPLOYEE, SIXTY SF PROGRAMMER
FMEMPLOYEE, FORTY FF PROGRAMMER
FMEMPLOYEE , SEVENTY SF PROGRAMMER
FMEMPLOYEE, FIFTY FF PROGRAMMER

o NOTE: Data names have been "scrubbed" for privacy.

March 1999 VA FileMan 2-29
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

236 IX"DIC: Lookup/Add

This entry point is similar to *"DIC and MIX~DIC1, except for the way it uses cross-references to perform
lookup. The three entry points perform lookups as follows:

ADIC Starts with the B cross-reference, or uses only the B cross-reference [unless K is
passed in DIC(0)].

IX"DIC Starts with the cross-reference you specify or uses only the cross-reference you
specify.

MIX"DIC1 Uses the set of cross-references you specify.

Input Variables (Required)

NOTE: All of the input variables described in "DIC can be used in the IX"DIC call. The
following variables are required.

DIC The global root of the file (e.g., ~"D1Z(16000.1,).
DIC(0) The lookup parameters as previously described for "DIC.
D The cross-reference in which to start looking. If DIC(0) contains M, then DIC will

continue the search on all other lookup cross-references, in alphabetical order. If it
does not, then the lookup is only on the single cross-reference. This variable is
KILLed by VA FileMan; it is undefined when the IX*DIC call is complete.

If DIC(0) contains "L", (i.e., user will be allowed to add a new entry to the file), then
either a) D should be set to "B" or b) D should be set to an index that alphabetically
comes before "B" and DIC(0) should contain "M" or c¢) D should contain the name
of a compound index.

X If DIC(0) does not contain an A, then the variable X must be defined equal to the
value you want to look up.

If the lookup index is compound (i.e., has more than one data subscript), then X can
be an array X(n) where "n" represents the position in the subscript. For example, if
X(2) is passed in, it will be used as the lookup value to match to the entries in the
second subscript of the index. If only the lookup value X is passed, it will be
assumed to be the lookup value for the first subscript in the index, X(1).

2-30 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

Input Variables (Optional)

All of the *DIC input variables can be used in the IX"DIC call. These variables below are optional.

DIC("A"),
DIC("B"),
DIC("DR"),
DIC("P"),

DIC("PTRIX" f,p,t)=d

DIC("S"),
DIC("V"),
DIC("W")
DIC("?N" file#)=n

Output Variables

Y

Y(0)

Y(0,0)

March 1999
Revised Sept 2011

This set of input variables affects the behavior of lookup as described for
ADIC.

DIC always returns the variable Y. The variable Y is returned in one of these three
formats:

Y=-1 The lookup was unsuccessful.

Y=NA"S N is the Internal Entry Number of the entry in the file and S is the
value of the .01 field for that entry.

Y=N"S"1 N and S are defined as above and the 1 indicates that this entry has

just been added to the file.

This variable is only set if DIC(0) contains a Z. When the variable is set, it is equal
to the entire zero node of the entry that was selected.

This variable also is only set if DIC(0) contains a Z. When the variable is set, it is
equal to the external form of the .01 field of the entry.

The following are examples of returned Y variables based on a call to the (ficticious)
EMPLOYEE file stored in "EMP(:

>S DIC="~EMP("',DIC(0)="QEZ" ,X=""FMEMPLOYEE"

>D ~DIC
Returned is:
Y = "7~FMEMPLOYEE,ONE"
Y(0) = "FMEMPLOYEE,ONE~M"2231109/2
Y(0,0) = "FMEMPLOYEE,ONE"

If the lookup had been done on a file whose .01 field points to the EMPLOYEE file,
the returned variables might look like this:

VA FileMan 2-31
Programmer Manual
Version 22.0

Classic VA FileMan APIs

DTOUT
DUOUT

2-32

Y = "32"7" [Entry #32 in this file and #7 in
EMPLOYEE file.]
Y(0) = "7"RX 2354”0ON HOLD™
Y(0,0) = "FMEMPLOYEE,ONE" [.01 field of entry 7 in
EMPLOYEE file]

Contains the value of the field where the match occurred.

If the lookup index is compound (i.e., has more than one data subscript), and if
DIC(0) contains an A so that the user is prompted for lookup values, then X will be
output as an array X(n) where "n" represents the position in the subscript and will
contain the values from the index on which the entry was found. Thus, X(2) would
contain the value of the second subscript in the index. If possible, the entries will be
output in their external format (i.e., if the subscript is not computed and does not
have a transform). If the entry is not found on an index (for example, when lookup is
done with X="" [the space-bar return feature]), then X and X(1) will contain the
user input, but the rest of the X array will be undefined.

This is only defined if DIC has timed-out waiting for input from the user.
This is only defined if the user entered a caret.

VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.7 DOADICL1: File Information Setup

This entry point retrieves a file's file header node, code to execute its identifiers and its screen (if any),
and puts them into local variables for use during lookup into a file.

If $D(DO) is greater than zero, DO”DIC1 will QUIT immediately. If DIC("W") is defined before calling
DOMDICL1, it will not be changed.

Input Variables

DIC
DIC(0)

Output Variables

DO

DO(2)

DIC("W")

DO("SCR")

March 1999
Revised Sept 2011

The global root of the file (e.g., ~"D1Z(16000.1,).

The lookup parameters as previously described for *DIC.

File name”file number and specifiers. This is the file header node.

o NOTE: Use the letter O, not the number zero, in this variable name.

File number and specifiers. This is the second ~piece of DO. +DO(2) will always
equal the file number.

This is an executable variable which contains the write logic for identifiers. When an
entry is displayed, the execution of this variable shows other information to help
identify the entry. This variable is created by SORDERIing through the data
dictionary ID level, for example:

ADD(+DO(2),0," 1D, value)

o NOTE: The specifier, I, must be in DO(2) for VA FileMan to even look at the
ID-nodes.

An executable variable which contains a file's screen (if any). The screen is an IF-
statement that can screen out certain entries in the file. This differs from DIC("S") in
that it is used on every lookup regardless of input or output; that is, the screen is
applied to inquiries and printouts as well as to lookups. The value for this variable
comes from ADD(+D0(2),0,"SCR") and the specifier "s" must be in DO(2).

VA FileMan 2-33
Programmer Manual
Version 22.0

Classic VA FileMan APIs

2.3.8

MIX~DIC1: Lookup/Add

This entry point is similar to *DIC and IX"DIC, except for the way it uses cross-references to do lookup.
The three entry points perform lookups as follows:

~DIC

IX"DIC

MIX*DIC1

Starts with the B cross-reference or uses only the B cross-reference (unless K is
passed in DIC(0)).

Starts with the cross-reference you specify or uses only the cross-reference you
specify.
Uses the set of cross-references you specify.

Input Variables (Required)

NOTE: All of the input variables described in ~*DIC can be used in the MIX"DICL call. The
following variables are required.

DIC
DIC(0)
D

2-34

The global root of the file (e.g., “"D1Z(16000.1,).
The lookup parameters as previously described for *DIC.

The list of cross-references, separated by carets, to be searched

(e.g., D="SSN"WARD"B"). This variable is KILLed by VA FileMan; it is
undefined when the MIX"DICL1 call is complete. If DIC(0) contains "L", meaning
that the user can add a new entry to the file, then either a) the "B" index should be
included in the list contained in D, or b) D should be set to the name of a compound
index.

Make sure DIC(0) contains M; otherwise, only the first cross-reference in D will be
used for the lookup.

If DIC(0) does not contain an A, then the variable X must be defined equal to the
value you want to look up.

If the lookup index is compound (i.e., has more than one data subscript), then X can
be an array X(n) where "n" represents the position in the subscript. For example, if
X(2) is passed in, it will be used as the lookup value to match to the entries in the
second subscript of the index. If only the lookup value X is passed, it will be
assumed to be the lookup value for the first subscript in the index, X(1).

VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

Input Variables (Optional)

All of the *DIC input variables can be used in the MIX”*DIC1 call. The variables below are optional.

DIC("A"),
DIC("B"),
DIC("DR"),
DIC("P"),

DIC("PTRIX" f,p,t)=d

DIC("S"),
DIC("V"),
DIC("W")
DIC("?N" file#)=n

Output Variables

Y

Y(0)

Y(0,0)

March 1999
Revised Sept 2011

This set of input variables affects the behavior of lookup as described for
ADIC.

DIC always returns the variable Y. The variable Y is returned in one of the three
following formats:

Y=-1 The lookup was unsuccessful.

Y=NA"S N is the Internal Entry Number of the entry in the file and S is the
value of the .01 field for that entry.

Y=N"S"1 N and S are defined as above and the 1 indicates that this entry has
just been added to the file.

This variable is only set if DIC(0) contains a Z. When the variable is set, it is equal
to the entire zero node of the entry that was selected.

This variable also is only set if DIC(0) contains a Z. When the variable is set, it is
equal to the external form of the .01 field of the entry.

The following are examples of returned Y variables based on a call to the (ficticious)
EMPLOYEE file stored in "EMP(:

>S DIC="~EMP("',DIC(0)="QEZ" ,X=""FMEMPLOYEE"
>D ~DIC

Returned are;

Y = "7"FMEMPLOYEE,ONE"
Y(0) = "FMEMPLOYEE,ONE™M"223110972
Y(0,0) = "FMEMPLOYEE,ONE"

If the lookup had been done on a file whose .01 field points to the EMPLOYEE file,
the returned variables might look like this:

VA FileMan 2-35
Programmer Manual
Version 22.0

Classic VA FileMan APIs

DTOUT
DUOUT

2-36

Y = "32"7" [Entry #32 in this file and #7 in
EMPLOYEE file.]
Y(0) = "7"RX 2354”0ON HOLD™
Y(0,0) = "FMEMPLOYEE,ONE" [.01 field of entry 7 in
EMPLOYEE File]

Contains the value of the field where the match occurred.

If the lookup index is compound (i.e., has more than one data subscript), and if
DIC(0) contains an A so that the user is prompted for lookup values, then X will be
output as an array X(n) where "n" represents the position in the subscript and will
contain the values from the index on which the entry was found. Thus, X(2) would
contain the value of the second subscript in the index. If possible, the entries will be
output in their external format (i.e., if the subscript is not computed and does not
have a transform). If the entry is not found on an index (for example, when lookup is
done with X="" [the space-bar return feature]), then X and X(1) will contain the
user input, but the rest of the X array will be undefined.

This is only defined if DIC has timed-out waiting for input from the user.
This is only defined if the user entered a caret.

VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.9 WAITADICD: Wait Messages

Use this entry point to display VA FileMan's informational messages telling users that the program is
working and they must wait a while. The selection of the phrase is random. There are no input or output

variables.

Some sample messages are:

Figure 2-18. Sample VA FileMan informational messages: ""Wait" type messages

.. -EXCUSE ME, I"M WORKING AS FAST AS 1 CAN. ..

.-.-SORRY, LET ME THINK ABOUT THAT A MOMENT. ..

VA FileMan 2-37

Programmer Manual
Version 22.0

March 1999
Revised Sept 2011

Classic VA FileMan APIs

2.3.10 FILE”DICN: Add

This entry point adds a new entry to a file. The INPUT transform is not used to validate the value being
added as the .01 field of the new entry. This call does not override the checks in the LAYGO nodes of the
data dictionary; they must still prove true for an entry to be added.

FILEMDICN can also be used to add subentries in multiples.

o REF: See the Adding New Subentries to a Multiple discussion in the description of ~DIC.

Variables to Kill

DO If DO is set, then VA FileMan assumes that all of the variables described as output
in the call to DO"DICL1 have been set as well and that they describe the file to which
you wish to add a new record. If you're not sure, then DO should be KILLed and the
call will set it up for you based on the global root in DIC.

o NOTE: This variable is D with the letter O, not zero.

Input Variables

DIC The global root of the file.

DIC(0) (Required) A string of alphabetic characters which alter how DIC responds. At a
minimum this string must be set to null. The characters you can include are:

E Echo back information. This tells DIC that you are in an interactive mode
and are expecting to be able to receive input from the user. If there are
identifiers when adding a new entry, for example, the user can edit them as
the entry is added if the E flag is used.

F Prevents saving the entry number of the matched entry in the "DISV global.
Ordinarily, the entry number is saved at *DISV(DUZ,DIC). This allows the
user to do a subsequent lookup of the same entry simply by pressing the
SpaceBar and the <Enter> key. To avoid the time cost of setting this
global, include an F in DIC(0).

Z Zero node returned in Y(0) and external form in Y(0,0).
DIC("P™) o
NOTE: As of VA FileMan 22.0, the developer is no longer required to set
DIC("P").
The only exception to this is for a few files that are not structured like a normal VA
FileMan file, where the first subscript of the data is variable in order to allow several
different "globals™ to use the same DD. An example of this is the VA FileMan Audit
files where the first subscript is the file number of the file being audited.
Used when adding subentries in multiples.
2-38 VA FileMan March 1999

Programmer Manual Revised Sept 2011
Version 22.0

DA

DINUM

DIC("DR")

Output Variables

Y

Y(0)

Y(0,0)

March 1999
Revised Sept 2011

Classic VA FileMan APIs

o REF: See description in *DIC section.

Array of entry numbers.

o REF: See the "Adding New Subentries to a Multiple" topic in the description
of ADIC.

The internal value of the .01 field, as it is to be added to the file. The developer is
responsible for ensuring that all criteria described in the INPUT transform have been
met. That means that the value X must be in VA FileMan internal format as it would
be after executing the input transform. For example, a date must be in VA FileMan
internal format "2690302", not "March 02, 1969". Also local variables set by the
input transform code must be set. For example, if the input transform sets DINUM,
then DINUM must be set to the record number at which the entry must be added.

(Optional) Identifies the subscript at which the data is to be stored, that is, the
internal entry number of the new record, shown as follows. (This means that
DINUM must be a canonic number and that no data exists in the global at that
subscript location.)

$D(@(DIC_DINUM_')"))=0

If a record already exists at the DINUM internal entry number, no new entry is
made. The variable Y is returned equal -1.

(Optional) Used to input other data elements at the time of adding the entry. If the
user does not enter these elements, the entry will not be added. The format of
DIC("DR") is the same as the variable DR described under the discussion of ~DIE.

If there are any required Identifiers for the file or if there are security keys defined
for the file (in the KEY file [#.31]), and if DIC(0) does not contain an E, then the
identifier and key fields must be present in DIC("DR") in order for the record to be
added. If DIC(0) contains E, the user will be prompted to enter the identifier and key
fields whether or not they are in DIC("DR").

DIC always returns the variable Y, which can be in one of the two following values:
Y=-1 Indicates the lookup was unsuccessful; no new entry was added.

Y=N"SM N is the internal number of the entry in the file, S is the value of
the .01 field for that entry, and the 1 indicates that this entry has
just been added to the file.

This variable is only set if DIC(0) contains a Z. When it is set, it is equal to the
entire zero node of the entry that was selected.

This variable is also only set if DIC(0) contains a Z. When it is set, it is equal to the
external form of the .01 field of the entry.

VA FileMan 2-39
Programmer Manual
Version 22.0

Classic VA FileMan APIs

DTOUT This is only defined if DIC has timed-out waiting for input from the user.
DUOUT This is only defined if the user entered a caret.
X The variable X will be returned unchanged from the input value.

2-40

VA FileMan
Programmer Manual
Version 22.0

March 1999
Revised Sept 2011

2.3.11

Classic VA FileMan APIs

YNADICN: Yes/No

This entry point is a reader for a YES/NO response. You must display the prompt yourself before calling
YN/DICN. YN~DICN displays the question mark and the default response, reads and processes the
response, and returns %.

Recommendation: Instead of using this entry point, it is suggested that you use the generalized reader

"DIR. "DIR gives you greater flexibility in displaying prompts and help messages and also presents more
information about the user's response.

