

RESOURCE AND PATIENT MANAGEMENT SYSTEM

Office of Information Technology
Division of Information Technology

Electronic Health Record

(EHR)

Technical Manual Volume 4

Version 1.1
April 2020

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Table of Contents
April 2020

ii

Table of Contents

78.0 Super-Bills... 1
78.1 Introduction .. 1
78.2 Architecture and Business Process Overview ... 2
78.3 Implementation and Maintenance .. 3
78.4 Routine Descriptions .. 3
78.5 File List .. 3

78.5.1 BGO CPT Preferences (# 90362.31) ... 3
78.6 Cross References .. 5
78.7 Exported Options ... 6
78.8 Exported Security Keys ... 6
78.9 Exported Protocols .. 6
78.10 Exported Parameters ... 6
78.11 Exported Mail Groups .. 6
78.12 Callable Routines... 6

78.12.1 RPC: BGOCPTP3 STORE .. 6
78.12.2 RPC: BGOCPTPR CLONE.. 6
78.12.3 RPC: BGOCPTPR CLONEOTH .. 7
78.12.4 RPC: BGOCPTPR DELASSOC .. 7
78.12.5 RPC: BGOCPTPR GETASSOC .. 7
78.12.6 RPC: BGOCPTPR GETCATS ... 8
78.12.7 RPC: BGOCPTPR GETITEMS .. 8
78.12.8 RPC: BGOCPTPR GETLNAME .. 8
78.12.9 RPC: BGOCPTPR GETMGRS .. 8
78.12.10 RPC: BGOCPTPR OTHCATS .. 9
78.12.11 RPC: BGOCPTPR QUERY ... 9
78.12.12 RPC: BGOCPTPR SETACHK ... 9
78.12.13 RPC: BGOCPTPR SETASSOC .. 10
78.12.14 RPC: BGOCPTPR SETCAT ... 10
78.12.15 RPC: BGOCPTPR SETFREQ ... 10
78.12.16 RPC: BGOCPTPR SETITEM .. 10
78.12.17 RPC: BGOCPTPR SETMGR .. 11
78.12.18 RPC: BGOCPTPR SETNAME .. 11
78.12.19 RPC: BGOCPTPR VSTASSOC .. 11

78.13 External Relations.. 12
78.14 Internal Relations ... 12
78.15 Archiving and Purging .. 12
78.16 Components .. 12
78.17 Properties .. 12

79.0 Family History ... 14
79.1 Introduction .. 14
79.2 Architecture and Business Process Overview 15

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Table of Contents
April 2020

iii

79.3 Implementation and Maintenance .. 15
79.4 Routine Descriptions .. 16
79.5 File List .. 16
79.6 Cross References .. 16
79.7 Exported Options ... 16
79.8 Exported Security Keys ... 16
79.9 Exported Protocols .. 17
79.10 Exported Parameters ... 17
79.11 Exported Mail Groups .. 17
79.12 Callable Routines... 17

79.12.1 RPC: BGOFHX DEL .. 17
79.12.2 RPC: BGOFHX GET ... 17
79.12.3 RPC: BGOFHX ICDLKUP ... 18
79.12.4 RPC: BGOFHX SET .. 18

79.13 External Relations.. 18
79.14 Internal Relations ... 18
79.15 Archiving and Purging .. 19
79.16 Components .. 19
79.17 Properties .. 19

80.0 Eye Exam... 20
80.1 Introduction .. 20
80.2 Architecture and Business Process Overview 21
80.3 Implementation and Maintenance .. 21
80.4 Routine Descriptions .. 22
80.5 File List .. 22
80.6 Cross References .. 22
80.7 Exported Options ... 22
80.8 Exported Security Keys ... 22
80.9 Exported Protocols .. 22
80.10 Exported Parameters ... 22
80.11 Exported Mail Groups .. 23
80.12 Callable Routines... 23

80.12.1 RPC: BGOVEYE DEL ... 23
80.12.2 RPC: BGOVEYE GET ... 23
80.12.3 RPC: BGOVEYE GETFLD .. 23
80.12.4 RPC: BGOVEYE SET ... 24
80.12.5 RPC: BGOVEYE1 VAL .. 24

80.13 External Relations.. 24
80.14 Internal Relations ... 24
80.15 Archiving and Purging .. 24
80.16 Components .. 25
80.17 Properties .. 25

81.0 Anticoagulation Goal ... 26
81.1 Introduction .. 26

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Table of Contents
April 2020

iv

81.2 Architecture and Business Process Overview 26
81.3 Implementation and Maintenance .. 27
81.4 Routine Descriptions .. 27
81.5 File List .. 27
81.6 Cross References .. 27
81.7 Exported Options ... 27
81.8 Exported Security Keys ... 28
81.9 Exported Protocols .. 28
81.10 Exported Parameters ... 28
81.11 Exported Mail Groups .. 28
81.12 Callable Routines... 28

81.12.1 RPC: BGOVCOAG DEL .. 28
81.12.2 BGOVCOAG GET ... 28
81.12.3 RPC: BGOVCOAG SET .. 29

81.13 External Relations.. 29
81.14 Internal Relations ... 29
81.15 Archiving and Purging .. 29
81.16 Components .. 29
81.17 Properties .. 29

82.0 Infant Feeding ... 31
82.1 Introduction .. 31
82.2 Architecture and Business Process Overview 32
82.3 Implementation and Maintenance .. 32
82.4 Routine Descriptions .. 33
82.5 File List .. 33
82.6 Cross References .. 33
82.7 Exported Options ... 33
82.8 Exported Security Keys ... 33
82.9 Exported Protocols .. 33
82.10 Exported Parameters ... 34
82.11 Exported Mail Groups .. 34
82.12 Callable Routines... 34

82.12.1 RPC: BGOVIF DEL ... 34
82.12.2 RPC: BGOVIF GET ... 34
82.12.3 RPC: BGOVIF SET ... 34

82.13 External Relations.. 35
82.14 Internal Relations ... 35
82.15 Archiving and Purging .. 35
82.16 Components .. 35
82.17 Properties .. 35

83.0 Reproductive Factors ... 36
83.1 Introduction .. 36
83.2 Architecture and Business Process Overview 37
83.3 Implementation and Maintenance .. 37