Input Variables

% Determines the default response as follows:
% =0 (zero) No default
%=1 YES
% =2 NO
Output Variables
% The processed user's response. It can be one of the following:
%=-1 The user entered a caret ("").
% = 0 (zero) The user pressed the <Enter> key when no default was
presented OR the user entered a ? (question mark).
%=1 The user entered a YES response.
% =2 The user entered a NO response.
%Y The actual text that the user entered.
March 1999 VA FileMan 2-41
Revised Sept 2011 Programmer Manual

Version 22.0

Classic VA FileMan APIs

2.3.12 DQMDICQ: Entry Display for Lookups

This entry point displays the list of entries in a file a user can see. It can be used to process question mark
responses directly. If DO is not defined, the first thing that DQ"DICQ does is call DO"DIC1 to get the
characteristics of the selected file.

Input Variables

DIC (Required) The global root of the file.

DIC(0) (Required) The lookup input parameter string as described for ~DIC.

DIC("S") (Optional) Use this variable in the same way as it is described as an input variable
for "DIC.

DIC("?N" file#)=n (Optional) Use this variable in the same way it is described as input to *DIC.

DIC("?PARAM", (Optional) Use this input array in the same way it is described as input to *DIC.

file#,"INDEX")=

index name

DIC("?PARAM", (Optional) Use this input array in the same way it is described as input to ~DIC.

file#,"FROM",n)=value

DIC("?PARAM", (Optional) Use this input array in the same way it is described as input to ~DIC.

file#,"PART" n)=

value

D (Required) Set to "B".

Dz (Required) Set to "??". This is set in order to prevent VA FileMan from issuing the

"DO YOU WANT TO SEE ALL nn ENTRIES?" prompt.

2-42 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.13 DT/DICRW: FM Variable Setup

Sets up the required variables of VA FileMan (FM). There are no input variables; simply call the routine
at this entry point.

o NOTE: This entry point KILLs the variables DIC and DIK.

Output Variables

DUz Set to zero if it is not already defined.
DUZ(0) Set to null if not already defined. If DUZ(0)="@", this subroutine will enable
terminal break if the operating system supports such functionality.
10(0) Set to $1 if 10(0) is not defined. Therefore, this program should not be called if the
user is on a device different from the home terminal and 10(0) is undefined.
DT Set to the current date, in VA FileMan format.
U Set to the caret ("").
March 1999 VA FileMan 2-43
Revised Sept 2011 Programmer Manual

Version 22.0

Classic VA FileMan APIs
2.3.14 ENZDID: Data Dictionary Listing

This entry point prints and/or displays a file's data dictionary listing by setting the input variables (the
same as the output from the List File Attributes option [DILIST] described in the VA FileMan Advanced
User Manual).

Input Variables

DIC Set to the data dictionary number of the file to list.

DIFORMAT Set to the desired data dictionary listing format. It must be one of the following
strings:

STANDARD

BRIEF

MODIFIED STANDARD

TEMPLATES ONLY

GLOBAL MAP

CONDENSED

INDEXES AND CROSS-REFERENCES ONLY
KEYS ONLY

2-44 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.15 /DIE: Edit Data

This routine handles input of selected data elements for a given file entry. You should use *DIE only to
edit existing records.

o NOTE: When you call the DIE routine, it does not lock the record; you must do that yourself.

o REF: See the discussion of locking below.
To allow the user to interactively choose the fields to edit, use the EN*DIB entry point instead.

Input Variables

DIE (Required) The global root of the file in the form "GLOBAL(or
NGLOBAL(#, or the number of the file.

If you are editing a subfile, set DIE to the full global root leading to the
subfile entry, including all intervening subscripts and the terminating
comma, up to but not including the IEN of the subfile entry to edit.

DA (Required) If you are editing an entry at the top level of a file, set DA to
the internal entry number of the file entry to be edited.

If you are editing an entry in a subfile, set up DA as an array, where
DA=entry number in the subfile to edit, DA(1) is the entry number at
the next higher file level,...DA(n) is the entry number at the file's top
level.

o REF: See the section below on Editing a Subfile Directly for
more information.

o NOTE: The variable DA is KILLed if an entry is deleted within
DIE. This can happen if the user answers with the @-sign when
editing the entry's .01 field.

DR (Required) A string specifying which data fields are asked for the given
entry. The fields specified by DR are asked whether or not VA FileMan
WRITE access security protection has been assigned to the fields.

You can include the following in the DR-string:
Field number: The internal number of a field in a file.

Field with Default Value: A field number followed by // (two slashes),
followed by a default value. You can make a field with no current data
value default to a particular data value you specify. For example, if
there is a file entry stored descendent from ~"FILE(777), and field #27
for this file is DATE OF ADMISSION, and you want the user to see:

March 1999 VA FileMan 2-45
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

DATE OF ADMISSION: TODAY//

Then the calling program should be:

>S DR="27//TODAY" ,DIE=""FILE(",DA=777
>D ~DIE

If the user just presses the <Enter> key when seeing the prompt, DIE
acts as though the user typed in the word TODAY.

Stuff a Field Value (Validated): A field number followed by /// (three
slashes), followed by a value. The value should be the external form of
the field's value, that is, the format that would be acceptable as a user's
response. The value is automatically inserted into the database after
passing through the INPUT transform. For example:

>S DR="27///TODAY" ,DIE=""~FILE("",DA=777
>D ~DIE

The user sees no prompts, and the current date is automatically stuffed
into field #27 of entry #777, even if other data previously existed there.

In the course of writing a routine, you may want to pass the value
contained in a variable to DIE and automatically insert the value into a
field. In that case, you would write:

>S DR="27///"S X=VAR"

You can also use the three-slash stuff to automatically add or select an
entry in a multiple. For example, if field #60 is a multiple field, and you
write:

>S DR="60///TODAY"

The entry in the subfile corresponding to TODAY would be selected, or
added if it did not already exist. Note, however, that if TODAY did not
already exist in the file, but could not be added (because LAYGO was
not allowed, for example), or if more than one TODAY entry already
existed in the file (that is, the lookup value was ambiguous), *DIE will
prompt the user to select an entry in the subfile. If you wish to add
entries or edit existing entries non-interactively, consider using
UPDATEDIE and FILE*DIE instead.

2-46 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

March 1999
Revised Sept 2011

Classic VA FileMan APIs

Stuff a Field Value (Unvalidated): A field number followed by ////
(four slashes), followed by a value. The value is automatically inserted
without validation into the database. For example:

>S DR="27////2570120" ,DIE=""FILE(" ,DA=777
>D ~DIE

The user sees no prompts, and the value 2570120 is put into field 27
without going through the INPUT transform. When using this form, the
data after the four slashes must already be in its internally stored form.
This cannot be used for .01 fields due to the differences between DIE
and DIC.

o NOTE: Key uniqueness is not enforced when a 4-slash stuff is
used.

Field Value Deletion: A field number followed by three or four slashes
(/I or I111) and an @-sign. This automatically deletes the field value. For
example:

>S DR="27///@"

The user does not see any prompts, and the value for field #27 is
deleted.

o NOTE: You cannot use this method to delete the value of a
required field, an uneditable field, a key field, or a field the user
does not have Delete access to.

Field Number Range: A range of field numbers, in the form M:N,
where M is the first and N the last number of the inclusive range. All
fields whose numbers lie within this range are asked.

Placeholder for Branching: A placeholder like @1.

o REF: See the discussion of branching below.
M Code: A line of M code.

Combination: A sequence of any of the above types, separated by
semicolons. If field numbers .01, 1, 2, 4, 10, 11, 12, 13, 14, 15, and 101
exist for the file stored in “FILE, and you want to have fields 4, .01, 10
through 15, and 101 asked in that order for entry number 777, you
simply write:

>S DIE=""~FILE(",DA=777,DR="4;.01;10:15;101"
>D ~DIE

VA FileMan 2-47
Programmer Manual
Version 22.0

Classic VA FileMan APIs

o NOTE: The DR-string contains the semicolon delimiter to
specify field numbers and the colon to specify a range of fields.
This prevents these two characters from being used as defaults.
They can, however, be placed in a variable which is then used as
the default instead of a literal, for example:

>S DR=""27///"S X=VAR"

INPUT template: An INPUT template name, preceded by an open
bracket ([) and followed by a closed bracket (]). All the fields in that
template are asked.

DIE("NOM) (Optional) Controls the use of the caret (") in an edit session. If this
variable does not exist, unrestricted use of the caret for jumping and
exiting is allowed. The variable may be set to one of the following:

"OUTOK" Allows exiting and prevents all jumping.

"BACK" Allows jumping back to a previously edited
field and does not allow exiting.

"BACKOUTOK" Allows jumping back to a previously edited
field and allows exiting.

"Other value" Prevents all jumping and does not allow
exiting.

DIE("PTRIX",f,p,t)=d DIE("PTRIX",f,p,t)=d where,
f = the from (pointing) file number
p = the pointer field number
t = the pointed-to file number
d = a caret ("N")-delimited list of index names

This optional input array allows you to control how lookups are done on
both multiple and non-multiple pointer and variable pointer fields. Each
node in this array is set to a list of index names, separated by carets
("~"). When the user edits a pointer or variable pointer field, only those
indexes in the list are used when searching the pointed-to file for
matches to the lookup value.

For example, if your input template contains a field #5 on file #16100
that is a pointer to the NEW PERSON file (#200), and you want the
lookup on the NEW PERSON file (#200) to be by name ("B" index), or
by the first letter of the last name concatenated with the last four digits
of the social security number (*"BS5" index), you would set the
following node before the ~DIE call:

2-48 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

DIDEL

Output Variables

DTOUT

Classic VA FileMan APIs

DIEC"PTRIX",16100,5,200)="B"BS"

o NOTE: If you allow records to be added to the pointed-to file,
you should include a "B" in the list of indexes, since when *DIE
adds an entry, it assumes the .01 field for the new entry is the
lookup value. However, the "B" index would not need to be
included if the first index in the "PTRIX" node is a compound
index whose first subscript is the .01 field.

(Optional) Overrides the DELETE access on a file or subfile. Set
DIDEL equal to the number of the file before calling DIE to allow the
user to delete an entire entry from that file, even if the user does not
normally have the ability to delete. This variable does not override the
"DEL"-nodes described in the Other Field Definition Nodes of the
Global File Structure section.

Is set when a time-out has occurred.

o NOTE: DA, DIE, DR, DIE(*"NO”"), and DIDEL are not KILLed
by DIE; however, the variable DA is KILLed if the entry is
deleted within DIE. This can happen if the user answers with an
@-sign when editing the entry's .01 field.

2.3.15.1 Details and Features of Data Editing

Locking
Edit Qualifiers
Branching

© o N o gk~ w Db

Filing

Specific Fields in Multiples

Continuation DR-Strings

Detecting Exits (by using the caret character; """)
Editing a Subfile Directly

Screening Variable Pointers

10. New Style Compound Indexes and Keys

March 1999
Revised Sept 2011

VA FileMan 2-49
Programmer Manual
Version 22.0

Classic VA FileMan APIs

2.3.15.1.1

Locking

If you want to ensure that two users cannot edit an entry at the same time, lock the entry. It is
recommended that you use incremental locks.

Here is a simple example of using incremental locks to lock an entry before editing and to remove the

lock after:

Figure 2-19. Sample code using incremental locks

S DIE=""FILE(",DA=777 ,DR="[EDIT]"
L +2FILE(777):0 1 $T D ™DIE L -~FILE(777) Q
W 1?5,"Another user is editing this entry." Q

o NOTE: The DIE call itself does NO locking.

2.3.15.1.2

Edit Qualifiers

In the DR string, you can use edit qualifiers (described in the VA FileMan Advanced User Manual) in
conjunction with the fields you specify. The possible qualifiers are T, DUP, REQ, and text literal strings

in quotes.

In interactive mode, users can combine qualifiers with fields by using semicolon separators. But, in DR-
strings, semicolons are already used to delimit individual fields, so you must use a different syntax for
DR. Basically, leave out the semicolon and the unnecessary characters. Using field #3 as an example, the
syntax for edit qualifiers in DR-strings is:

Interactive Syntax for DR- | Explanation

Syntax string

3T 3T The T follows the field number immediately.

3;"xxx" 3XxXX The quotes are removed from the literal and it follows the field
number immediately.

3;DUP 3d The D becomes lowercase and the UP is dropped.

3;REQ 3R The EQ is dropped and the uppercase R follows immediately.

You can combine specifiers as long as you separate them with tildes (~). For example, if you want to
require a response to field #3, and issue the title rather than the prompt, put 3R~T in the DR-string.

2.3.15.1.3

Branching

You can include branching logic within DR. To do this, insert an executable M statement in one of the
semicolon-pieces of DR. The M code is executed when this piece of DR is encountered by the DIE

routine.

2-50

March 1999
Revised Sept 2011

VA FileMan
Programmer Manual
Version 22.0

Classic VA FileMan APIs

If the M code sets the variable Y, DIE jumps to the field whose number (or label) matches Y. (The field
must be specified elsewhere within the DR variable.) Y may look like a placeholder (e.g., @1). If Y is set
to zero or the null string, DIE exits if the editing is at the top level; otherwise, it returns to the next higher
level. If Y is KILLed, or never set, no branching occurs.

The M code can calculate Y based on X, which equals the internal value of the field previously asked for
(as specified by the previous semicolon-piece of DR). Take the example below and suppose that you do
not want the user to be asked for field .01 if the answer to field 4 was YES, you would write the
following:

Figure 2-20. Sample code to calculate Y based on X

>S DIE=""~FILE(",DA=777
>S DR="4;1 X=""YES" S Y=10;.01;10:15;101"
>D ~DIE

NOTE: The ability to " jump™ (by using the caret character; "~") to specific fields does not take
into account previous branching logic. You must ensure that such movements are safe.

2.3.15.1.4 Specific Fields in Multiples

When you include the field number of a multiple in a DR-string, all the subfields of the multiple are
asked. However, suppose you want to edit only selected subfields in the multiple. To do this, set DR in
the usual manner and in addition set a subscripted value of DR equal to the subfields to edit. Subscript the
additional DR node by file level and then by the multiple's subfile number.

For example, if Field #15 is a Multiple and the subfile number for the Multiple is 16001.02 and you want
the user to be prompted only for subfields .01 and 7, do the following:

Figure 2-21. Specific fields in Multiples

>S DR=".01;15;6;8"
>S DR(2,16001.02)=".01;7"

Where the first subscript, 2, means the second level of the file and the second subscript is the subfile
number of the Multiple field (#15).

2.3.15.1.5 Continuation DR-Strings

If there are more than 245 characters in a DR-string, you can set continuation strings by defining the DR-
array at the third subscript level. These subscripts should be sequential integers starting at 1. For example,
the first continuation node of DR(2,16001.02) would be DR(2,16000.02,1); the second would be
DR(2,16001.02,2), and so on.

March 1999 VA FileMan 2-51
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

2.3.15.1.6 Detecting EXxits

You can determine, upon return from DIE, whether the user exited the routine by typing a caret character
("~"; sometimes referred to in VistA legacy documentation as the "up-arrow"). If the user did so, the
subscripted variable Y is defined; if all questions were asked and answered in normal sequence, $D(Y) is
zero.

2.3.15.1.7 Editing a Subfile Directly

You can call *DIE to directly edit an entry in a subfile; you can descend into as many subfiles as you need
to. Set the DIE input variable to the full global root leading to the subfile entry, including all intervening
subscripts and the terminating comma, up to—but not including—the IEN of the subfile entry to edit.
Then set an array element for each file and subfile level in the DA input variable, where DA=entry
number in the subfile to edit, DA(1) is the entry number at the next higher file level,...DA(n) is the entry
number at the file's top level.

For example, suppose that the data in subfile 16000.02 is stored descendent from subscript 20 and you are
going to edit entry number 777, subentry number 1; you would write the following:

Figure 2-22. Editing a subfile directly

>S DIE="~FILE(777,20," ; global root of subfile
>S DA(1)=777 ; entry number in file

>S DA=1 ; entry number in subfile

>S DR="3;7" ; fields in subfile to edit

>D ~DIE

o NOTE: The internal number of the entry into the file appears in the variable DIE and appears as
the value of DA(1). When doing this, it is necessary that the subfile descriptor node be defined.
In this example, it would be:

~FILE(777,20,0)=""16000.02"1ast number entered™number of entries"

o REF: See also the discussion of "Adding New Subentries to a Multiple" in the "*DIC:
Lookup/Add" topic in the Classic VA FileMan APIs.

2.3.15.1.8 Screening Variable Pointers

A variable pointer field can point to entries in more than one file. You can restrict the user's ability to
input entries to certain files by setting the DIC(""V") variable in a DR-string or in an INPUT template. It
screens files from the user. Set DIC("V") equal to a line of M code that returns a truth value when
executed. The code is executed after someone enters data into a variable pointer field. If the code tests
false, the user's input is rejected; VA FileMan responds with ?? and an audible sound ("beep™).

The code setting the DIC(""V") variable can be put into a DR-string or into an INPUT template. It is not a
separate input variable for ~DIE or ~DIC. It should be set immediately before the variable pointer field is
edited and it should be KILLed immediately after the field is edited.

2-52 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

When the user enters a value at a variable pointer field's prompt, VA FileMan determines in which file
that entry is found. The variable Y(0) is set equal to information for that file from the data dictionary
definition of the variable pointer field. You can use Y(0) in the code set into the DIC("V") variable. Y(0)
contains the following:

Table 2-10. Y(0) in the code set into the DIC(*'V"") variable

~-Piece Contents

Piece 1 File number of the pointed-to file.

Piece 2 Message defined for the pointed-to file.

Piece 3 Order defined for the pointed-to file.

Piece 4 Prefix defined for the pointed-to file.

Piece 5 y/n indicating if a screen is set up for the pointed-to file.

Piece 6 y/n indicating if the user can add new entries to the pointed to file.

All of this information was defined when that file was entered as one of the possibilities for the variable
pointer field.

For example, suppose Field #5 is a variable pointer pointing to files 1000, 2000, and 3000. If you only
want the user to be able to enter values from files 1000 or 3000, you could set up your INPUT template
like this:

Figure 2-23. "DIC—Sample INPUT template

THEN EDIT FIELD: AS DICC'V*)="1 +Y(0)=10001(+Y(0)=3000)"
THEN EDIT FIELD: 5
THEN EDIT FIELD: ~K DIC('V™)

2.3.15.1.9 Filing

DIE files data when any one of the following conditions is encountered:

The field entered or edited is cross-referenced.

A change of level occurs (i.e., either DIE must descend into a multiple or ascend to the level
above).

Navigation to another file occurs.

M code is encountered in one of the semicolon-pieces of the DR-string or in a template.
$S becomes less than 2000.

The user enters a caret (") to a field.

The end of the DR-string or INPUT template is reached.

Templates are compiled and the execution is transferred from one routine to the next.

March 1999 VA FileMan 2-53
Revised Sept 2011 Programmer Manual

Version 22.0

Classic VA FileMan APIs

2.3.15.1.10 New Style Compound Indexes and Keys

ADIE traditionally fires cross-references when the field on which the cross-reference is defined is edited.
New-style cross-references that have an execution of "/RECORD™" (hereafter referred to as record-level
indexes) are fired once at the end of the ~DIE call, after all the semicolon pieces of the DR string have
been processed.

When record-level uniqueness indexes are fired, the corresponding keys (hereafter called record-level
keys) are checked to ensure that they are unique. If edits to a field in a key result in a duplicate key, then
changes to that field are backed out and an error message is presented to the user.

You can set the DIEFIRE variable in any of the semicolon-pieces of DR to instruct VA FileMan to fire

the record-level indexes at that point and validate the corresponding record-level keys. You can also
control what VA FileMan does if any of the record-level keys is invalid.

Table 2-11. DIEFIRE variable settings

DIEFIRE Contains Action

M Print error message to user.

L Return the DIEBADK array (see Figure 2-24).

R Restore invalid key fields to their pre-edited values.

If DIEFIRE contains an L and a key is invalid, the DIEBADK array is set as follows:

Figure 2-24. Sample array when DIEFIRE contains an L and a key is invalid

DIEBADK(rFile#,key#,File#,1ENS, Field#,"0") = the original value of the field
DIEBADK(rFile#,key#,File#, IENS, Field#,""N'") = the new (invalid) value of the field

Where:

rFile# = The root file of the uniqueness index of the key. This is the file or subfile number of the
fields that make up the key.

key# = The internal entry number of the key in the KEY file (#.31).

filet# = The file of the uniqueness index of the key. This is the file or subfile where the uniqueness
index resides. For whole file indexes, this is a file or subfile at a higher level than root file.

IENS = The IENS of the record that—with the edits—would have a non-unique key.

field# = The field number of the field being edited.

If any of the Keys is invalid, VA FileMan sets the variable X to the string "BADKEY", which can be
checked by M code in the subsequent semicolon-piece of the DR string. The variable X and the local

2-54 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

array DIEBADK are available for use only in the semicolon piece immediately following the piece where
the DIEFIRE was set.

For example:

Figure 2-25. "DIE—Sample code setting the variable X to the string "BADKEY", if any of the Keys is invalid

>S DIE=""FILE(",DA=777

>S DR="@1;.01;.02;S DIEFIRE=""R""" ;1 X=""'BADKEY""
>S Y="reatti1n 2t

>D ~DIE

Here, the .01 and .02 field makes up a key to the file. After prompting the user for the value of the .02,
DIEFIRE is set to force VA FileMan to fire the record-level indexes and validate the key. If the key turns
out to be invalid, VA FileMan sets X equal to "BADKEY" and, since DIEFIRE equals R, restores the
fields to their pre-edited values. In the next semicolon-piece, you check if X equals "BADKEY" and, if
so, branch the user back to the placeholder @1.

March 1999 VA FileMan 2-55
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

2.3.16 ~DIEZ: INPUT Template Compilation

Interactively compiles or recompiles an INPUT template.

Compiling an INPUT template means telling VA FileMan to write a hard-coded M routine that will do
just what a particular INPUT template tells the Enter or Edit File Entries option [DIEDIT] to do. This can
enhance system performance by reducing the amount of data dictionary lookup that accompanies VA
FileMan input. The routines created by DIEZ should run from 20% to 80% maore efficiently than DIE
does for the same input.

Call “"DIEZ and specify the maximum number of characters you want in your routines, the name of the
INPUT template you are using, and the name of the M routine you want to create. If more code is
compiled than will fit into a single routine, overflow code will be incorporated in routines with the same
name, followed by 1, 2, etc. For example, routine DGT may call DGT1, DGT2, etc.

Once DIEZ has created a hard-coded routine for a particular INPUT template, VA FileMan automatically
uses that routine in the Enter or Edit File Entries option [DIEDIT], whenever that template is specified for
input. When definitions of fields used in the EDIT template are altered by the Modify File Attributes
[DIMODIFYT] or Utility Functions [DIUTILITY] options, the hard-code routines are recompiled
immediately.

2-56 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.17 ENZ/DIEZ: Input Template Compilation

This entry point compiles or recompiles an INPUT template, without user intervention.

REF: For more information about compiled INPUT templates, see "DIEZ: INPUT Template
Compilation.

Input Variables

X The name of the routine for the compiled INPUT template.
Y The internal entry number of the INPUT template to be compiled.
DMAX The maximum size the compiled routines should reach. Consider using the

$$ROUSIZEADILF function to set this variable.

March 1999 VA FileMan 2-57
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

2.3.18 ~DIK: Delete Entries

Call DIK at *DIK to delete an entry from a file.

CAUTION: Use DIK to delete entries with extreme caution. It does not check Delete
access for the file or any defined "DEL" nodes. Also, it does not update any pointers to
the deleted entries. However, it does execute all cross-references and triggers.

Table 2-12. "DIK—Reindexing quick reference

Entry Point Reindexes Entries | Reindexes Cross-references Executes Logic
ADIK All All KILL

EN”DIK 1 Some or all for 1 field KILL then SET
EN17DIK 1 Some or all for 1 field SET

EN2/DIK 1 Some or all for 1 field KILL
ENALL"DIK All Some or all for 1 field SET
ENALL2"DIK All Some or all for 1 field KILL

IX"DIK 1 All KILL then SET
IX1I"DIK 1 All SET

IX2"DIK 1 All KILL
IXALL"DIK All All SET
IXALL2"DIK All All KILL

Input Variables

DIK The global root of the file from which you want to delete an entry.

If you are deleting a subentry, set DIK to the full global root leading to the subentry,
including all intervening subscripts and the terminating comma, up to—but not
including—the IEN of the subfile entry to delete.

DA If you are deleting an entry at the top level of a file, set DA to the internal entry
number of the file entry to delete. For example, to delete ONE FMEMPLOYEE,
who is entry number 7, from the EMPLOYEE file, stored in the global "EMP, write
the following:

>S DIK=""EMP("*,DA=7
>D ~DIK

If you are deleting an entry in a subfile, set up DA as an array, where DA=entry
number in the subfile to delete, DA(1) is the entry number at the next higher file
level,...DA(n) is the entry number at the file's top level. For example, suppose
employee THREE FMEMPLOYEE (record #1) has two skill entries (subrecords #1

2-58 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

and #2) in a SKILL multiple. To delete the SKILL multiple's subrecord #2 you
would write:

>D ~DIK

Where DA is the skill entry number in the subfile and DA(1) is the employee's
internal entry number in the EMPLOYEE file.

Looping to Delete Several Entries

ADIK leaves the DA-array and DIK defined. So you can loop through a file to delete several entries:

Figure 2-26. "DIK—Sample code looping to delete several entries

>S DIK=""~EMP('" F DA=2,9,11 D ~DIK

This deletes entries 2, 9 and 11 from the EMPLOYEE file.

Deleting Fields from a File

As discussed in the How to Read an Attribute Dictionary section of the Global File Structure chapter,
each attribute dictionary is also in the form of a file. You can therefore use the routine DIK to delete a
single-valued field (i.e., not a multiple) from a file. To do this, the variable DIK is set to the file's data
dictionary global node; DA is set to the number of the field to be deleted; and DA(1) is set to the file
number. To delete the field SEX from the EMPLOYEE file example, simply write:

Figure 2-27. "DIK—Sample code deleting fields from a file

>S DIK="~DD(3,",DA=1,DA(1)=3
>D ~DIK

When you use *DIK to delete fields from a file, the data is not deleted.

NOTE: To delete a multiple from a file, use the APl EN*DIU2. For more information, see the
section “EN"DIUZ2: Data Dictionary Deletion” in the chapter titled “Classic VA FileMan AP1.”

March 1999 VA FileMan 2-59
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

2.3.19 ENZDIK: Reindex
Table 2-13. EN*DIK—Reindexing quick reference

Entry Point Reindexes Entries | Reindexes Cross-references | Executes Logic
ADIK All All KILL

EN”DIK 1 Some or all for 1 field KILL then SET
EN17DIK 1 Some or all for 1 field SET

EN2/DIK 1 Some or all for 1 field KILL
ENALL"DIK All Some or all for 1 field SET
ENALL2"DIK All Some or all for 1 field KILL

IX"DIK 1 All KILL then SET
IX1I"DIK 1 All SET

IX2"DIK 1 All KILL
IXALL"DIK All All SET
IXALL2"DIK All All KILL

EN”DIK reindexes one or more cross-references of a field for one entry in a file. It executes the KILL
logic first and then executes the SET logic of the cross-reference.

Before reindexing, you should be familiar with the effects of all relevant cross-references that could be
fired (including bulletins, triggers, and MUMPS-type).

Input Variables

DIK

DA

DIK(1)

2-60

If you are reindexing an entry at the top level of a file, set DIK to the global root of the
file.

If you are reindexing a subentry, set DIK to the full global root leading to the subentry,
including all intervening subscripts and the terminating comma, up to—but not
including—the IEN of the subfile entry to reindex.

If you are reindexing an entry at the top level of a file, set DA to the internal entry number
of the file entry to reindex.

If you are reindexing an entry in a subfile, set up DA as an array, where DA=entry
number in the subfile to reindex, DA(1) is the entry number at the next higher file
level,...DA(n) is the entry number at the file's top level.

Use the field number (to get all indexes) or the field number and specific indexes of the
cross-reference.

o REF: See the ENALL"DIK: Reindex API description for examples.

March 1999
Revised Sept 2011

VA FileMan
Programmer Manual
Version 22.0

Classic VA FileMan APIs

2.3.20 ENIMDIK: Reindex
Table 2-14. EN1"DIK—Reindexing quick reference

Entry Point Reindexes Entries | Reindexes Cross-references | Executes Logic
ADIK All All KILL

ENADIK 1 Some or all for 1 field KILL then SET
EN17DIK 1 Some or all for 1 field SET

EN2"DIK 1 Some or all for 1 field KILL
ENALL"DIK All Some or all for 1 field SET
ENALL27DIK All Some or all for 1 field KILL

IX"DIK 1 All KILL then SET
IX1I"DIK 1 All SET

IX2"DIK 1 All KILL
IXALL"DIK All All SET
IXALL2"DIK All All KILL

EN1"DIK reindexes one or more cross-references of a field for one entry in a file. It only executes the
SET logic of the cross-reference.

Before reindexing, you should be familiar with the effects of all relevant cross-references that could be
fired (including bulletins, triggers, and MUMPS-type).

Input Variables

DIK

DA

DIK(1)

March 1999

Revised Sept 2011

If you are reindexing an entry at the top level of a file, set DIK to the global root of the
file.

If you are reindexing a subentry, set DIK to the full global root leading to the subentry,
including all intervening subscripts and the terminating comma, up to—but not
including—the IEN of the subfile entry to reindex.

If you are reindexing an entry at the top level of a file, set DA to the internal entry number
of the file entry to reindex.

If you are reindexing an entry in a subfile, set up DA as an array, where DA=entry
number in the subfile to reindex, DA(1) is the entry number at the next higher file
level,...DA(n) is the entry number at the file's top level.

Use the field number (to get all cross-references) or the field number and specific indexes
of the cross-references you want.

o REF: See the ENALL"DIK: Reindex API description for examples.

VA FileMan
Programmer Manual
Version 22.0

2-61

Classic VA FileMan APIs

2.3.21 EN2"DIK: Reindex
Table 2-15. EN2~"DIK—Reindexing quick reference

Entry Point Reindexes Entries | Reindexes Cross-references | Executes Logic
ADIK All All KILL

ENADIK 1 Some or all for 1 field KILL then SET
EN17DIK 1 Some or all for 1 field SET

EN2"DIK 1 Some or all for 1 field KILL
ENALL"DIK All Some or all for 1 field SET
ENALL27DIK All Some or all for 1 field KILL

IX"DIK 1 All KILL then SET
IX1I"DIK 1 All SET

IX2"DIK 1 All KILL
IXALL"DIK All All SET
IXALL2"DIK All All KILL

EN2"DIK executes the KILL logic for one or more cross-references on a specific field for one entry in a

file.

Before calling this entry point, you should be familiar with the effects of executing the KILL logic for all
cross-references that could be fired (including bulletins, triggers, and MUMPS-type).

Input Variables

DIK

DA

DIK(L)

2-62

If you are executing the KILL logic for an entry at the top level of a file, set DIK
to the global root of the file.

If you are executing the KILL logic for a subentry, set DIK to the full global root
leading to the subentry, including all intervening subscripts and the terminating
comma, up to, but not including, the IEN of the subfile entry.

If you are executing the KILL logic for an entry at the top level of a file, set DA to the
internal entry number of that file entry.

If you are executing the KILL logic for an entry in a subfile, set up DA as an array, where
DA is entry number in the subfile, DA(1) is the entry number at the next higher file level,
etc. DA(n) is the entry number at the file's top level.

Use the field number (to get all cross-references) or the field number and specific indexes
of the cross-references you want.

March 1999
Revised Sept 2011

VA FileMan
Programmer Manual
Version 22.0

Classic VA FileMan APIs

o REF: See the ENALL"DIK: Reindex API description for examples.