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Table of Contents
April 2020

v

83.4 Routine Descriptions .. 38
83.5 File List .. 38
83.6 Cross References .. 38
83.7 Exported Options ... 38
83.8 Exported Security Keys ... 38
83.9 Exported Protocols .. 38
83.10 Exported Parameters ... 39
83.11 Exported Mail Groups .. 39
83.12 Callable Routines... 39

83.12.1 RPC: BGOREP DEL .. 39
83.12.2 RPC: BGOREP GET ... 39
83.12.3 RPC: BGOREP SET .. 40
83.12.4 RPC: BGOREP1 CONTALL .. 40
83.12.5 RPC: BGOREP1 DELCONT.. 40
83.12.6 RPC: BGOREP1 SETCONT.. 41

83.13 External Relations.. 41
83.14 Internal Relations ... 41
83.15 Archiving and Purging .. 41
83.16 Components .. 41
83.17 Properties .. 41

84.0 Suicide Form ... 43
84.1 Introduction .. 43
84.2 Architecture and Business Process Overview 44
84.3 Implementation and Maintenance .. 44
84.4 Routine Descriptions .. 45
84.5 File List .. 45
84.6 Cross References .. 45
84.7 Exported Options ... 45
84.8 Exported Security Keys ... 45
84.9 Exported Protocols .. 46
84.10 Exported Parameters ... 46
84.11 Exported Mail Groups .. 46
84.12 Callable Routines... 46

84.12.1 RPC: AMHBH SUICIDE FORM DSP ... 46
84.12.2 RPC: BEHOAMH FORMIENS ... 46

84.13 External Relations.. 46
84.14 Internal Relations ... 47
84.15 Archiving and Purging .. 47
84.16 Components .. 47
84.17 Properties .. 47

85.0 SNOMED Service .. 48
85.1 Introduction .. 48
85.2 Architecture and Business Process Overview 48
85.3 Implementation and Maintenance .. 49

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Table of Contents
April 2020

vi

85.4 Routine Descriptions .. 49
85.5 File List .. 49
85.6 Cross References .. 49
85.7 Exported Options ... 49
85.8 Exported Security Keys ... 49
85.9 Exported Protocols .. 50
85.10 Exported Parameters ... 50
85.11 Exported Remote Procedures ... 50
85.12 Exported Mail Groups .. 50
85.13 Callable Routines... 50
85.14 External Relations.. 50
85.15 Internal Relations ... 50
85.16 Archiving and Purging .. 50
85.17 Components .. 50

85.17.1 Execute ... 50
85.17.2 Execute_2.. 51
85.17.3 ExecuteSubList .. 51
85.17.4 ExecuteSubList_2 .. 51
85.17.5 ExecuteICD9toSNMD .. 51

85.18 Properties .. 52

86.0 eRx Queue Service ... 53
86.1 Introduction .. 53
86.2 Architecture and Business Process Overview 53
86.3 Implementation and Maintenance .. 53
86.4 Routine Descriptions .. 54
86.5 File List .. 54
86.6 Cross References .. 54
86.7 Exported Options ... 54
86.8 Exported Security Keys ... 54
86.9 Exported Protocols .. 54
86.10 Exported Parameters ... 54
86.11 Exported Remote Procedures ... 54
86.12 Exported Mail Groups .. 54
86.13 Callable Routines... 54
86.14 External Relations.. 55
86.15 Internal Relations ... 55
86.16 Archiving and Purging .. 55
86.17 Components .. 55

86.17.1 Execute ... 55
86.17.2 ViewMailbox .. 55

86.18 Properties .. 55

87.0 eRx QueueView ... 56
87.1 Introduction .. 56
87.2 Architecture and Business Process Overview 56

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Table of Contents
April 2020

vii

87.3 Implementation and Maintenance .. 56
87.4 Routine Descriptions .. 57
87.5 File List .. 57
87.6 Cross References .. 57
87.7 Exported Options ... 57
87.8 Exported Security Keys ... 57
87.9 Exported Protocols .. 58
87.10 Exported Parameters ... 58
87.11 Exported Mail Groups .. 58
87.12 Callable Routines... 58
87.13 External Relations.. 58
87.14 Internal Relations ... 58
87.15 Archiving and Purging .. 58
87.16 Components .. 58

87.16.1 Properties .. 59

88.0 Designated Primary Provider .. 61
88.1 Introduction .. 61
88.2 Architecture and Business Process Overview 61
88.3 Implementation and Maintenance .. 62
88.4 Routine Descriptions .. 62
88.5 File List .. 62
88.6 Cross References .. 62
88.7 Exported Options ... 62
88.8 Exported Security Keys ... 62
88.9 Exported Protocols .. 63
88.10 Exported Parameters ... 63
88.11 Exported Mail Groups .. 63
88.12 Callable Routines... 63

88.12.1 RPC: BEHOPTPC GETBDP.. 63
88.12.2 RPC: BEHOPTPC GETCATS ... 63
88.12.3 RPC: BEHOPTPC SETBDP .. 63

88.13 External Relations.. 64
88.14 Internal Relations ... 64
88.15 Archiving and Purging .. 64
88.16 Components .. 64
88.17 Properties .. 64

89.0 Level of Intervention (PHN).. 65
89.1 Introduction .. 65
89.2 Architecture and Business Process Overview 66
89.3 Implementation and Maintenance .. 66
89.4 Routine Descriptions .. 67
89.5 File List .. 67
89.6 Cross References .. 67
89.7 Exported Options ... 67

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Table of Contents
April 2020

viii

89.8 Exported Security Keys ... 67
89.9 Exported Protocols .. 67
89.10 Exported Parameters ... 68
89.11 Exported Mail Groups .. 68
89.12 Callable Routines... 68

89.12.1 RPC: BGOVPHN CHKPRV ... 68
89.12.2 RPC: BGOVPHN DEL ... 68
89.12.3 RPC: BGOVPHN GET ... 68
89.12.4 RPC: BGOVPHN SET ... 69

89.13 External Relations.. 69
89.14 Internal Relations ... 69
89.15 Archiving and Purging .. 69
89.16 Components .. 69
89.17 Properties .. 70