2.3.22 ENALLAMDIK: Reindex
Table 2-16. ENALL"DIK—Reindexing quick reference

Entry Point Reindexes Entries | Reindexes Cross-references | Executes Logic
ADIK All All KILL

ENADIK 1 Some or all for 1 field KILL then SET
EN17DIK 1 Some or all for 1 field SET

EN2"DIK 1 Some or all for 1 field KILL
ENALL"DIK All Some or all for 1 field SET
ENALL27DIK All Some or all for 1 field KILL

IX"DIK 1 All KILL then SET
IX1I"DIK 1 All SET

IX2"DIK 1 All KILL
IXALL"DIK All All SET
IXALL2"DIK All All KILL

ENALLADIK reindexes all entries in a file for the cross-references on a specific field. It may also be used
to reindex all entries within a single subfile, which is a subfile corresponding to only one of the file's
entries. ENALL"DIK only executes the SET logic.

Before reindexing, you should be familiar with the effects of all relevant cross-references that could be
fired (including bulletins, triggers, and MUMPS-type).

o NOTE: IXALLMDIK, IXALL2"DIK, ENALL"DIK, ENALL2"DIK, and the Re-Index File
option [DIRDEX] on the Utility Functions menu [DIUTILITY] set the 3" piece of the 0 node of
the file's global root (the file header) to the last internal entry number used in the file. They set
the 4" piece to the total number of entries in the file.

March 1999

Revised Sept 2011

VA FileMan
Programmer Manual
Version 22.0

2-63

Classic VA FileMan APIs

Input Variables

DIK

DA(L..n)

DIK(L)

2-64

If you are reindexing an entry at the top level of a file, set DIK to the global root of the
file.

If you are reindexing subentries, set DIK to the full global root leading to the subentry,
including all intervening subscripts and the terminating comma, up to—but not
including—the IENSs of the subfile entries to reindex.

If you are reindexing entries in a subfile, set up DA as an array, where DA(1) is the entry
number at the next higher file level,...DA(n) is the entry number at the file's top level.
Since ENALL"DIK reindexes all entries at a given file level, do not set the unsubscripted
DA node.

Use the field number (to get all indexes) or the field number and specific cross-references
separated by carets (") as shown below:

>S DIK(1)="FLD#" ;Just the field number to get all indexes.

OR:

;Field number followed by cross-reference name or number.
S DIK(1)=""FLD#"™INDEX"
;See the examples below:

S DIK(1)=".01"B"
S DIK(1)=".01"B~C"
S DIK(1)=".01~172"
D ENALLADIK

VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.23 ENALL2MDIK: Reindex

Table 2-17. ENALL2"DIK—Reindexing quick reference

Entry Point Reindexes Entries | Reindexes Cross-references | Executes Logic
ADIK All All KILL

EN”DIK 1 Some or all for 1 field KILL then SET
EN17DIK 1 Some or all for 1 field SET

EN2/DIK 1 Some or all for 1 field KILL
ENALL"DIK All Some or all for 1 field SET
ENALL2"DIK All Some or all for 1 field KILL

IX"DIK 1 All KILL then SET
IX1I"DIK 1 All SET

IX2"DIK 1 All KILL
IXALL"DIK All All SET
IXALL2"DIK All All KILL

ENALL2"DIK executes the KILL logic for one or more cross-references on a specific field for all entries

in a file.

Before calling this entry point, you should be familiar with the effects of executing the KILL logic for all
cross-references that could be fired (including bulletins, triggers, and MUMPS-type).

o NOTE: IXALLMDIK, IXALL2"DIK, ENALL"DIK, ENALL2"DIK, and the Re-Index File
option [DIRDEX] on the Utility Functions menu [DIUTILITY] set the 3" piece of the 0 node of
the file's global root (the file header) to the last internal entry number used in the file. They set
the 4™ piece to the total number of entries in the file.

Input Variables

DIK

DA(L..n)

March 1999
Revised Sept 2011

If you are executing the KILL logic for all entries at the top level
of a file, set DIK to the global root of the file.

If you are executing the KILL logic for all entries in a subfile
only, set DIK to the full global root of the subfile.

If you are executing the KILL logic for all entries at the top level
of a file, this variable need not be set.

If you are executing the KILL logic for all entries in a subfile,
set up DA as an array, where DA(1) is the entry number at the
next higher file level, DA(2) is the entry number one level above
that, etc. DA(n) is the entry number at the file's top level. Since
ENALL2"DIK executes the KILL logic for all entries at a given

VA FileMan 2-65
Programmer Manual
Version 22.0

Classic VA FileMan APIs

file level, do not set the unsubscripted DA node.

DIK(1) Set DIK(1) to the field number (to get all cross-references
defined on that field). For example:

>S DIK(1)=.01

OR, set DIK(1) to the field number and the names or numbers of
specific cross-references on that field, all separated by carets
("~"). For example:

S DIK(1)=".017B"
S DIK(1)=".01"B"C"
S DIK(1)=".01r1"2"
D ENALL27DIK

2-66 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.24 IX"DIK: Reindex
Table 2-18. IX~"DIK—Reindexing quick reference

Entry Point Reindexes Entries | Reindexes Cross-references | Executes Logic
ADIK All All KILL

EN”DIK 1 Some or all for 1 field KILL then SET
EN17DIK 1 Some or all for 1 field SET

EN2/DIK 1 Some or all for 1 field KILL
ENALL"DIK All Some or all for 1 field SET
ENALL2"DIK All Some or all for 1 field KILL

IX"DIK 1 All KILL then SET
IX1I"DIK 1 All SET

IX2"DIK 1 All KILL
IXALL"DIK All All SET
IXALL2"DIK All All KILL

IX"DIK reindexes all cross-references of the file for only one entry in the file. It executes first the KILL
logic and then the SET logic. Reindexing occurs at all file levels at or below the one specified in DIK and

DA.

Before reindexing, you should be familiar with the effects of all relevant cross-references that could be
fired (including bulletins, triggers, and MUMPS-type).

Input Variables

DIK

DA

March 1999

If you are reindexing an entry at the top level of a file, set DIK to the global root of the

file.

If you are reindexing only a subentry, set DIK to the full global root leading to the
subentry, including all intervening subscripts and the terminating comma, up to—but not
including—the IEN of the subfile entry to reindex.

If you are reindexing an entry at the top level of a file, set DA to the internal entry number

of the file entry to reindex.

If you are reindexing an entry in a subfile, set up DA as an array, where DA=entry
number in the subfile to reindex, DA(1) is the entry number at the next higher file
level,...DA(n) is the entry number at the file's top level.

Revised Sept 2011

VA FileMan
Programmer Manual
Version 22.0

2-67

Classic VA FileMan APIs

2.3.25 IX1™DIK: Reindex
Table 2-19. IX1"DIK—Reindexing quick reference

Entry Point Reindexes Entries | Reindexes Cross-references | Executes Logic
ADIK All All KILL

EN”DIK 1 Some or all for 1 field KILL then SET
EN17DIK 1 Some or all for 1 field SET

EN2/DIK 1 Some or all for 1 field KILL
ENALL"DIK All Some or all for 1 field SET
ENALL2"DIK All Some or all for 1 field KILL

IX"DIK 1 All KILL then SET
IX1I"DIK 1 All SET

IX2"DIK 1 All KILL
IXALL"DIK All All SET
IXALL2"DIK All All KILL

IX17DIK reindexes all cross-references of the file for only one entry in the file. It only executes the SET
logic of the cross-reference. Reindexing occurs at all file levels at or below the one specified in DIK and

DA.

Before reindexing, you should be familiar with the effects of all relevant cross-references that could be
fired (including bulletins, triggers, and MUMPS-type).

Input Variables

DIK

DA

2-68

If you are reindexing an entry at the top level of a file, set DIK to the global root of the

file.

If you are reindexing a subentry, set DIK to the full global root leading to the subentry,
including all intervening subscripts and the terminating comma, up to but not including
the IEN of the subfile entry to reindex.

If you are reindexing an entry at the top level of a file, set DA to the internal entry
number of the file entry to reindex.

If you are reindexing an entry in a subfile, set up DA as an array, where DA=entry
number in the subfile to reindex, DA(1) is the entry number at the next higher file
level,...DA(n) is the entry number at the file's top level.

VA FileMan
Programmer Manual
Version 22.0

March 1999
Revised Sept 2011

Classic VA FileMan APIs

2.3.26 IX2"DIK: Reindex
Table 2-20. IX2"DIK—Reindexing quick reference

Entry Point Reindexes Entries | Reindexes Cross-references | Executes Logic
ADIK All All KILL

EN”DIK 1 Some or all for 1 field KILL then SET
EN17DIK 1 Some or all for 1 field SET

EN2/DIK 1 Some or all for 1 field KILL
ENALL"DIK All Some or all for 1 field SET
ENALL2"DIK All Some or all for 1 field KILL

IX"DIK 1 All KILL then SET
IX1I"DIK 1 All SET

IX2"DIK 1 All KILL
IXALL"DIK All All SET
IXALL2"DIK All All KILL

IX27DIK executes the KILL logic of all cross-references for only one entry at all file levels at and below
the one specified in DIK.

Before calling this entry point, you should be familiar with the effects of executing the KILL logic for all
cross-references that could be fired (including bulletins, triggers, and MUMPS-type).

Input Variables

DIK

DA

March 1999

If you are executing the KILL logic for an entry at the top level of a file, set DIK to the

global root of the file.

If you are executing the KILL logic for a subentry, set DIK to the full global root
leading to the subentry, including all intervening subscripts and the terminating comma,
up to - but not including the IEN of the subfile entry.

If you are executing the KILL logic for an entry at the top level of a file, set DA to the
internal entry number of that file entry.

If you are executing the KILL logic for an entry in a subfile, set up DA as an array,
where DA is the entry number in the subfile, DA(1) is the entry number at the next
higher file level, etc. DA(n) is the entry number at the file's top level.

Revised Sept 2011

VA FileMan
Programmer Manual
Version 22.0

2-69

Classic VA FileMan APIs

2.3.27 IXALLMDIK: Reindex
Table 2-21, IXALL"DIK—Reindexing quick reference

Entry Point Reindexes Entries | Reindexes Cross-references | Executes Logic
ADIK All All KILL

EN”DIK 1 Some or all for 1 field KILL then SET
EN17DIK 1 Some or all for 1 field SET

EN2/DIK 1 Some or all for 1 field KILL
ENALL"DIK All Some or all for 1 field SET
ENALL2"DIK All Some or all for 1 field KILL

IX"DIK 1 All KILL then SET
IX1I"DIK 1 All SET

IX2"DIK 1 All KILL
IXALL"DIK All All SET
IXALL2"DIK All All KILL

IXALL"DIK reindexes all cross-references for all entries in a file. It only executes the SET logic.

Before reindexing, you should be familiar with the effects of all relevant cross-references (including
bulletins, triggers, and MUMPS-type) that could be fired.

o NOTE: IXALLMDIK, IXALL2"DIK, ENALL"DIK, ENALL2"DIK, and the Re-Index File
option [DIRDEX] on the Utility Functions menu [DIUTILITY] set the 3 piece of the 0 node of
the file's global root (the file header) to the last internal entry number used in the file. They set
the 4" piece to the total number of entries in the file.

Input Variable

DIK

Example 1

The global root of the file to be indexed.

A simple call to re-index the EMPLOYEE file would be:

>S DIK=""EMP(* D IXALL"DIK

2-70

VA FileMan

Programmer Manual

Version 22.0

March 1999
Revised Sept 2011

Classic VA FileMan APIs

Example 2

The re-indexing of data dictionary #3 would be:

>S DA(1)=3,DIK="~DD(3," D IXALL™DIK

March 1999 VA FileMan 2-71
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

2.3.28 IXALL2"DIK: Reindex
Table 2-22. IXALL2"DIK Reindexing quick reference

Entry Point Reindexes Entries | Reindexes Cross-references | Executes Logic
ADIK All All KILL

EN”DIK 1 Some or all for 1 field KILL then SET
EN17DIK 1 Some or all for 1 field SET

EN2/DIK 1 Some or all for 1 field KILL
ENALL"DIK All Some or all for 1 field SET
ENALL2"DIK All Some or all for 1 field KILL

IX"DIK 1 All KILL then SET
IX1I"DIK 1 All SET

IX2"DIK 1 All KILL
IXALL"DIK All All SET
IXALL2"DIK All All KILL

IXALL2"DIK executes the KILL logic for all entries in a file.

Before calling this entry point, you should be familiar with the effects of executing the KILL logic for all
cross-references that could be fired (including bulletins, triggers, and MUMPS-type) that could be fired.

NOTE: IXALL"DIK, IXALL2"DIK, ENALL"DIK, ENALL2"DIK, and the Re-Index File
option [DIRDEX] on the Utility Functions menu [DIUTILITY] set the 3 piece of the 0 node of

the file's global root (the file header) to the last internal entry number used in the file. They set
the 4" piece to the total number of entries in the file.

Input Variable

DIK

DA

2-72

If you are executing the KILL logic for all entries at the top level of a file, set DIK to the
global root of the file.

If you are executing the KILL logic for all entries in a subfile, set DIK to the full global
root of the subfile.

If you are executing the KILL logic for all entries at the top level of a file, this variable
need not be set.

If you are executing the KILL logic for all entries in a subfile, set up DA as an array,
where DA(1) is the entry number of the next higher file level, DA(2) is the entry number
one level above that, etc. DA(n) is the entry number at the file's top level. Since
IXALL2"DIK executes the KILL logic for all entries at a given file level, do not set the
unsubscripted DA node.

March 1999
Revised Sept 2011

VA FileMan
Programmer Manual
Version 22.0

Classic VA FileMan APIs

2.3.29 ~"DIKZ: Cross-reference Compilation

Cross-references can be compiled into M routines by calling *"DIKZ. You will be prompted to specify the
maximum routine size and the name or number of the file. If you specify the routine name XXX and more
code is generated than can fit into that one routine, overflow routines (XXX1, XXX2, etc.) will be
created. Routine XXX may call XXX1, XXX2, etc.

Once DIKZ has been used to create hard-coded cross-reference routines, those routines are used when
calls to any entry point in DIK are made. However, if you restrict the cross-references to be reindexed by
using the DIK(1) variable, the compiled routines are not used. As soon as data dictionary cross-references
are added or deleted, the routines are recompiled. The purpose of this DIKZ code generation is simply to
improve overall system throughput.

REF: See the "Edit File" section of the VA FileMan Advanced User Manual for instructions on
permanently stopping the use of compiled cross-references, uncompiling cross-references.

March 1999 VA FileMan 2-73
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

2.3.30 ENZ/DIKZ: Compile

EN~DIKZ recompiles a file's cross-references by setting the input variables without user intervention.

Input Variables

X The routine name.
Y The file number of the file for which you want the cross-references recompiled.
DMAX The maximum size the compiled routines should reach. Consider using the

$$SROUSIZEMDILF function to set this variable.

2-74 VA FileMan March 1999

Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.31 $$ROUSIZENDILF: Routine Size

This argumentless function returns the maximum routine size that should be used when compiling cross-
references, print templates, or input templates.

Format

$SROUSIZENDILF

Input Parameters

None

Output

This function returns the maximum routine size defined in the MUMPS OPERATING SYSTEM file

(#.7).

Example

>W $$ROUSIZENDILF

4000
March 1999 VA FileMan 2-75
Revised Sept 2011 Programmer Manual

Version 22.0

Classic VA FileMan APIs

2.3.32 ~DIM: M Code Validation

Call ~DIM to validate any line of M code. "DIM checks that code conforms to the 1995 ANSI Standard.
Code is also checked against aspects of VHA's Programming Standards and Conventions (SAC).

o NOTE: "DIM does not allow KILLing an unsubscripted global.

Input Variable

X Invoke ~DIM with the line to be validated in the local variable X.

Output Variable

X ADIM either KILLs X or leaves it unchanged. If $D(X) is zero on return from ~DIM, the
line of code is invalid. However, the converse is not always true; in other words, *DIM is
not as smart as a real M interpreter and sometimes validates strings when it should not.

2-76 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.33 DT/DIO2: Date/Time Utility

This entry point takes an internal date in the variable Y and writes out its external form.

Example

>S Y=2690720.163 D DT~DI02
JUL 20,1969 1630

This results in Y being equal to JUL 20,1969 16:30. (No space before the 4-digit year; 2 spaces before
the hours [1630].)

Input Variable

Y (Required) This contains the internal date to be converted. Y is required and it is not
changed.

REF: In addition, see X ADD("DD") and DD"%DT, which also convert a date from internal
YYYMMDD format to external format.

March 1999 VA FileMan 2-77
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

2.3.34 ~DIOZ: Sort/Compile

This entry point marks a SORT template compiled or uncompiled. The ~DIOZ entry point asks for the
name of the SORT template to be used and whether the user wishes (1) to mark it compiled or (2) to
uncompile it if it is already marked compiled. Actual compilation occurs at the time the template is used
in the sort/print. There are no input or output variables.

SORT templates can be compiled into M routines to increase efficiency of the sort and improve system
performance. Good candidates for compilation are sorts with many sort fields or those that sort on fields
reached with relational syntax. The process of sort compilation is different from other VA FileMan
compiling activities. SORT templates can be "marked" for compilation, then each time the SORT
template is used in a VA FileMan sort/print, a new compiled routine is created. When the print job
finishes, the routine is deleted. The routine is named DISZnnnn where "nnnn" is a four-digit number. The
routine names are reused. Routine numbers are taken from the COMPILED ROUTINE file (#.83;
described in the section on the ENRLS”DIOZ utility in the VA FileMan Advanced User Manual). Thus, a
routine name is not tied to a particular SORT template.

2-78 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.35 ENI1”DIP: Print Data

Use EN1”DIP to print a range of entries, in columnar format.

Input Variables
Required

L

DIC

(Required) A required variable which should be set to zero or some string whose
numeric evaluation is zero (e.g., "LIST DRUGS"). If set to a text string, the string is
used to replace the word "SORT" in the "SORT BY:" prompts, when VA FileMan
asks the user for sort values:

LIST DRUGS BY: NAME//

(Required) The open global root of the file in the usual format (e.g., ""DIZ(16540,")
or the file number.

Optional: Sorting and Print Fields

FLDS

BY

March 1999
Revised Sept 2011

(Optional) The various fields to be printed. If this parameter is not sent, the user will
be prompted for fields to print. FLDS can contain the following:

The numbers or names of the fields to be printed, separated by commas. These fields
are printed in the order that they are listed. Print qualifiers, which determine column
width, caption contents, and many other features of the output, can be included
exactly as they are when answering the "PRINT FIELD:" prompt.

o REF: For details on print qualifiers, see the "Print" chapter in the VA FileMan
Getting Started Manual.

For example:
FLDS=".01,.03,1;C20"

If there are more fields than can fit on one string, FLDS can be subscripted
(FLDS(1), FLDS(2), and so forth), but FLDS as a single-valued variable must exist.

The name of a PRINT template preceded by an open bracket ([) and followed by a
close bracket (]). For example:

FLDS="[DEMO]"

(Optional) The fields by which the data is to be sorted. If BY is undefined, the user
is prompted for the sort conditions. You can sort by up to 7 fields; that is, you can
have up to a 7-level sort.

You can set BY to:

The numbers or names of the fields separated by commas. Sort qualifiers, which
determine aspects of the sort and of the printout, can be included exactly as they are

VA FileMan 2-79
Programmer Manual
Version 22.0

Classic VA FileMan APIs

FR

2-80

when answering the "SORT FIELD:" prompt. For example:
By=".01;C1,1"

If one of the comma pieces of the BY variable is the @-sign character, the user will
be asked for that SORT BY response. So if you want to sort by DIAGNOSIS but
allow the user to order the sort within DIAGNOSIS, set BY="DIAGNOSIS,@".

The name of a SORT template preceded by an open bracket () and followed by a
close bracket (]). For example:

BY=""[DEMOSORT]""

o NOTE: You cannot use the name of a SORT template in the BY variable if
the BY(0) input variable has been set. If you want to create such complex
sorts, you can include the BY(0) information within the SORT template. See
the section Storing BY(0) Specifications in SORT Templates, within the Details
and Features section of Controlling Sorts with BY(0) at the end of this call.

The name of a SEARCH template, preceded by an open bracket ([) and followed by
a close bracket (]). The SEARCH template must have results stored in it. Only those
records in the SEARCH template will print, and they will print in IEN order. For
example:

BY=""[DEMOSEARCH]"

o NOTE: If more than one field is included in the BY variable, separate the
fields with commas. The same comma-pieces will identify the field in the FR
and TO variables. If, for example, you wanted a sorted report of entries with
DOBs in 1960 and with ZIP CODEs in the 90000s, you could define the
variables by writing:

BY="DOB,ZIP CODE"
FR="01/01/60,90000"
T0=""12/31/60,99999""

Since the delimiter of BY is a comma, the value placed in the variable should
not contain a comma. Therefore, if your field name contains a comma, use the
field number in the BY variable instead of its name. For the same reason, if
sort from or to values contain commas, the alternate FR(n) and TO(n) input
arrays described below should be used instead of the FR and TO input
variables.

(Optional) The START WITH: values of the SORT BY fields. If FR is undefined,
the user will be asked the START WITH: question for each SORT BY field. If FR is
defined, it consists of one or more comma pieces, where the piece position
corresponds to the order of the sort field in the BY variable. Each comma piece can
be:

The value from which the selection of entries will begin.

Null. If a comma piece of FR is null, then the sort will start from the very beginning
of the file for that field.

VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

FR(n)

TO

March 1999
Revised Sept 2011

Classic VA FileMan APIs

?. The question mark as one of the comma pieces causes the "START WITH:"
prompt to be presented to the user for the corresponding SORT BY field.

@. The at-sign ("@") indicates that the sort should begin with null values, that is,
with entries that have no data on file. If the corresponding piece of the TO variable
or array also is set to @, then only entries with null values for this sort field will be
selected during the sort. If TO does not contain @, then after the null values, the sort
will start at the first non-null value and will go to the value indicated by TO.

o NOTE: If BY contains the name of a SORT template and if the developer
answered NO to the question SHOULD TEMPLATE USER BE ASKED
'FROM'-TO' RANGE... for a field at the time the template was defined, then
the information in the FR and TO variables is ignored for that field. Instead,
the from/to ranges stored in the sort template are used.

If you customize sorts using BY(0), see special note on FR in that section at
the end of this call.

(Optional) An alternate way to provide the START WITH: values of the SORT BY
fields. If FR is defined, it will override this array. The subscript n corresponds to the
comma piece in the BY variable (i.e., the sort by field number). This alternate way
of inputting the from and to values allows the use of values containing commas,
such as PATIENT NAMEs. Each nth entry in the array corresponds to, and can have
the same value as, the nth comma piece in the FR variable. The only difference is
that any nth entry, FR(n), can be undefined, causing the START WITH: question to
be asked for the nth SORT FIELD.

For example, if you were using the unsubscripted TO and FR variables to do a sort
on two fields, you might do as follows:

>S FR="A,01/01/95",T0="7Zz,01/31/95"

To set up the same sort using the subscripted forms of TO and FR, you would set
them up as follows:

>S FR(1)="A",FR(2)="01/01/95"
>S TO(1)="Zz",T0(2)="01/31/95"

o NOTE: If you customize sorts using BY(0), see special note on FR in that
section at the end of this call.

(Optional) The GO TO: values of the SORT BY fields. Its characteristics correspond
to the FR variable. If undefined, the user will be asked the GO TO: questions for
each SORT BY field. If TO is defined, it consists of one or more comma pieces.
Each comma piece can be:

e The value at which the selection of entries will end.

VA FileMan 2-81
Programmer Manual
Version 22.0

Classic VA FileMan APIs

TO(n)

o Null—If TO is null, then the sort will go from FR to the end of the file.

o ?—The question mark as one of the comma pieces causes the "GO TO:"
prompt to be presented to the user for the corresponding SORT BY field.

e @—The at-sign ("@") indicates that the sort should include null values, that
is, entries that have no data on file. If the corresponding piece of the FR
variable or array also is set to @, then only entries with null values for this
sort field will be selected during the sort. If FR does not contain @, then
after the null values, the sort will start at the FR value and include all other
non-null values to the end of the file.

o NOTE: If BY contains the name of a SORT template and if the developer
answered NO to the question SHOULD TEMPLATE USER BE ASKED
'FROM'-'TO' RANGE... for a field at the time the template was defined, then
the information in the FR and TO variables is ignored for that field. Instead,
the from/to ranges stored in the SORT template are used.

(Optional) An alternate way to provide the GO TO: values of the SORT BY fields.
If TO is defined, it will override this array. The subscript "n" corresponds to the
comma piece in the BY variable. This alternate way of inputting the from and to
values allows the use of values containing commas, such as PATIENT NAMEs.
Each nth entry in the array corresponds to, and can have the same value as, the nth
comma piece in the TO variable. The only difference is that any nth entry, TO(n),
can be undefined, causing the GO TO: question to be asked for the nth SORT BY
field.

If you customize sorts using BY(0), see special note on TO(n) in that section at the
end of this call.

Optional: Miscellaneous Features

DHD

DIASKHD

2-82

(Optional) The header desired for the output. DHD can be one of the following:

e @—1If header is not desired.

e @@—If header and form feed are not desired.

A literal that will be printed, as is, in the upper left hand corner of the printout. The
date, page and field headings will be in their normal places.

A line of M code which must begin with a write statement (e.g., DHD="W 20 D
NZZHDR").

A PRINT template name preceded by an open bracket ([) and followed by a close
bracket (]). In this case, the template replaces all parts of the header that VA
FileMan normally generates.

Two PRINT templates separated by a minus sign. The first will be used as the
header and the second will be used as the trailer. For example:

DHD="'[HEADER]-[TRAILER]"

(Optional) If this variable is defined, the user will be prompted to enter a header.
Set it equal to null (""). If this variable is undefined, the user will not have the
VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

DIPCRIT

PG
DHIT

DIOEND

DIOBEG
DCOPIES

IOP

DQTIME

March 1999
Revised Sept 2011

Classic VA FileMan APIs

opportunity to change the header on the print.

(Optional) If this variable is set to 1, the SORT criteria will print in the header of
the first page of the report.

(Optional) Starting page number. If variable is undefined, page 1 will be assumed.

(Optional) A string of M code which will be executed for every entry after all the
fields specified in FLDS have been printed.

(Optional) A string of M code which is executed after the printout has finished but
before returning to the calling program.

(Optional) A string of M code which is executed before the printout starts.

(Optional) If %ZIS chooses an SDP device, and if multiple copies are desired, you
can call for them by setting DCOPIES equal to the number (greater than one) of
copies desired.

o REF: For more information about SDP devices, see the Kernel Systems
Management Guide.

(Optional) EN1MDIP calls the ~%ZIS entry point to determine which device output
should go to. This requires user interaction unless you pre-answer the DEVICE
prompt. You can do this by setting IOP equal to the name of the device (as it is
stored in the DEVICE file[#3.5]) to which the output should be directed. You can
also set IOP in any of the additional formats recognized by "%ZIS to specify the
output device

o REF: For more information on ~%ZIS and IOP, see the Kernel Systems
Management Guide.

If you need to call *%ZIS beforehand to obtain the name of the device in question
from the user, call it with the %ZIS N flag set so that ~%ZIS does not actually open
the device. The name of the device is then returned in the ION output variable.
EN17DIP will open and close the device you specify in IOP on its own; do not
open it yourself beforehand.

In addition to setting 1OP equal to a device for printing, you can use this variable
(in conjunction with the DQTIME variable described immediately below) to queue
the printing of a report. This functionality is only available if Kernel is present.
Also, you must set up all of the input variables for EN1~DIP so that the user is not
asked any questions. For example, the BY, FR, and TO variables must be defined.
To establish queuing, 0P should equal Q;output device. For example:

>S 10P=""Q;MY PRINTER - NLQ"

(Optional) If output is queued, this variable contains the time for printing. You can
set it equal to any value that %DT recognizes. For example:

>S DQTIME=""NOW""

VA FileMan 2-83
Programmer Manual
Version 22.0

Classic VA FileMan APIs

DIS(0)

DIS(n)

DISUPNO

DISTOP

DISTOP("C")

OR:

>S DQTIME="T@11PM"

(Optional) You can screen out certain entries so that they do not appear on the
output by setting the optional array DIS. The first subscript in this array can be 0
(zero). This variable (as well as all the others) contains an executable line of M
code which includes an IF-statement. If the execution of the IF sets $T to 1, then
the entry will print. The internal number of the entry being processed is in DO.

(Optional) You can set other elements in the DIS array: DIS(1), DIS(2), DIS(3),
etc. The subscripts must be consecutive integers starting at 1. Again, they must
contain M code that sets $T. If many elements are defined, then DIS(0) (if it exists)
must be true and any one of the other elements in the array must be true for the
entry to print.

(Optional) If this variable is set to 1 and if no records are found within the sort
ranges specified for the print, the report header and the "No Records to Print"
message is not printed.

(Optional) If Kernel is present, by default, prints queued through the EN1*DIP call
can be stopped by the user with a TaskMan option. However, if this variable is set
to 0, users will not be able to stop their queued prints.

DISTOP can also be set equal to M code that will be executed once near the start of
a queued print. If the code sets $T to true, the user will be able to stop the job; if $T
is false, the user will not be able to. For example:

>S DISTOP="1 DUZ(0)="""@"""

This would mean that only those with programmer access could stop the print.

(Optional) If the user stops a queued print job by using TaskMan's option, code in
this optional variable will be executed before the output device is closed. It might,
for example, do clean up necessary because the job did not run to completion.

Optional: Controlling Sorts with BY(0)

BY(0)

L(0)

FR(O,n)

TO(0,n)
DISPAR(0,n)
DISPAR(0,n,"OUT")
2-84

For more information, see the "CONTROLLING SORTS WITH BY(0)" topic (In
Detail) at the end of this call.

VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Output Variables

None

Classic VA FileMan APIs

NOTE: Unlike most calls, EN1”"DIP KILLs all the input variables before it quits. You do not
have to KILL them.

Details and Features

Input Variables to Control You can use a special set of input variables to:

Sorts

Setting up BY, FR, and
TO Variables to Sort
within a Multiple

March 1999
Revised Sept 2011

Preselect a set of records for printing.

Preselect the order that these records should be printed in.

The set of variables for controlling sorts is:

BY(0), L(0), FR(O,n), TO(0,n), DISPAR(0,n), and DISPAR(O,n,"OUT")

o REF: Please see the Controlling Sorts with BY(0) section at the end of
this call for more information.

If you have a file like:

.01 PARENT NAME
1 SPOUSE (mult.)
.01 SPOUSE NAME
1 SPOUSE DOB
2 CHILDREN (mult.)
.01 CHILDS NAME
1 CHILDS DOB
2 CHILDS SEX
3 CHILDS NICKNAME
2 PARENT NICKNAME

And you wish to sort on the NICKNAME field for CHILDREN, from "A" to
"Z", then by the PARENT NICKNAME field from "B" to "E". You set:

BY = "1,2,3,2
FR = "A,B"
TO0 = "Z,E"

You must put in all field numbers to get down to the multiple in the BY
(1,2,3), but then it pops you out of the multiple so that the following number
2" in the BY gets you field 2 at the top level (PARENT NICKNAME), rather
than field 2 within the lowest multiple (SEX).

But note the FR and TO: here you just put the starting and ending values for

VA FileMan 2-85
Programmer Manual
Version 22.0

Classic VA FileMan APIs

the two fields on which you wish to sort.

o NOTE: This same logic does not work on the FLDS multiple. It is
suggested that in order to print fields within a multiple, the print logic
should be set up in a PRINT template.

Using EN1/DIP to Print The Audit files are structured differently than other VA FileMan files. To

Audit Trails print audit trails for a file's data or Data Dictionary, the DIC variable must
contain the global location of the requested audit file and the file number of
the file that was audited as the open root.

To print a data audit trail for File #662001, set DIC=""DIA(662001,". To
print the DD audit trail, set DIC=""DDA(662001,". The other input variables
are set as for a normal print. Remember that the fields being printed and
sorted come from the audit files, not from the file for which the audit trail
was recorded.

EN17DIP: Controlling Sorts with BY(0) (In Detail)

Ordinarily, you control the way EN1”DIP sorts output using the BY, FR, and TO input variables. This
lets you sort based on field values, a previous sort stored in a SORT template, or on the records stored in a
SEARCH template.