90.0 Direct Mail Button ... 71
90.1 Introduction .. 71
90.2 Architecture and Business Process Overview 71
90.3 Implementation and Maintenance .. 72
90.4 Routine Descriptions .. 72
90.5 File List .. 72
90.6 Cross References .. 72
90.7 Exported Options ... 73
90.8 Exported Security Keys ... 73
90.9 Exported Protocols .. 73
90.10 Exported Parameters ... 73
90.11 Exported Mail Groups .. 73
90.12 Callable Routines... 73

90.12.1 RPC: BEHODMA PTEMADR .. 73
90.13 External Relations.. 73
90.14 Internal Relations ... 74
90.15 Archiving and Purging .. 74
90.16 Components .. 74

91.0 EPCS Credentialing .. 75
91.1 Introduction .. 75
91.2 Architecture and Business Process Overview 75
91.3 Implementation and Maintenance .. 75
91.4 Routine Descriptions .. 76
91.5 File List .. 77

91.5.1 BEH EPCS OE/RR PARAMETERS DATA (#90460.09) 77
91.5.2 BEHO EPCS INCIDENT REPORT VARIABLES (#90460.13) 77
91.5.1 BEH EPCS AUDIT LOG MESSAGES (#90460.14) 78

91.6 Cross References .. 79
91.7 Exported Options ... 79
91.8 Exported Security Keys ... 80

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Table of Contents
April 2020

ix

91.9 Exported Protocols .. 80
91.10 Exported Parameters ... 80
91.11 Exported Remote Procedures ... 80
91.12 Exported Mail Groups .. 81
91.13 Callable Routines... 81

91.13.1 $$VRFYPHSH^BEHOEP3(.INP,PROVIEN) .. 81
91.13.2 RPC: BEHOEP1 ENTRYEP .. 81
91.13.3 RPC: BEHOEP1 GETPUBKY.. 81
91.13.4 RPC: BEHOEP1 LDPNDNGV ... 81
91.13.5 RPC: BEHOEP1 LOACREAD ... 82
91.13.6 RPC: BEHOEP1 PROV ... 82
91.13.7 RPC: BEHOEP1 READP200 ... 82
91.13.8 RPC: BEHOEP2 DELPNDVF .. 82
91.13.9 RPC: BEHOEP2 ENTRYLA... 83
91.13.10 RPC: BEHOEP2 INPTRANS ... 83
91.13.11 RPC: BEHOEP2 LDPNDGLA ... 83
91.13.12 RPC: BEHOEP2 PENDPROF ... 83
91.13.13 RPC: BEHOEP2 PROVPRFV ... 84
91.13.14 RPC: BEHOEP3 AUDTEVTS .. 84
91.13.15 RPC: BEHOEP5 ADDCHK .. 84
91.13.16 RPC: BEHOEP5 VRFYPHSH ... 84

91.14 External Relations.. 84
91.15 Internal Relations ... 85
91.16 Archiving and Purging .. 85
91.17 Components .. 85

92.0 Two-Factor Authentication Service .. 86
92.1 Introduction .. 86
92.2 Architecture and Business Process Overview 86
92.3 Implementation and Maintenance .. 86
92.4 Routine Descriptions .. 87
92.5 File List .. 87

92.5.1 BEH EPCS CERTIFICATE STATUS (#90460.12) 87
92.5.2 BEH EPCS CRL DISTRIBUTION POINTS (#90460.15)...................... 88

92.6 Cross References .. 88
92.7 Exported Options ... 88
92.8 Exported Security Keys ... 88
92.9 Exported Protocols .. 88
92.10 Exported Parameters ... 88
92.11 Exported Remote Procedures ... 89
92.12 Exported Mail Groups .. 89
92.13 Callable Routines... 89

92.13.1 EN^BEHOEPS .. 89
92.13.2 EN1^BEHOEPS... 90
92.13.3 RXVER^BEHOEPS ... 90
92.13.4 RPC: BEHOEP7 AUDITSVC ... 90

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Table of Contents
April 2020

x

92.13.5 RPC: BEHOEP7 BUSASVC .. 90
92.13.6 RPC: BEHOEP7 CERTSTAT .. 91
92.13.7 RPC: BEHOEP7 CHKCRTST.. 91
92.13.8 RPC: BEHOEP7 GETCERT .. 91
92.13.9 RPC: BEHOEP7 KEYHLDRS .. 91
92.13.10 RPC: BEHOEP7 LISTCERT ... 92
92.13.11 RPC: BEHOEP7 SETCERT .. 92
92.13.12 RPC: BEHOEP7 UTC ... 92
92.13.13 RPC: BEHOEPS GORDIDIG .. 92
92.13.14 RPC: BEHOEPS STORDSIG .. 93

92.14 External Relations.. 93
92.15 Internal Relations ... 93
92.16 Archiving and Purging .. 93
92.17 Components .. 93
92.18 Templates .. 93

93.0 Surescripts Mailbox ... 94
93.1 Introduction .. 94
93.2 Architecture and Business Process Overview 94
93.3 Implementation and Maintenance .. 94
93.4 Routine Descriptions .. 95
93.5 File List .. 95
93.6 Cross References .. 95
93.7 Exported Options ... 95
93.8 Exported Security Keys ... 95
93.9 Exported Protocols .. 95
93.10 Exported Parameters ... 96
93.11 Exported Mail Groups .. 96
93.12 Callable Routines... 96

93.12.1 RPC: APSPESM DENIED ... 96
93.12.2 RPC: APSPESM GETITM ... 96
93.12.3 RPC: APSPESM ORDERS ... 96
93.12.4 RPC: APSPESM REQUESTS ... 97
93.12.5 RPC: APSPESM SSMBCNT ... 97
93.12.6 RPC: APSPESM1 RPTRPC .. 97

93.13 External Relations.. 97
93.14 Internal Relations ... 98
93.15 Archiving and Purging .. 98
93.16 Components .. 98

93.16.1 Properties .. 98

Appendix A: System Requirements ... 100
A.1 Minimum System Requirements .. 100

A.1.1 Windows – RPMS server ... 100
A.1.2 AIX – RPMS server ... 100
A.1.3 Windows – Application server.. 100