The BY(0) feature allows you to control the sort. With BY(0), you can force VA FileMan to sort using an
existing compound index (i.e., one that indexes more than a single data field) for efficiency. Or, use of
BY(0) allows you to pre-sort a list of record numbers in a global and pass this pre-sorted list to EN1”DIP.
This lets you pre-sort reports in any way that you can use subscripts to sort a global. The only limitation is
that the total number of subscripts in the global that you sort by must be seven or less.

The two main ways in which the BY(0) feature should be used are as follows:

o Set BY(0) to the global location of an existing VA FileMan index. In particular, this lets you sort
based on a MUMPS cross-reference or a compound cross-reference defined on the INDEX file
(#.11; not possible otherwise). Since the sorting is already done in advance, any such prints are
very fast.

e Set BY(0) to the global location of a list of records you create "on the fly." This lets you sort the
records in any order you want, and also lets you easily limit the number of records by pre-
selecting them.

2-86 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

Input Variables for Sorting with BY(0)

BY(0)

March 1999
Revised Sept 2011

(Optional; Required for BY(0) sorts) Set this variable to an open global
root. The open global root should be the static part of a global; a list of
record numbers must be stored at a descendent subscript level.

~D1Z(662001,"E",""FM-ALBERT"",1009)
~D1Z(662001,"E",""FM-ANDREA™,339)
~DI1Z(662001,"E", ""FM-ANDREW" ,552)

<-static part-> <-dynamic part->

In the example just above, you would set BY(0) to *D1Z(662001,"E",".

There can be intervening subscript levels between the static, fixed global
root and the subscript level where the list of records numbers is stored.
Any intervening subscript levels define a sort order. Use the L(0) input
variable to tell VA FileMan the number of dynamic subscript levels it
needs to sort through (see L(0) description below).

Alternatively, you can set BY(0) to the name of a SEARCH template, in
[brackets]. This tells VA FileMan to sort on the list of record numbers
contained in the corresponding SEARCH template entry in the *DIBT
global.

BY (0) affects your sorts as follows:
It restricts the possible records for printing to those in the specified list.

When you set BY(0) to a static global reference, each intervening
subscript level (between the static part of the global reference and the
subscript level containing record numbers) defines a sort level, starting
from the highest intervening subscript level.

BY(0) for a VA FileMan Index

If you set BY/(0) to sort based on an existing VA FileMan-maintained
cross-reference, make sure the subscript you set L(0) to point to is in fact
the location where VA FileMan stores its list of records (when sorting on
a regular single-field index, L(0) should be 2).

BY(0) for a List of Records "On the Fly"

If you build your own list of sorted records on the fly in a temporary
global (as opposed to setting BY(0) to a VA FileMan-maintained cross-
reference), it is best not to let the final subscript of your static global
reference be "B". For more information, see the discussion in the Details
and Features section below.

o NOTE: If you are using both the BY and BY(0) input variables, do
not set BY to the name of a template; an error message will print or
hard errors could result.

VA FileMan 2-87
Programmer Manual
Version 22.0

Classic VA FileMan APIs

L(0)

FR(0,n)

TO(0,n)

DISPAR(0,n)

2-88

(Optional; Required if BY/(0) is set to an open global root.)

Use L(0) to specify the number of dynamic subscript levels that exist
beyond the static global root, including the subscript level containing the
list of record numbers. The minimum value of L(0) is 1.

EN1MDIP lets you sort by up to 7 subscripts; therefore the maximum
value of L(0) is 8.

For example, if BY(0) refers to a regular "E" index on a file --
'"D1Z(662001,"E"," -- you should set L(0)=2 -- that is, one for the
subscript containing the (dynamic) value of the field being cross-
referenced, plus one for the record number.

(Optional) To select only a subset of records at a given subscript level
"n", you can use FR(0,n) and/or TO(0,n). For "n" equal to any of the "n"
dynamic sorting subscript levels in the global specified by BY(0), you
can set FR(0,n) to the sort-from value for that subscript level.

This restricts the printed records to those whose subscript values at
subscript level n sort the same or greater than the value you set into
FR(O,n). If FR(O,n) is undefined for any subscript n, the sort on that
subscript level begins with the first value for that subscript.

o NOTE: These values must be in VA FileMan internal format, as
they are stored in the subscript of the index or global defined by
BY(0).

(Optional) This variable contains the ending value (the sort-to value) for
any of the "n" dynamic sorting subscripts in the global specified by
BY(0). If TO(0,n) is undefined for any subscript ""n", the sort on that
subscript level ends with the last value for that subscript.

o NOTE: These values must be in VA FileMan internal format, as
they are stored in the subscript of the index or global defined by
BY(0).

(Optional) Like the FR(0,n) and TO(0,n) variables, this variable array can
be set for any of the "n™ dynamic sorting subscripts in the global specified
by BY(0). This array allows you to create subheaders for the sorting
subscripts in the global. In order to create a sub-header, you must define a
title for the subscript, as VA FileMan has no knowledge of the subscripts.
Each entry in the array can have information in two "-pieces.

The first piece contains the sort qualifiers that are normally entered
interactively before a sort field (see the User Manual for more
information.) Two of the sort qualifiers can be used here: "!" to number
the entries by sort value and "#" to page break when the sort values
changes.

The second piece contains the sort qualifiers that are normally entered
interactively after the sort field. In order to print a subheader, you must
enter literal subheader "caption” (e.g., "Station/PO Number: "). To have

VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

no subheader text other than the subheader value, use a null caption
(e.g.,"™). You can also use the sort qualifiers ;Cn ;Ln or ;Sn, (see the
User Getting Started Manual for more information.)

The subheaders defined in DISPAR(0,n) cannot be suppressed.

DISPAR(0,n,"OUT"™) (Optional) If a literal title is input to DISPAR(0,n) above, then you can
also enter M code to transform the value of the subscript from the global
before it is printed as a subheader. It acts like an OUTPUT transform. At
the time of execution, the untransformed value will be in Y. The code
should put the transformed value back into Y. Any other variables used in
the code should be NEWed.

Example 1

Suppose you have a simple MUMPS cross-reference that inverts dates so that the values in the cross-
reference are 99999999-date. The cross-reference might look something like:

AD1Z(662001,"AC™", 97069889, 2)=""

AD1Z(662001,"AC™", 97969898 ,3)=""

AD1Z(662001, " "AC™*, 97969798 ,1)=""
...etc.

If you wanted to sort all entries by this inverse date and to convert the date values into a readable format
for the subheader, you would set up the variables for the EN~DIP call like this:

>S DIC=""DI1Z(662001,",L=0,FLDS="your field list"

>S BY(0)="~DI1Z(662001,"""AC""","

>S L(0)=2

>S DISPAR(O,1)="";"""DATE"""

>S DISPAR(O,1,"0UT"")="S:Y Y=99999999-Y S Y=$$FMTE~AXLFDT(Y)"

Example 2

Suppose you have a list of record numbers in a global that looked like this:

ATMP($J,1)=""
ATMP($J,3)=""
ATMP($J,35)=""
ATMP($J,39)=""
...etc.

March 1999 VA FileMan 2-89
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

If you wanted to print those records sorted by the .01 field of the file, you would:

>S DIC="~D1Z(662001,",L=0,BY=.01, (FR,TO)=""",FLDS=""your field list"”
>S BY(0)=""TMP($J,"
>S L(0)=1

Example 3

Suppose you have a MUMPS multi-field-style cross-reference, with subscripts based on the values of two
fields. The first field in the subscript is free-text, and the second is a number. The cross-reference might
look like:

~DI1Z(662001, " AD",""ANY"",4.99,5)="""

~DI1Z(662001,"AD",""ANYTHING',1.3,2)="""

~DI1Z(662001, " AD",""ANYTHING" ,1.45,1)="""

~D1Z(662001,"AD",""SOMETHING", .4,10)="""
...etc.

You want to sort from value "A" to "AZ" on the free-text field and from 1 to 2 on the numeric field. Also,
you want to print a subheader for the numeric field. You could set your variables like this:

>S DIC="~DIZ(662001,",L=0,FLDS="your field list"
>S BY(0)="/~DIZ(662001,"""AD"","*

>S L(0)=3

>S FR(0,1)="A",TO(0,1)="AZ"

>S FR(0,2)=1,T0(0,2)=2

>S DISPAR(0,2)="";""NUMBER"""

>S DISPAR(0,2,"0UT"")="S Y=$J(Y,2)"

Details and Features

Sorting on MUMPS The BY(0) feature is designed to let you pre-sort your VA FileMan reports using

Cross-references MUMPS cross-references. As long as the MUMPS cross-reference has 0 to 7
dynamic (sorting) subscripts, followed by the record numbers stored in a final
subscript level, you can order your reports based on that cross-reference using
BY(0).

While you may have used MUMPS cross-references in the past only for sorting
hard-coded reports, you may want to consider using them with VA FileMan-
based reports as well.

Sorting a Compound The BY/(0) feature will allow you to sort using a compound cross-reference on
Cross-reference the INDEX file (#.11; a compound cross-reference is one that indexes more than
Defined in the INDEX one data field). This feature will let you use any index that has ho more than 7
file (#.11) data valued subscripts.

2-90 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Sorting Using One or
More Subscript Levels

Additional Sorting with
BY, FR,and TO

Storing BY(0)
Specifications in SORT
Templates

March 1999
Revised Sept 2011

Classic VA FileMan APIs

Each intervening subscript level between the static part of the open global root in
BY(0) and the record number subscript level serves as one sort level, starting
with the highest subscript level.

In Example 3, the records would sort by the value of the free-text field stored in
the first dynamic subscript, and within that by the value of the numeric field
stored in the second dynamic subscript.

When using BY(0), you can still sort in the usual way (setting BY, FR, and TO)
to further sort and limit the range within the list provided by BY(0). Note that if
you set BY(0), BY cannot contain the name of a SORT template. If your sort is
complicated, see the documentation that follows on "Storing BY(0)
specifications in SORT Templates."

VA FileMan selects only the list of records specified by BY(0) and its associated
variables. VA FileMan accepts as-is the sort sequence created by any dynamic
subscripts in the global specified in BY(0). Then within that sort sequence, it
further sorts the records by the information provided in the BY, FR, and TO
variables.

You can only sort by up to 7 sort levels in EN1"DIP, so the number of subscripts
you sort by using BY(0) combined with the number of fields you sort by using
BY must not total more than 7.

If BY(0) has been defined without BY, FR, and TO, the user will not be
prompted for the SORT BY or FROM/TO ranges.

You can store the BY(0) information in a SORT template, in order to design
more complicated sorts. This allows you to sort using the global described in the
BY(0) variable, and within those subscripts, to sort by additional fields and to
save the entire sort description into a template. You need programmer access to
do this.

In VA FileMan's sort dialogue (with programmer access), at the SORT BY:
prompt, you can enter the characters BY(0) as shown in the example
immediately below. When you enter BY(0), you are then prompted for the
BY(0), L(0) and all related values, exactly the same as if they were entered as
input variables to the EN1"DIP call.

Select OPTION: 2 <Enter> PRINT FILE ENTRIES

OUTPUT FROM WHAT FILE: ZZTAMI TEST// <Enter>
SORT BY: NAME// BY(O)

BY(0): // ~D1Z(662001,"H",
L(O): /7 2

Edit ranges or subheaders? NO// YES

SUBSCRIPT LEVEL: 1/7/ 1

FR(O,n): // 2690101

TO(0,n): // 2701231

DISPAR(O,n) PIECE ONE: // <Enter>
DISPAR(O,n) PIECE TWO: // ;"Date of Birth: "
DISPAR(0,Nn,0UT): // S Y=$$FMTEAXLFDT(Y,1)

VA FileMan 2-91
Programmer Manual
Version 22.0

Classic VA FileMan APIs

BY(0) "Don'ts"
2-92

Edit ranges or subheaders? NO// <Enter>
BY(0)="D1Z(662001,""H", L(0)=2

SUB: 1 FR(0,1): 2690101
T0(0,1): 2701231
DISPAR(0,1) PIECE ONE:
DISPAR(0,1) PIECE TWO: ;"Date of Birth: ™
DISPAR(0,1,0UT): S Y=$$FMTE~XLFDT(Y,1)

OK? YES// <Enter>
Enter additional sort fields? NO// YES

WITHIN BY(0), SORT BY: NAME
START WITH NAME: FIRST// <Enter>
WITHIN NAME, SORT BY: <Enter>

STORE IN "SORT" TEMPLATE: ZZTAMIBYO

When you enter BY(0), you are prompted for BY(0) and L(0). In addition, you
are asked if you want to edit ranges or subheaders. This lets you enter the
FR(O,n), TO(0,n), DISPAR(0,n) and DISPAR(0,n,"OUT") values for various
subscript levels. This lets you specify all the aspects of sorting using BY(0). You
can store these criteria in a SORT template. If you answer YES to "Enter
additional sort fields?", you will be allowed to enter additional sort fields, exactly
the same as you would when creating a SORT template without the BY (0)
features.

The functionality of BY(0) interactively or in a SORT template is identical to its
functionality in the EN1”DIP API.

An error results if, in a call to EN1"DIP, you sort by a SORT template that
contains BY(0) sort criteria, and also use BY(0) as an input variable.

o NOTE: The sort ranges associated with subscripts in the BY(0) global or
index can be set dynamically by setting the FR(0,n) and TO(0,n) input
variables. These input variables will override any sort ranges set in the
template.

The "SUBSCRIPT LEVEL" prompt refers to the position of the data value in the
global or index. Thus, entering a value for FR(0,n) when the SUBSCRIPT
LEVEL is 1, sets the "from™ value for the first data valued subscript.

Use the documentation for the BY(0) and related input variables for additional
help. Also be sure to use online ? and ?? help.

The following is an example of how to call EN1"DIP when the BY(0)
information is contained in a template:

>S DIC="~DI1Z(16600,",L=0,BY=""[ZZTEST]",FR(0,1)=70001,FLDS=.01
>D ENINDIP

You should not use BY(0) if you are merely setting it to the global location of an

VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

"On the Fly" Globals
Whose Static Global
Reference Ends with
IIBII

March 1999
Revised Sept 2011

Classic VA FileMan APIs

existing regular cross-reference. You will not gain any speed, because VA
FileMan's built-in sort optimizer already knows to sort on regular cross-
references.

Also, do not specify a field's regular cross-reference as the global reference in
BY(0) to sort on, and then sort on the same field using BY, FR, and TO. This
actually increases the amount of work VA FileMan needs to do!

If you build your own list of sorted records on the fly in a temporary global (as
opposed to setting BY(0) to a VA FileMan-maintained cross-reference), it is best
not to let the final subscript of your static global reference be "B".

This will avoid problems that might be caused by VA FileMan's special handling
of the "B" index for mnemonic cross-references.

VA FileMan 2-93
Programmer Manual
Version 22.0

Classic VA FileMan APIs

2.3.36 ~DIPT: Print Template Display

The PRINT TEMPLATE file (#.4) contains a computed field labeled PRINT FIELDS that displays a
PRINT template exactly as it was entered. Use this entry point to make this display immediately available
to a user.

Input Variable

DO (Required) Set DO equal to the internal number of the template in the PRINT
TEMPLATE file (#.4). For example, to display the PRINT template whose record number
is 70:

>S DO=70 D ~DIPT

o NOTE: Use the number 0 (zero) not the letter O in this variable name.

2-94 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.37 DIBT/DIPT: SORT Template Display

The SORT TEMPLATE file (#.401) contains a computed field labeled SORT FIELDS which displays a
SORT template exactly as it was entered. Use this entry point to make this display immediately available
to a user.

Input Variable

DO (Required) Set DO equal to the internal number of the template in the SORT

TEMPLATE file (#.401). For example, to display the SORT template whose record
number is 70:

>S DO=70 D DIBT~DIPT

o NOTE: Use the number 0 (zero) not the letter O in this variable.

March 1999 VA FileMan 2-95
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

2.3.38 ~DIPZ: PRINT Template Compilation

PRINT templates can be compiled into M routines just as INPUT templates can be. The purpose of this
DIPZ code generation is simply to improve overall system throughput.

Only regular PRINT templates can be compiled. You cannot compile FILEGRAM, EXTRACT, Selected
Fields for Export, or EXPORT templates that are also stored in the PRINT TEMPLATE file (#.4).

Call the “DIPZ routine and specify the maximum routine size, the name of the PRINT template to be
used, the name of the M routine to be created, and the margin width to be used for output (typically 80 or
132). If you specify the routine name XXX and if more code is generated than can fit into that one
routine, overflow routines (XXX1, XXX2, etc.) will be created. Routine XXX may call XXX1, XXX2,
etc.

Once DIPZ has been used to create a hard-coded output routine, that routine is usually invoked
automatically by VA FileMan within the Print File Entries and Search File Entries options and when
called at EN1”DIP whenever the corresponding PRINT template is used. The compiled routines are not
used if a user-specified output margin width is less than the compiled margin. Also, if the template is used
with ranked sorting (i.e., the ! sort qualifier is used), the compiled version is not used.

As with compiled INPUT templates, as soon as data dictionary definitions of fields used in the PRINT
template are changed, the hard-core routine(s) is/(are) compiled immediately.

Invoking Compiled PRINT Templates

A DIPZ-compiled M routine may be called by any program that passes to it the variables DT, DUZ, IOSL
(screen length), U (*), and DO (the entry number to be displayed). Additionally, the variable DXS must be
KILLed before calling the routine and after returning from it. The compiled routine writes out its report
for that single entry. However, routines compiled from templates that include statistical totals cannot be
called in this way.

2-96 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.39 ENA”DIPZ: Print Template Compilation

PRINT templates can be compiled into M routines just as INPUT templates can be. The purpose of this
DIPZ code generation is simply to improve overall system throughput.

Only regular PRINT templates can be compiled. You cannot compile Filegram, Extract, Selected Fields
for Export, or EXPORT templates that are also stored in the PRINT TEMPLATE file (#.4).

This entry point recompiles a PRINT template without user intervention by setting the input variables:

Input Variables

X The routine name.
Y The internal number of the template to be compiled.
DMAX The maximum size the compiled routines should reach. Consider using the

$$SROUSIZEMDILF function to set this variable.

March 1999 VA FileMan 2-97
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APls
2.3.40 D~DIQ: Display

This entry point takes an internal date in the variable Y and converts it to its external form. This call is
very similar to DD%DT.

Input Variable

Y (Required) Contains the internal date to be converted. If this has five or six decimal places,
seconds are automatically returned.

Output Variable

Y External form of the date or date/time value (e.g., JAN 01, 1998).
2-98 VA FileMan March 1999
Programmer Manual Revised Sept 2011

Version 22.0

Classic VA FileMan APls
2.3.41 DT/DIQ: Display

This call converts the date in Y exactly like D*"DIQ. Unlike D*DIQ, however, it also writes the date after
it has been converted.

Input Variable

Y (Required) Contains the internal date to be converted. If this has five or six decimal places,
seconds are automatically returned.

Output Variable

Y External form of the date or date/time value (e.g., JAN 01, 1998).
March 1999 VA FileMan 2-99
Revised Sept 2011 Programmer Manual

Version 22.0

Classic VA FileMan APIs

2.3.42

EN"DIQ: Display

This entry point displays a range of data elements in captioned format, to the current device. The output
from this call is very similar to that of the Inquiry to File Entries option [DIINQUIRE] (described in the
"Inquire Option" section of the VA FileMan Getting Started Manual).

Input Variables

DIC

DA

DR

DIQ(0)

2-100

(Required) The global root of the file in the form "GLOBAL(or "GLOBAL (#,

If you are displaying an entry in a subfile, set DIC to the full global root leading to the
subfile entry, including all intervening subscripts and the terminating comma, up to but not
including the IEN of the subfile entry to display.

(Required) If you are displaying an entry at the top level of a file, set DA to the internal
entry number of the file entry to display.

If you are editing an entry in a subfile, set up DA as an array, where DA=entry number in
the subfile to display, DA(1) is the entry number at the next higher file level,...DA(n) is the
entry number at the file's top level.

(Optional) Names the global subscript or subscripts which are to be displayed by DIQ. If
DR contains a colon (:), the range of subscripts is understood to be specified by what
precedes and follows the colon. Otherwise, DR is understood to be the literal name of the
subscript. All data fields stored within, and descendent from, the subscript(s) will be
displayed, even those which normally have Read access security protection.

If DR is not defined, all fields are displayed.

(Optional) You can include the following flags in this variable to change the display of the
entry:

A To display Audit records for the entry.
C To display Computed fields.
R To display the entry's Record number (IEN).
VA FileMan March 1999
Programmer Manual Revised Sept 2011

Version 22.0

Classic VA FileMan APls
2.3.43 Y~DIQ: Display

This entry point converts the internal form of any data element to its external form. It works for all VA
FileMan data types, uses output transforms, and follows pointer trails to their final resolution. The
equivalent Database Server call is $SEXTERNAL/DILFD.

Input Variables

Naked Global The naked global reference must be at the zero node of the data dictionary
Reference definition which describes the data [i.e., it must be at *"DD(File#,Field#,0)].
See the description of input variable C below for an example of setting the naked
reference.
Cc Set C to the second piece of the zero node of the data dictionary which defines

that element. Typically, the developer would:

>S C=$P("DD(File#,Field#,0),U,2)

and then:

>D YADIQ

This set will correctly set the naked global reference as described above.

Y Set Y to the internal form of the value being converted. This is the data that you
want to convert to external form.

Output Variable

Y The external form of the value. Basically, Y is changed from internal to external.

March 1999 VA FileMan 2-101
Revised Sept 2011 Programmer Manual

Version 22.0

Classic VA FileMan APIs

2.3.44 EN/DIQL: Data Retrieval

This entry point retrieves data from a file for a particular entry.
o NOTE: The equivalent Database Server calls are GETS"DIQ and $$GET1/DIQ.

It is your responsibility to KILL the output array, "UTILITY("DIQ1",$J), before and after using this call.

Input Variables

DIC The file number or global root.
DR A string specifying the data fields to retrieve for the given entry. The DR-string
may contain:

A single number corresponding to the internal number of a field in the file.

A range of field numbers, in the form M:N, where M is the first and N the last
number of the inclusive range. All fields whose numbers lie within this range will
be retrieved.

A combination of the above, separated by semicolons. If field numbers .01, 1, 2,
4,10, 11, 12, 13, 14, 15, and 101 exist for a file, and you want to retrieve the data
in these fields, simply write:

>S DR=".01;1;4;10:15;101"

DR(subfile_number) If you want to retrieve values from fields from a subentry in a multiple field,
include the top-level field number for the multiple in DR. Then, include the
multiple's subfield numbers whose values you want to retrieve in a node in DR,
subscripted by the subfile number.

o REF: To specify which subfile entry to retrieve, see also
DA(subfile_number).

For example, if you want to retrieve data from subfields .01 and 7 for subentry 1
from field 4 which defines the multiple 16000.02, then you write:

>S DIC=16000,DR="4",DA=777
>S DR(16000.02)=".01:7",DA(16000.02)=1
>D EN?DIQ1

DA The internal number of the entry from which data is to be extracted.

DA(subfile_number) If you want to retrieve values from fields from a subentry in a multiple, set DA to
the top-level entry number. Then, include the subentry number in a node in DA,
subscripted by the subfile number. See DR(subfile_number) above for how to

2-102 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

specify which fields in the subfile entry to retrieve.

You can descend one or more subfile levels; however, you can only retrieve
values for one subentry at any given subfile level. The full path from the top level
of the file to the lowest-level subfile entry must be fully specified in nodes in DR
and DA.

DIQ (Optional) The local array name into which the field values will be placed.
AUTILITY("DIQL",$J, will be used if DIQ is not present. This array name should
not begin with DI.

DIQ(0) (Optional) This variable is used to control which is returned: internal values,
external values, or both. DIQ(0) also indicates when null values are not returned.
The DIQ(0) string can contain the values that follow:

I return Internal values
E return External values

N do not return Null values

Output

The format and location of the output from EN~DIQ1 depends on the status of input variables DIQ and
DIQ(0) and on whether or not a word-processing field is involved.

DIQ and DIQ(0) undefined

Output into:

AUTILITY(C'DIQL,$d, File#,DA, Field#)=external value

This is for backward compatibility. Each field requested will be defined in the utility global but the value
may be null. The only exception to this would be when DA held the number of an entry which does not
exist. In that case, nothing is returned. The values returned are the external values. Printable values—
pointers, sets of codes, etc.—are resolved; dates are in external format.

DIQ(0) defined, DIQ undefined

Output into:

AUTILITY(C'DIQL,$d, File#,DA, Field#,"E'")=external value
AUTILITY(C'DIQL,$d, File#,DA, Field#,"I'")=internal value

If DIQ(0) contains "E", the external value is returned with a final global subscript of "E".

March 1999 VA FileMan 2-103
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

If DIQ(0) contains "I", the internally stored value is returned with a final global subscript of "I". The
internal value is the value stored in the file, for example, the record number of the entry in the pointed-to
file, not the resolved value of the pointer. Since computed fields store no data, no nodes are returned for
computed fields.

If DIQ(0) contains "N", no nodes are set for either internal or external values if the field is null.

If DIQ(0) contains both "I" and "E", generally two nodes are returned for each field: one with the internal
value, one with the external value. However, no nodes are produced for the internal value if the field is
computed and no nodes are produced at all for null-valued fields if DIC(0) contains "N". Nodes are
subscripted as described above.

DIQ defined

The output is similar except that the data is stored in the specified local array. So if DIQ(0) is not defined,
then the output is:

@(DI1Q(File#,DA, Field#))=external value

If DIQ(0) is defined, then the output is:

@DIQ(File#,DA,field#,"E'")=external value
@DIQ(File#,DA,field#,"I')=internal value

Word-processing Field

Output from a word-processing field will only be an external value. The status of DIQ(0) has no effect. If
DIQ is not defined, it goes into the global nodes that follow:

AUTILITY('DIQL™,$J, File#,DA, Field#,1)
AUTILITY('DIQL™,$J, File#,DA, Field#,2)

2-104 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

If DIQ is defined, it goes into:

@DIQ(File#,DA,field#,1)=External Value
@DIQ(File#,DA,field#,2)=External Value
@DIQ(File#,DA,field#,3)=External Value
@DIQ(File#,DA,field#,4)=External Value

AWNPE

March 1999 VA FileMan 2-105
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

2.3.45 ~"DIR: Reader

DIR is a general purpose response reader that can be used to issue a prompt, read input interactively,
perform syntax checking on the input, issue error messages or help text, and return input in a processed
form. Its use is recommended to standardize user dialogue and to eliminate repetitive coding.

DIR is reentrant: A DIR call may be made from within a DIR call. To reenter DIR, use the NEW
command to save the DIR array (NEW DIR) before setting input variables and making the second call.

1. Input and Output Variables (Summary)
2. Required Input Variables (Full Listing)
3. Optional Input Variables (Full Listing)
4. Output Variables (Full Listing)
5

Examples

2.3.45.1 Input and Output Variables (Summary)

Input Variables-Required

DIR(0) Required: First character of Piece-1 (first3 Read type
characters for DD-type)

Optional: Subsequent characters of Piece-1 Input modifiers

Optional: Piece-2 Input parameters
Optional: Piece-3 INPUT transform
Input Variables-Optional
DA For DD-type reads, can specify entry from which to retrieve default value
DIR("A") Developer-supplied prompt to override default
DIR("A" #) Array for information to be displayed before the prompt
DIR("B") Default response
DIR("L™ For set-of-code fields: developer-specified format to display codes.
DIR("L"#)
DIR("S™) Screen for pointer, set-of-code, and list/range reads
DIR("T™) Time specification to be used instead of DTIME
DIR("?") Help displayed when the user enters a single question mark
DIR("?" #)
DIR("??7") Help displayed when the user enters a double question mark

Output Variables-Always Returned

X Unprocessed user response
2-106 VA FileMan March 1999
Programmer Manual Revised Sept 2011

Version 22.0

Classic VA FileMan APIs

Y Processed user response
Output Variables-Conditionally Returned

Y(0) External form of response for set, pointer, list, and date

DTOUT Defined if the user times out

DUOUT Defined if the user entered a caret (")

DIRUT Defined if the user entered a caret ("~"), pressed the <Enter> key, or timed out
DIROUT Defined if the user enters two carets ("~ ")

2.3.45.2 Required Input Variables (Full Listing)

DIR(O DIR(0) is the only required input variable. It is a three piece variable. The first character of
the first piece must be defined (or first 3 characters for DD-type). Additional characters of
the first piece and the second two pieces are all optional.

The first character of the first caret (") piece indicates the type of the input to be read. The
second piece describes parameters, delimited by colons, to be applied to the input. Examples
are maximum length for free text data or decimal digits for numeric data. The third piece is
executable M code that acts on the input in the same manner as an INPUT transform. The
acceptable types are shown below:

DIR(0) (Summary)

DIR(0) Piece-1 Piece-2 Piece-3
Read Type First Character Subsequent Format Executable M
(required) Characters code (optional)
(optional)

Date D A0 Minimum code
date:-
Maximum
date:%DT

End-of-Page E A -- -

Free-text F A,0U,r Minimum code
length:
Maximum
length

Listorrange L A0,C Minimum:Ma code
ximum:Maxi
mum decimals

Numeric N A0 Minimum:Ma code
ximum:Maxi
mum decimals

Pointer p AOr Global Root code
or #:DIC(0)

March 1999 VA FileMan 2-107
Revised Sept 2011 Programmer Manual

Version 22.0

Classic VA FileMan APIs

Set of Codes S A,0,X,B Code: code
Stands
for;Code:
stands for;
Yes/No Y A0 - code
DD # 4 AO,r -- code

DIR(0) (Detailed Explanation)
Piece-1 of DIR(0) (Subsequent Characters are Optional):

The first caret (") piece of DIR(0) can contain other parameters that help to specify the
nature of the input or modify the behavior of the reader. These characters must appear after
the character indicating type (or after the field number if it is a DD type). They are described
below and examples are provided later in this section):

A

2-108

Indicates that nothing should be Appended to the developer-supplied prompt
DIR("A"), which is described below. If there is no DIR("A"), then no prompt
is issued.

Only applies to a set of codes; indicates that the possible choices are to be
listed horizontally after the prompt.

Only applies to list reads. The values returned in Y and the Y() array are
Compressed. They are not expanded to include each individual number, rather,
ranges of values are returned using the hyphen syntax. This is similar to the
format in which the user can enter a range of numbers.

This flag is particularly useful when a user may select many numbers
(e.g., when decimals are involved). The call is much faster and the possibility
of the local symbol table filling up with nodes in the Y() array is eliminated.

Indicates that a response is Optional. If this is not included, then a null
response is not allowed. For DD type reads, the O is automatically included if
the field in question is not a required field.

If user does not choose to accept the default, they must type in their entire
response. They will not get the "Replace-With" prompt, no matter how long
the default response is.

Only applies to free text reads. It allows the user response to contain a caret
("~"). A leading caret aborts the READ and SETs DUOUT and DIRUT
whether or not U is in DIR(0). However, U allows s to be embedded in the
user response.

Only applies to set of codes. Indicates a request for an eXact match. No lower-
to uppercase conversion is to be done.

VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

Piece-2 of DIR(0) (Optional)
Qualifying limits on user response are as described in summary table above.
Piece-3 of DIR(0) (Optional)

The third piece of DIR(0) is executable M code that acts like the INPUT transform of a field
in a data dictionary. The value that was entered by the user is contained in the variable X.
The code can examine X and, if it is not appropriate, should KILL X. If X is undefined after
the execution of the third piece of DIR(0), the reader knows that the input was unacceptable,
issues a help message, and re-asks for input. It is unnecessary to put checks for minimum and
maximum or length in the third piece. These should be specified in the second piece of
DIR(0). An example of DIR(0) with all three pieces is:

>S DIR(0)="F"3:30"K:X"?.U X"

This means that if the input is not all uppercase, then the data is unacceptable. The check for
a length from 3 to 30 characters takes place automatically because of the second piece. The
third piece is not executed if the specifications in the second piece are not met. If the user
combines the DD data type with a third piece in DIR(0), for example:

>S DIR(0)="19, .01MK:X"?21""DI"""" X"

Then the third piece of DIR(0) is not executed until after the INPUT transform has been
executed and X was not Killed by the transform.