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Table of Contents
April 2020

xi

A.1.4 Client Workstations .. 100

Appendix B: Developer Tutorial ... 102
B.1 Introduction .. 102
B.2 Using Debug Mode .. 103
B.3 Using the Trace Log .. 104
B.4 About Component Support Services.. 107
B.5 About COM and ActiveX .. 108
B.6 Component Types ... 110
B.7 Component Registration .. 110

B.7.1 COM Registration .. 110
B.7.2 Framework Registration .. 110
B.7.3 Runtime Registration ... 111

B.8 Naming Conventions ... 111
B.9 Multiple vs. Single Instancing .. 112
B.10 Remote Procedure Calls .. 113

B.10.1 Create the M Routine .. 113
B.10.2 Create a Remote Procedure Definition .. 113
B.10.3 Register the Remote Procedure .. 114
B.10.4 Calling a Remote Procedure.. 115
B.10.5 Synchronous Calls ... 115
B.10.6 Asynchronous Calls ... 118

B.11 Context Management .. 120
B.11.1 Callbacks ... 120
B.11.2 Requesting a Context Change... 121

B.12 Events .. 121
B.12.1 Defining an Event .. 122
B.12.2 Firing Events: Local vs. Remote .. 122
B.12.3 Receiving Events: Callbacks ... 122
B.12.4 Hierarchical Events .. 123

B.13 Creating Visual Components with Delphi ... 123
B.13.1 Creating the Active Form Project ... 124
B.13.2 Designing the Form ... 126
B.13.3 Accessing the Session Object ... 127
B.13.4 Accessing the Patient Context Object ... 129
B.13.5 Calling a Remote Procedure in Synchronous Mode 130
B.13.6 Testing the Component ... 131
B.13.7 Subscribing to Patient Context Changes ... 133
B.13.8 Calling a Remote Procedure in Asynchronous Mode 139
B.13.9 Firing an Event .. 141
B.13.10 Subscribing and Responding to an Event .. 141
B.13.11 Summary ... 143

B.14 Creating Visual Components with Visual Basic 143
B.14.1 Creating the ActiveX Control Project ... 143
B.14.2 Designing the Form ... 145
B.14.3 Accessing the Session Object ... 146

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Table of Contents
April 2020

xii

B.14.4 Accessing the Patient Context Object ... 148
B.14.5 Calling a Remote Procedure in Synchronous Mode 149
B.14.6 Testing the Component ... 149
B.14.7 Subscribing to Patient Context Changes ... 152
B.14.8 Calling a Remote Procedure in Asynchronous Mode 154
B.14.9 Firing an Event .. 156
B.14.10 Subscribing and Responding to an Event .. 157
B.14.11 Summary ... 158

B.15 Creating Visual Components with C# .. 158
B.15.1 Creating the Windows Control Project ... 159
B.15.2 Accessing the Session Object ... 164
B.15.3 Accessing the Patient Context Object ... 165
B.15.4 Calling a Remote Procedure in Synchronous Mode 167
B.15.5 Testing the Component ... 167
B.15.6 Subscribing to Patient Context Changes ... 170
B.15.7 Calling a Remote Procedure in Asynchronous Mode 173
B.15.8 Firing an Event .. 175
B.15.9 Subscribing and Responding to an Event .. 176
B.15.10 Summary ... 177

B.16 Creating Services .. 177
B.17 Creating Services with Delphi .. 178

B.17.1 Creating the Project ... 178
B.17.2 Creating the Service Object ... 178
B.17.3 Accessing the Session Object ... 180
B.17.4 Modifying the Interface .. 181
B.17.5 Providing the Implementation .. 182
B.17.6 Registering the Service ... 183
B.17.7 Accessing the Service ... 183
B.17.8 Summary ... 185
B.17.9 Creating Services with Visual Basic .. 185
B.17.10 Creating the Project ... 185
B.17.11 Accessing the Session Object ... 186
B.17.12 Modifying the Interface .. 188
B.17.13 Registering the Service ... 188
B.17.14 Accessing the Service ... 188
B.17.15 Summary ... 190

B.18 Creating Services with C# ... 190
B.18.1 Creating the Project ... 190
B.18.2 Accessing the Session Object ... 191
B.18.3 Modifying the Interface .. 192
B.18.4 Registering the Service ... 193
B.18.5 Accessing the Service ... 193
B.18.6 Summary ... 195

B.19 Deploying Components ... 195
B.20 Version Control .. 195

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Table of Contents
April 2020

xiii

B.20.1 Version Numbers ... 196
B.20.2 Which Version ... 196
B.20.3 Registering Version Information .. 196
B.20.4 Side-by-Side Versioning .. 197
B.20.5 Imbedding Version Information .. 198

B.21 Handling Dependencies ... 200
B.22 Generating KIDS Builds ... 201
B.23 Pitfalls and Special Techniques ... 202

B.23.1 Component Initialization .. 202
B.23.2 Component Destruction ... 202
B.23.3 Other Containers ... 203
B.23.4 Focus Issues ... 203
B.23.5 Deferring Data Fetches ... 203
B.23.6 Intercomponent Communication .. 203
B.23.7 Creating Trace Log Entries .. 204
B.23.8 Embedding Licensed Controls ... 206
B.23.9 Forced Context Changes ... 207
B.23.10 Integrating Help Content .. 207

B.24 Delphi Helper Functions .. 208
B.25 Visual Basic Helper Functions ... 214

Glossary ... 216

Acronym List ... 218

Contact Information .. 219

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Document Revision History
April 2020

xiv

Document Revision History

Version Date Author Description Sections
v1.1 9/2007 Doug Martin v1.1 Release
v1.1, p17 2/2016 Phillip Salmon v1.1 Patch 17 Release
v1.1, p25 8/2019 Phillip Salmon v1.1 Patch 25 Release • Preface

• 78.4
• 79.4
• 79.12.1 – 79.12.3
• 82.10
• 84.4
• 84.13
• 84.14
• 85.14
• 86.17.1
• 88.3
• 88.4
• 89.4
• 89.12.1
• 91.0
• 92.0
• A.1.4

v1.1, p26 10/2019 Phillip Salmon v1.1 Patch 26 Release • 86
• 93.0

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Preface
April 2020

xv

Preface

This guide provides information regarding technical aspects of the Indian Health
Service RPMS Electronic Health Record (RPMS-EHR) v1.1 software. Its target
audience is local and regional information technology support personnel who may be
called upon to configure or troubleshoot the application. This guide has been broken
into four separate files of which this is the fourth.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Super-Bills
April 2020

1

78.0 Super-Bills

78.1 Introduction
Super-bills are lists of CPT codes for billing and for documenting services performed.
Each super-bill is attached to a visit. The Super-Bills panel (Figure 78-1) shows the
super-bill items for the super-bill category below the Super-Bills button.

Figure 78-1: Super-Bills panel

Selecting one or more check boxes above the panel determines which super-bill items
display in the right-hand panel.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Super-Bills
April 2020

2

78.2 Architecture and Business Process Overview

Figure 78-2: Architecture and business process overview

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Super-Bills
April 2020

3

78.3 Implementation and Maintenance
This component has the following configuration:

Entity Value
Programmatic Identifier IHSBGOSUPERBILL.BGOSUPERBILL
Class Identifier {FCDD0A6B-4DD9-4CF7-BAC5-BD1B5BFBAC00}
Image File ihsBgoSuperBill.dll
Property Initializations None
Serializable Properties None
Required Files IhsBgoSuperBill.chm
Security Keys None
Multiple Instances Allowed No
Internal Property Editor No
All Keys Required No
Hidden from Property Editor No
Side-by-Side Versioning No
Service No
.Net Component Yes
Associated Build BGO*1.1*17

There are no specific implementation or maintenance tasks associated with this
component.

78.4 Routine Descriptions
This component has been assigned the namespace designation of “BGOCPTP.” The
following routines are distributed:

Routine Description
BGOCPTPR Routines used to manage the superbills
BGOCPTP2 Routines used to manage the superbills
BGOCPTP3 Store SNOMED association

78.5 File List

78.5.1 BGO CPT Preferences (# 90362.31)
The CPT preferences file allows the storage of CPT codes and their associations:

Field Field No Description
NAME .01 Free Text

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Super-Bills
April 2020

4

Field Field No Description
HOSPITAL LOCATION .02 Pointer to hospital location (#44) file
CLINIC .03 Pointer to clinic stop (#40.7) file
PROVIDER .04 Pointer to file #200
OWNER .05 Pointer to file #200
DISCIPLINE .06 Pointer to file #7
TYPE .07 Set of codes

0:VISIT SERVICES
1:HISTORICAL SERVICES

CPT 1 Subfile of CPT codes
MANAGER 2 Subfile of managers

78.5.1.1 MANAGERS subfile (#90362.313)

Field Field No Description
MANAGERS .01 Pointer to file 200

78.5.1.2 CPT subfile (#90362.312)

Field Field No Description
CPT .01 Pointer to file #81
DISPLAY TEXT .02 Free Text
FREQUENCY .03 Numeric
MODIFIER FIRST .04 Pointer to file 9002274.07
MODIFIER SECOND .05 Pointer to file 9002274.07
TRANSACTION CODE .06 Pointer to file 90092.02
ASSOCIATION 1 Subfile of associations

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Super-Bills
April 2020

5

78.5.1.3 ASSOCIATIONS subfile (#90362.3121)

Field Field No Description
ASSOCIATION .01 Variable pointer to

 81 CPT
 9999999.88CPT MODIFIER
 80 ICD DIAGNOSIS
 9999999.64HEALTH FACTOR
 9999999.09EDUCATION TOPIC
 9999999.15EXAM
 9999999.14IMMUNIZATION
 9999999.28SKIN TEST
 90092.02TRANSACTION
 80.1 ICD PROCEDURE
 81.3 CSV CPT MODIFIER

AUTOMATICALLY ADD .02 Set of codes, No/Yes
DEFAULT TO ADD .03 Set of codes, No/Yes
PROHIBIT DUPLICATION .04 Set of codes, No/Yes
ASK CHARGE AMOUNT .05 Set of codes, No/Yes
ASK QUANTITY .06 Set of codes, No/Yes
DEFAULT QUANTITY AMOUNT .07 Numeric
SNOMED CT CONCEPT CODE 1 Free text
SNOMED CT DESCRIPTIVE CODE 1.1 Free text

78.6 Cross References
File: BGO CPT PREFERENCES (#90362.31)

X-ref Field No Name Desc
AC .03 Clinic Regular
ACP .03 Clinic Mumps
ACPTOO .04 Provider Mumps
AD .07 Discipline Regular
AH .02 Hospital Location Regular
AHP .02 Hospital Location Mumps
AHPTOO .04 Provider Mumps
AP .04 Provider Regular
B .01 Name Regular

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Super-Bills
April 2020

6

78.7 Exported Options
None.

78.8 Exported Security Keys
None.

78.9 Exported Protocols
None.

78.10 Exported Parameters
None.

78.11 Exported Mail Groups
None.

78.12 Callable Routines
This section describes supported entry points for routines exported with this
component.

78.12.1 RPC: BGOCPTP3 STORE
Scope: Private

Parameter Datatype Description
INP String Specified as:

DFN |1| ^ VIEN |2| ^ SNOMED CT |3| ^ ICD |4|^ LOCATION |5|^
PROVIDER |6|

<return value> Boolean Success: True

Stores SNOMED association DXs for a superbill entry. If SNOMED code does not
exist on patient’s problem list, add it and then add the item as a POV.

78.12.2 RPC: BGOCPTPR CLONE
Scope: Private

Parameter Datatype Description
INP String Specified as:

Pref IEN (from) |1|^ Pref IEN (to) |2|
<return value> String Success: True

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Super-Bills
April 2020

7

Clones a pick list.

78.12.3 RPC: BGOCPTPR CLONEOTH
Scope: Private

Parameter Datatype Description
INP String Specified as:

CPT Category IEN |1| ^ Preference Category IEN |2|
<return value> Boolean Success: True

Convert a CPT category into a pick list.

78.12.4 RPC: BGOCPTPR DELASSOC
Scope: Private

Parameter Datatype Description
INP String Specified as:

Category IEN |1| ^ Item IEN |2| ^ Element IEN |3|
<return value> String Success: True

Delete an association.