2.3.45.3 Optional Input Variables (Full Listing)

DA (Optional) For DD-type reads only, if DIR("B") is not set, you may retrieve a
value from the database to display as a default. Identify the entry from which the
value should come by setting the DA variable to its record number. If a subfile is
involved, set up a DA() array where DA equals the record number for the lowest
level subfile, DA(1) for the next higher, and so on.

o NOTE: Although you can retrieve defaults from the database by using DA,
the values in the database are not changed by "DIR calls.

DIR("A") (Optional) The reader provides a generic default prompt for each type (e.g., enter a
number or enter response). To issue a more meaningful prompt, DIR("A") can be
set to a character string that more clearly indicates the nature of the data being
requested. For example, setting the following:

>S DIR("A™)="PRICE PER DISPENSE UNIT: "
>S DIR(0)="NANO:5:2"

March 1999 VA FileMan 2-109
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

DIR("A" #)

DIR("B")

DIR("L") DIR("L" #)

2-110

Causes the prompt to appear as:

PRICE PER DISPENSE UNIT:

(Optional) If you want to issue a longer message before actually reading the input,
you can set the DIR("A",#) array in addition to DIR("A"). The #'s must be
numeric. After the array has been displayed, DIR("A") is issued as the prompt for
the read. It is necessary for DIR("A™) to be set if the developer is to use this array.
For example, setting the following:

>S DIR("A™)="PRICE PER DISPENSE UNIT:"
>S DIR("A",1)="Enter price data with two decimal points."
>S DIR("A",2)="Cost calculations require this precision.”

causes the following dialogue to appear to the user:

Enter price data with two decimal points.
Cost calculations require this precision.
PRICE PER DISPENSE UNIT:

(Optional) Set this variable to the default response for the prompt issued. It
appears after the prompt and before the // (double slashes). If the user simply
presses the <Enter> key, the default response is accepted by the reader.

(Optional) Only applies to set-of-codes fields. Lets you replace the standard
vertical listing of codes that the Reader displays with your own listing. It is up to
you to ensure that the contents of the DIR("L") array match the codes in the
second "-piece of DIR(0).

The format of the DIR("L") array is similar to DIR("A™) and DIR("?"). The #'s
must be numeric starting from 1. The numeric subscripted array nodes are written
first and the DIR("L") node is written last. For example, if you code:

>S DIR(0)=""SO™1:0ONE;2:TWO;3:THREE;4:FOUR;5:FIVE"
>S DIR("L",1)="Select one of the following:"

>S DIR("L™,2)="""

>S DIR("L",3) 1 ONE 4 FOUR™

>S DIR("L"™,4) 2 Two 5 FIVE"

>S DIR("L™)=" 3 THREE"

>D ~DIR

VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

The user sees the following:

Select one of the following:

1 ONE 4 FOUR
2 TwO 5 FIVE
3 THREE

Enter response:

DIR("PRE") (Optional) This variable contains M code that acts as a pre-validation transform. It
can either change X, in which case the reader will proceed as though the user had
entered the new value in X, or KILL X, in which case the reader will behave as
though the user entered an illegal value. DIR("PRE") is executed almost
immediately after the READ takes place, just after DTOUT is set if the READ
timed out, and before any other checking is done. The only inputs are X and
DTOUT, and the only outputs are X and DTOUT.

In order for *DIR to respond properly when the user times out, inputs """, or
inputs "?" the M code should check for DTOUT being defined, X containing """,
or X containing "?" and in each of these cases return X unchanged.

DIR("S™) (Optional) Use the DIR("S™) variable to screen the allowable responses for
pointer, set of codes, and list/range reads. This variable works as the DIC("'S")
variable does for "DIC calls. Set DIR("'S") equal to M code containing an IF
statement. After execution, if $T is set to 1, the user response is accepted,; if set to
0, itis not.

For pointer reads, when DIR("S") is executed, the M naked indicator is equal to
the 0 node of the entry being screened. The variable Y equals its record number.

For set of codes reads, when the DIR("'S") is executed, Y equals the internal code.

For list/range reads, if you also use the C flag in piece 1 of DIR(0), your output is
still compressed. Internally during the call, however, the range must be
uncompressed so that each number in the range can be screened. So using
DIR("'S") with the C flag during list/range reads loses the C flag's advantages in
speed (but the C flag's advantage in avoiding storage overflows remains).

DIR("T™) (Optional) Time-out value to be used in place of DTIME. Value is represented in
seconds.
DIR("?") (Optional) This variable contains a simple help prompt, which is displayed to the

user when one question mark is entered. It usually takes the place of the reader's
default prompt. For example, if you code:

>S DIR(0)="F~3:10"

>S DIR("?")="Enter from three to ten characters"
>S DIR("A™)=""NICKNAME"

>D ~DIR

March 1999 VA FileMan 2-111
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

DIR("?" #)

DIR("??")

2-112

The user sees the following:

NICKNAME: ?
Enter from three to ten characters.

o NOTE: When displayed, a period (.) is added to the DIR(*?") string. Periods
are not appended when displaying the DIR("?" #) array, however.

When one question mark is entered in DD reads, the data dictionary's help prompt
is shown before DIR("?"). For pointer reads, a list of choices from the pointed-to
file is shown in addition to DIR(*"?").

As an alternative, you can set DIR("?") to a caret (") followed by M code, which
is executed when the user enters one question mark. An example might be:

>S DIR("?")=""D HELP"%DTC"

Execution of this M code overrides the reader's default prompt. If DIR("?") is
defined in this way (a non-null second piece), the DIR("?" #) array is not
displayed.

(Optional) This array allows the user to display more than one line of help when
the user types a single question mark. The first caret (") piece of DIR(*"?") must
be set for the array to be used. The second caret piece of DIR(*?"") must be null,
otherwise the DIR("?"#) array is ignored. The #'s must be numeric starting from 1.
The numbered lines are written first, that is, first DIR("?",1), then DIR("?",2), etc.
The last help line written is DIR("?"). These lines are the only ones written, which
means that the reader's default prompt is not issued.

(Optional) This variable, if defined, is a two-part variable. The first caret ("/")
piece may contain the name of a help frame. The help processor displays this help
frame if the user enters two question marks.

The second part of this variable (after the first caret piece) may contain M code
that is executed after the help frame is displayed.

For example:

>S DIR("??"")="DIHELPXX"D ENAXXX"

o NOTE: In order to use this variable, you must have Kernel's help processor
on your system.

VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.45.4 Output Variables (Full Listing)

March 1999
Revised Sept 2011

This is the unprocessed response entered by the user. It is always returned. If the
user accepts the default in DIR("B"), it is the default. If the user enters a caret (")
or just presses the <Enter> key on an optional input, X is the caret (") or null.

Y is always defined as the processed output. The values returned are:

Type Y Returned as
Date The date/time in VA FileMan format.
End-of-page Y=1 for continue (user pressed the <Enter> key).

Y=0 for exit (the user entered a caret [""]).
Y="" for time out (the user timed out).

Free-text The data typed in by the user. In this case, it is the same
as X.
List or range The list of numeric values, delimited by commas and

ending with a comma.

If the C flag was not included in the first piece of DIR(0),
an expanded list of numbers, including each individual
number in a range, is returned. If the C flag was included,
a compressed list that uses the hyphen syntax to indicate a
range of numbers is returned.

Any leading zeros or trailing zeros following the decimal
point are removed; i.e., only canonic humbers are
returned. If the list of returned numbers has more than
245 characters, integer-subscripted elements of Y [Y(2),
Y(2), etc.] contain the additional numbers. Y(0) is always
returned equal to .

Numeric The canonic value of the number entered by the user
(i.e., leading zeros are deleted and trailing zeros after the
decimal are deleted).

Pointer The normal value of Y from a DIC lookup, that is,
Internal Entry Number"Entry Name. If the lookup was
unsuccessful, Y=-1.

Set of Codes The internal value of the response.
Yes/No Y=1 for yes.
Y=0 for no
DD (#,#) The first ~-piece of Y contains the result of the variable X

after it has been passed through the INPUT transform of
the field specified. Depending on the data type involved,
subsequent ~-pieces may contain additional information.

The following list summarizes the values of Y upon timeout, entering a caret ("/"),
or pressing the <Enter> key for all READs. Exceptions are noted.

Condition Value of Y Comments
Timeout y=""" --
VA FileMan 2-113

Programmer Manual
Version 22.0

Classic VA FileMan APIs

Y(0)

DTOUT
DUOUT
DIRUT

DIROUT

2-114

Caret (") Y=n In all cases except end-of-page
reads.
Y=0 Upon end-of-page
reads.
Double Caret (" M") Y="N In all cases except end-of-page
reads.
Return y="" For optional reads (reads
allowing a null response).
Y=-1 For pointer reads.
Y=0 For YES/NO type when NO is
the default.
Y=1 For YES/NO type when YES is
the default.
Y=1 For end-of-page reads.
Y=default When a default is provided other

than for YES/NO type questions.

This is defined for the set of codes, list, pointer, date, and Yes/No reads. It is also
returned for DD reads when the field has a set of codes, pointer, variable pointer, or
date data type. It holds the external value of the response for set of codes or Yes/No,
the zero node of the entry selected for a pointer, and the external date for a date and
variable pointer. To have Y(0) returned for pointer-types, the DIC(0) string in the
second piece of DIR(0) must contain a Z, for example:

DIR(0)="P~19:EMZ"

For list reads, it contains the same values as the Y variable. There may be additional
nodes in the Y() array depending on the size of the list selected by the user.

If the read has timed-out, then DTOUT is defined.
If the user entered a leading caret ("), DUOUT is defined.

If the user enters a leading caret ("/"), times out, or enters a null response, DIRUT is
defined. A null response results from pressing the <Enter> key at a prompt with no
default or entering the at-sign ("@"), signifying deletion. If, however, the user
presses the <Enter> key in response to an end of page read, DIRUT is not defined.
If DIRUT is defined, the user can enter the following common check to quit after a
reader call:

Q:$D(DIRUT)

If the user entered two carets ("~\"), DIROUT is defined.

VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.45,5 Examples

Date
End-of-Page
Free Text
List or Range
Numeric
Pointer

Set

Yes/No

DD

© 0o N o a k~ w b

234551 Date Example

>S DIR(0)="D"2880101:2880331:EX"

This tells the reader that the input must be an acceptable date. To determine that, ~%DT is invoked with
the %DT variable equal to EX. If the date is a legitimate date, then it is checked to see if the date falls
between January 1, 1988 and March 31, 1988. In general, both minimum and maximum are optional. If
they are there, they must be in VA FileMan format. The only exceptions are that NOW and DT may be
used to reference the current date/time. Remember that NOW contains a time stamp. If it is used as a
minimum or maximum value, an R or T should be put into the %DT variable. If DIR(0) is set up to expect
a time in the response, you can help the user by including that requirement in the prompt. Otherwise, a
response without a time stamp (such as TODAY) might unexpectedly fail.

2.3.45.5.2 End-of-Page Example

>S DIR(0)="E"

There are no parameters. The <Enter> and caret ("") keys are the only acceptable responses. This
DIR(0) setting causes the following prompt to be issued:

Press the return key to continue or "~" to exit:

March 1999 VA FileMan 2-115
Revised Sept 2011 Programmer Manual
Version 22.0

Classic VA FileMan APIs

2.3.45.5.3 Free-Text Example

>S DIR(0)="F"3:30"

This tells the reader that the input must be alphanumeric or punctuation, (control characters are not
allowed) and that the length of input must be no fewer than 3 and no more than 30 characters. The
maximum acceptable length for a free-text field is 245 characters.

o NOTE: A leading caret ("/") always aborts the READ and SETs DIRUT or DUOUT.

2.34553.1 With DIR(0) containing U

>S DIR(0)="Fun3:30"

The user can enter any response that is from 3 to 30 characters long. The response can contain embedded
carets ("/"). Without U, an embedded caret causes the user to receive an error message.

2.34553.2 With DIR(0) containing A

>S DIR(O)="FA"2:5" ,DIRC"A™)=""INITIAL"

The prompt is set only to the word INITIAL. If the A were not included, a colon and space would be
appended to the prompt and it would look like this:

INITIAL:

2-116 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.45.5.4 List or Range Example

>S DIR(0)="L"1:25"

This tells the reader that the input may be any set of numbers between 1 and 25. The numbers may be
separated by commas, dashes, or a combination of both. Two acceptable responses to the example above
are:

1,2,20
4-8,16,22-25

Remember that this is a numeric range or list. It can only contain positive integers and zero (no negative
numbers).

2345541 With DIR(0) containing C

>S DIR(0)="LC"1:100:2" D ~DIR

Enter a list or range of numbers (1-100): 5,8.01,9-40,
7.03,45.9,80-100

>ZW Y
Y¥=5,7.03,8.01,9-40,45.9,80-100,
Y(0)=5,7.03,8.01,9-40,45.9,80-100,

Here the user can enter numbers from 1 to 100 with up to two decimal places. The C flag tells the reader
not to return each individual number in Y. Instead, inclusive ranges of numbers are returned. In this case,
without the C flag, 137 subscripted nodes of the Y(') array would be returned; the call would be very slow
and might cause an error if the size of the Y() array exceeded local storage.

2.3.455.5 5Numeric Example

>S DIR(0)="N"20:30:3"

This tells the reader that the input must be a number between 20 and 30 with no more than three decimal
digits.

NOTE: If no maximum is specified in the second "-piece, the default maximum is

999999999999.
March 1999 VA FileMan 2-117
Revised Sept 2011 Programmer Manual

Version 22.0

Classic VA FileMan APIs

2345551 With DIR(0) containing O

>S DIR(0)="N0O”0:120",DIR("'A")="AGE"

This allows the user to press the <Enter> key without entering any response and leave the reader.
Without the O, the following messages appear:

This is a required response. Enter """ to exit.

2.3455.6 Pointer Example

>S DIR(0)="P"19:EMZ"

This tells the reader to do a lookup on File 19, setting DIC(0)="EMZ" before making the call.
If the user enters a response that causes the lookup to fail, the user is prompted again for a lookup value.
A pointer read can be used to look up in a subfile. In that case, the global root must be used in place of the

file number. For example, to look up in the menu subfile (stored descendent from subscript 10) for entry
#2 in File 19:

>S DIR(0)="P~DIC(19,2,10, :QEM"

Remember to set any necessary variables (e.g., DA[1]).

2-118 VA FileMan March 1999
Programmer Manual Revised Sept 2011
Version 22.0

Classic VA FileMan APIs

2.3.45.5.7 Set Example

>S DIR(0)=""S"1:MARRIED;2:SINGLE"

This tells the reader to only accept one of the two members of the set. The response may be 1, 2,
MARRIED, or SINGLE. When DIR("A") is included without the A modifier on the first piece, the
prompting is done as follows:

>S DIR(0)=""S"M:MALE;F:FEMALE"
>S DIR("A™)="SEX" D ~DIR

Select one of the following:
M MALE
F FEMALE

SEX:

2.345.5.7.1 With DIR(0) containing A

>S DIR(0)=""SA™M:MALE;F:FEMALE"
>S DIR("A™)="SEX: "™ D ~DIR

Whereas, with the A, it would appear as follows:

SEX:

2.345.5.7.2 With DIR(0) containing B

>S DIR(0)=""SB"M:MALE;F:FEMALE"
>S DIR("A™)="SEX" D ~DIR

When this is executed, instead of getting the vertical listing as shown above, the prompt would appear as:

SEX: (M/F):
March 1999 VA FileMan 2-119
Revised Sept 2011 Programmer Manual

Version 22.0

Classic VA FileMan APIs

2.3.45.5.7.3 With DIR(0) co