78.12.5 RPC: BGOCPTPR GETASSOC
Scope: Private

Parameter Datatype Description
INP String Specified as:

Category IEN |1|^ Item IEN |2|
<return value> String List Returned as a list of records in the format:

Item IEN [1] ^ Item Name [2] ^ Type [3] ^ Auto Add [4] ^
Auto Default [5] ^ No Dups [6] ^ Amount [7] ^ Association IEN [8] ^
Quantity [9] ^ Code [10] ^ Type ID [11]

Returns a list of associations for the specified pick list and item.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Super-Bills
April 2020

8

78.12.6 RPC: BGOCPTPR GETCATS
Scope: Private

Parameter Datatype Description
INP String Specified as:

Category IEN [1] ^ Hospital Location IEN [2] ^ Provider IEN [3] ^
Manager IEN [4] ^ Show All [5] ^ Historical Flag [6]

<return value> String List Returns a list of records in the format:
Category Name [1] ^ Category IEN [2] ^ Hosp Loc Name [3] ^
Hosp Loc IEN [4] ^ Clinic Stop Name [5] ^ Clinic Stop IEN [6] ^
Provider Name [7] ^ Provider IEN [8] ^ Owner Name [9] ^
Owner IEN [10] ^ Provider Class Name [11] ^ Provider Class IEN [12]

Returns a list of categories matching the specified criteria.

78.12.7 RPC: BGOCPTPR GETITEMS
Scope: Private

Parameter Datatype Description
INP String Specified as:

Category IEN [1] ^ Group [2] ^ Visit IEN [3] ^ Display Freq Order [4]
<return value> String List Failure: -n^error text

Success: List of records in the format
CPT IEN [1] ^ CPT Code [2] ^ CPT Text [3] ^ Short Text [4] ^
Freq [5] ^ VCPT IEN [6] ^ Fee [7] ^ Rank [8] ^ Pref IEN [9] ^
Association [10] ^ Long Text [11]

Returns a list of categories matching the specified criteria.

78.12.8 RPC: BGOCPTPR GETLNAME
Scope: Private

Parameter Datatype Description
IEN Pointer (#81) IEN of CPT code
<return value> String Long narrative text.

Return the long name for the specified CPT code.

78.12.9 RPC: BGOCPTPR GETMGRS
Scope: Private

Parameter Datatype Description
CAT Pointer (#90362.31) IEN of pick list

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Super-Bills
April 2020

9

Parameter Datatype Description
<return value> String List List of records in the format:

Provider Name ^ Provider IEN

Returns a list of managers associated with the specified pick list.

78.12.10 RPC: BGOCPTPR OTHCATS
Scope: Private

Parameter Datatype Description
<return value> String List List of records in the format:

Category Name [1] ^ Category IEN [2] ^ Class [3]
where Class is one of: Med, Surg, Anesth, Rad, Lab

Returns a list of categories from the CPT file.

78.12.11 RPC: BGOCPTPR QUERY
Scope: Private

Parameter Datatype Description
INP String Specified as:

Category IEN [1] ^ Provider IEN [2] ^ Clinic IEN [3] ^
Provider Class [4] ^ Hospital Location [5] ^ Start Date [6] ^
End Date [7] ^ Max Hits [8] ^ Med [9] ^ Surg [10] ^ Anest [11] ^
Lab [9] ^ Rad [12] ^ Supply [13] ^ 3rd Party Billing [14] ^
V CPT [15] ^ CHS [16]

<return value> Boolean Success: True

Execute a query to update frequencies of use.

78.12.12 RPC: BGOCPTPR SETACHK
Scope: Private

Parameter Datatype Description
INP String Specified as:

CPT Preference IEN [1] ^ CPT Subfile IEN [2] ^ Associations Subfile
IEN [3] ^ Column Index [4] ^ Value [5]

<return value> String Failure: -n^error text
Success: IEN

Modify an association of a CPT in a superbill.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Super-Bills
April 2020

10

78.12.13 RPC: BGOCPTPR SETASSOC
Scope: Private

Parameter Datatype Description
INP String Specified as:

CPT Preference IEN [1] ^ CPT Subfile IEN [2] ^ Type [3] ^
Value [4] ^ Association [5] ^ Auto Add [6] ^ Default to Add [7] ^
No Dups [8] ^ Amount [9] ^ Quantity [10]

<return value> String Failure: -n^error text
Success: IEN of association

Set an association of a CPT in a superbill and returns the IEN of the subfile entry.

78.12.14 RPC: BGOCPTPR SETCAT
Scope: Private

Parameter Datatype Description
INP String Specified as:

Name [1] ^ Hosp Loc [2] ^ Clinic [3] ^ Provider [4] ^ User [5] ^
Category IEN [6] ^ Delete [7] ^ Discipline [8]

<return value> String Failure: -n^error text
Success: IEN of pick list

Set field values for a pick list.

78.12.15 RPC: BGOCPTPR SETFREQ
Scope: Private

Parameter Datatype Description
INP String Specified as:

Category IEN [1] ^ Item Value (defaults to all) [2] ^ Increment [3] ^
Frequency [4]

<return value> String Failure: 0^error text
Success: True

Set frequency for a pick list item.

78.12.16 RPC: BGOCPTPR SETITEM
Update the frequency of a CPT code in a category.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Super-Bills
April 2020

11

Scope: Private

Parameter Datatype Description
INP String Specified as:

Category IEN [1] ^ CPT IEN [2] ^ Display Text [3] ^ Delete [4] ^ CPT
Code [5] ^ Frequency [6] ^ Allow Dups [7] ^ Item IEN [8]

<return value> String Failure: -n^error text
Success: IEN

Returns the new IEN of the CPT code added to the category.

78.12.17 RPC: BGOCPTPR SETMGR
Add a manager to a CPT preferences category.

Scope: Private

Parameter Datatype Description
INP String Specified as:

Category IEN [1] ^ Manager IEN (#200) [2] ^ Add [3]
<return value> String Failure: -n^error text

Success: null

Add or remove a manager from a pick list.

78.12.18 RPC: BGOCPTPR SETNAME
Scope: Private

Parameter Datatype Description
INP String Specified as:

Category IEN [1] ^ Item IEN [2] ^ Display Name [3]
<return value> String Failure: -n^error text

Success: null

Set display name for a pick list item.

78.12.19 RPC: BGOCPTPR VSTASSOC
Scope: Private

Parameter Datatype Description
INP String Specified as:

Category IEN ^ Item IEN ^ Visit IEN
<return value> String List Returns a list of records in the format:

Type ID [1] ^ Type Name [2] ^ Item IEN [3] ^ Item Text [4] ^
V File IEN [5] ^ V File # [6]

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Super-Bills
April 2020

12

Returns all V file entries for a given visit that correspond to all associated entries for
the given superbill.

78.13 External Relations
Entity Name Description
Component VCPT Calls supported APIs
Component Visit Diagnosis Calls supported APIs
Component Health Factors Calls supported APIs
Component Patient Education Calls supported APIs
Component Exams Calls supported APIs
Component Immunization Calls supported APIs
Component Skin Test Calls supported APIs

78.14 Internal Relations
Entity Name Description
Package BGO Calls supported APIs

78.15 Archiving and Purging
There are no archiving or purging requirements within this software.

78.16 Components
This component supports the following properties and methods:

78.17 Properties
Property Datatype Access Description
ALIGN Enum RW Sets the alignment of the component relative to its parent.

One of:
0 = None – no alignment occurs
1 = Top – aligns to the top boundary of the parent
2 = Bottom – aligns to the bottom boundary of the parent
3 = Left – aligns to the left boundary of the parent
4 = Right – aligns to the right boundary of the parent
5 = All – expands to the dimensions of the parent
6 = Center – centers itself within the parent

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Super-Bills
April 2020

13

Property Datatype Access Description
ANCHORS Flag RW Anchors the component’s position relative to its parent. Zero

or more of:
1 = Top
2 = Left
4 = Right
8 = Bottom

HEIGHT Integer RW Sets the height (in pixels) of the component.
LEFT Integer RW Sets the position (in pixels) of the left boundary of the

component.
TOP Integer RW Sets the position (in pixels) of the top boundary of the

component.
WIDTH Integer RW Sets the width (in pixels) of the top boundary of the

component.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Family History
April 2020

14

79.0 Family History

79.1 Introduction
The Family History component (Figure 79-1) displays any information about the
patient

Figure 79-1: Family History component

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Family History
April 2020

15

79.2 Architecture and Business Process Overview

Figure 79-2: Architecture and business process overview

79.3 Implementation and Maintenance
This component has the following configuration:

Entity Value
Programmatic Identifier IHSBGOFAMHX.BGOFAMHX
Class Identifier {F275DE03-BF24-4759-B34C-2DA9F792754E}
Image File bgoFamHx.ocx
Property Initializations RUNASYNC=FALSE

HIDEBUTTONS=FALSE

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Family History
April 2020

16

Entity Value
Serializable Properties HIDEBUTTONS – BOOL

USELEXICON - BOOL
Required Files IhsBgoFamHX.chm
Security Keys PROVIDER
Multiple Instances Allowed Yes
Internal Property Editor No
All Keys Required No
Hidden from Property Editor No
Side-by-Side Versioning Yes
Service No
.Net Component No
Associated Build BGO*1.1*17

There are no specific implementation or maintenance tasks associated with this
component.

79.4 Routine Descriptions
This component has been assigned the namespace designation of “BGOFHX.” The
following routines are distributed:

Routine Description
BGOFHX Family History component support
BGOREL Family History relationship support

79.5 File List
None.

79.6 Cross References
None.

79.7 Exported Options
None.

79.8 Exported Security Keys
None.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Family History
April 2020

17

79.9 Exported Protocols
None.

79.10 Exported Parameters
None.

79.11 Exported Mail Groups
None.

79.12 Callable Routines

79.12.1 RPC: BGOFHX DEL
Scope: Private

Parameter Datatype Description
INP String INP= Relationship IEN [1] ^ Family HX ien [2]

(#9000014.1) (#9000014)
<return value> Boolean 1 for success or 0^error text

If no family history IEN is included, the entire relationship will be deleted else just
delete the family history dx. This is a physical deletion.

79.12.2 RPC: BGOFHX GET
Scope: Private

Parameter Datatype Description
DFN Pointer (#2) Patient IEN
<return value> Array ;.RET returned as a list of records in the format

; Relationship IEN [1] Relationship [2] ^ Status [3] ^ Age at Death [4
^ Cause of Death [5] ^; Multiple Birth [6] ^ Multiple Birth Type [7] ^
Condition [8]
^ Narrative [9] ^ [10] ^ Date Modified [11] ^Description [12] ^Family
hx IEN [13]^ Age at DX [14] ^Age at DX Approximate [15] ^ Snomed
CT [16] ^ Snomed Desc ID [17] ^
List of Additional ICD codes - ";" delimited [18]

Returns an array of each family history entry with the relationship. A relative who has
multiple DXs will have multiple lines in the array.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Family History
April 2020

18

79.12.3 RPC: BGOFHX ICDLKUP
Scope: Private

Parameter Datatype Description
INP String Formatted as:

Lookup Value^Visit Date^Patient Gender^From^To
<return value> Array List formatted as:

Descriptive Text^ICD IEN^Narrative Text

ICD Codes used for family history.

79.12.4 RPC: BGOFHX SET
Scope: Private

Parameter Datatype Description
DFN Pointer (#2) Patient IEN
LIST(1) Array (1) Relationship Data

REL^ Relationship ien [2] ^ Relationship [3]
^ Relationship Desc [4] ^ Status [5] ^ Age at Death [6]
Cause of Death [7] ^ Multiple Birth [8] ^ Multiple Birth Type [9]

LIST(n) Array Family Hx DX data
FHX^ Family HS ien [2]^ DX [3] ^ Text [4] ^ DX Age [5]
^ DX Age Approximate [6] ^ concept ct [7] ^ DESC CT [8] ^ MULT
ICD [9]

<return value> String Each item stored in the call with a flag if it’s the R(elationship) or
F(amily history dx)

Returns an array of each family history entry with the relationship. A relative who has
multiple DXs will have multiple lines in the array.

79.13 External Relations
Entity Name Description
Package IHS STANDARD

TERMINOLOGY
Uses Standard API calls to look up SNOMED
codes

Package IHS ICD/CPT LOOKUP
& GROUPER

Uses standard API calls to lookup ICD codes

79.14 Internal Relations
None.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Family History
April 2020

19

79.15 Archiving and Purging
There are no archiving or purging requirements within this software.

79.16 Components
This component supports the following properties and methods:

79.17 Properties
Property Datatype Access Description
ALIGN Enum RW Sets the alignment of the component relative to its parent.

One of:
0 = None – no alignment occurs
1 = Top – aligns to the top boundary of the parent
2 = Bottom – aligns to the bottom boundary of the parent
3 = Left – aligns to the left boundary of the parent
4 = Right – aligns to the right boundary of the parent
5 = All – expands to the dimensions of the parent
6 = Center – centers itself within the parent

ANCHORS Flag RW Anchors the component’s position relative to its parent.
Zero or more of:
1 = Top
2 = Left
4 = Right
8 = Bottom

HEIGHT Integer RW Sets the height (in pixels) of the component.
LEFT Integer RW Sets the position (in pixels) of the left boundary of the

component.
TOP Integer RW Sets the position (in pixels) of the top boundary of the

component.
WIDTH Integer RW Sets the width (in pixels) of the top boundary of the

component.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Eye Exam
April 2020

20

80.0 Eye Exam

80.1 Introduction
The Eyeglass Prescription component is designed for optometrists to enter the
prescription for eyeglasses. The prescription can then be printed and filled at another
establishment, or filled locally.

Select a patient and encounter, and then select the Eyeglass Prescription module. If
the patient has an eyeglass prescription, the most recent one appears in the dialog.

Figure 80-1: Eyeglass Prescription dialog

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Eye Exam
April 2020

21

80.2 Architecture and Business Process Overview

Figure 80-2: Architecture and business process overview

80.3 Implementation and Maintenance
This component has the following configuration:

Entity Value
Programmatic Identifier IHSBGOEYEEXAM.BGOEYEEXAM
Class Identifier {D1C64A19-3DCC-4B4C-B2CA-68C8A5030176}
Image File IhsBgoEyeExam.dll
Property Initializations none
Serializable Properties none
Required Files IhsBgoEyeExam.chm
Security Keys none
Multiple Instances Allowed no
Internal Property Editor no
All Keys Required no

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Eye Exam
April 2020

22

Entity Value
Hidden from Property Editor no
Side-by-Side Versioning no
Service no
.Net Component yes
Associated Build BGO*1.1*17

There are no specific implementation or maintenance tasks associated with this
component.

80.4 Routine Descriptions
This component has been assigned the namespace designation of “BGOVEYE.” The
following routines are distributed:

Routine Description
BGOVEYE Used to Get and set eye prescriptions
BGOVEYE1 Used to print rxs and validate data

80.5 File List
None.

80.6 Cross References
None.

80.7 Exported Options
None.

80.8 Exported Security Keys
Key Description
BGOZ EYE EDIT Used to Get and set eye prescriptions

80.9 Exported Protocols
None.

80.10 Exported Parameters
None.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Eye Exam
April 2020

23

80.11 Exported Mail Groups
None.

80.12 Callable Routines

80.12.1 RPC: BGOVEYE DEL
Scope: Private

Parameter Datatype Description
IEN Pointer (#9000010.04) IEN of V EYE GLASS file
<return value> Boolean 1 for success or 0^error text

Physically deletes an item in the V EYE GLASS file.

80.12.2 RPC: BGOVEYE GET
Scope: Private

Parameter Datatype Description
DFB Pointer (#2) Patient IEN
VIEN Pointer

(#9000010)
Visit IEN

<return value> String List List formatted as:
; RET(1)=IEN [1] ^ Visit Date [2] ^Facility Name [3] ^Provider IEN
[4] ^ Location Name [5] ^ Entered Date [6] ^ Visit IEN [7]
^ Visit Category [8] ^ Visit Locked [9]
; RET(2)=Left sphere [1] ^ left cyl [2] ^ left axis [3] ^ L prism H [4]
^ L Prism HD [5] ^ L Prism V [6] ^ L Prism VD [7] ^ L reading [8]
; RET(3)=Right sphere [1] ^ Right cyl [2] ^ Right axis [3] ^ R
prism H [4] ^ R Prism HD [5] ^ R Prism V [6] ^ R Prism VD [7] ^ R
reading [8]
; RET(4)=Reading [1] ^ PD Near [2] ^ PD Far [3] ^ LPD [4] ^ RPD
[5]
; RET(5)=Comment

Returns an array of data for the last eye exam or the visit eye exam.

80.12.3 RPC: BGOVEYE GETFLD
Scope: Private

Parameter Datatype Description
None
<return value> String List Array or help text for the fields in the eye exam file

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Eye Exam
April 2020

24

Returns an array of help text for the fields in the eye exam.

80.12.4 RPC: BGOVEYE SET
Scope: Private

Parameter Datatype Description
INP Array ; DATA(0)=V File IEN (if edit) [1] ^ Patient ien [2] ^ visit ien [3]

 ^ provider [4] ^Event Date [5] ^ Location IEN [6] ^ Other Location
[7]
 ^ Historical Flag [8]
 ; DATA(1)=Left sphere [1] ^ left cyl [2] ^ left axis [3] ^
 L prism H [4] ^ L Prism HD [5] ^ L Prism V [6] ^ L Prism VD [7] ^
 L reading [8]
; DATA(2)=Right sphere [1] ^ Right cyl [2] ^ Right axis [3] ^
 R prism H [4] ^ R Prism HD [5] ^ R Prism V [6] ^ R Prism VD [7]
 ^ R reading [8]
; DATA(3)=Reading [1] ^ PD Near [2] ^ PD Far [3] ^ LPD [4] ^ RPD [5]
 ; DATA(4)=Comment

<return value> String IEN of entry or an error message

Creates a new entry in the V EYE GLASS file or edits an existing entry.

80.12.5 RPC: BGOVEYE1 VAL
Scope: Private

Parameter Datatype Description
INP String Field name ^ value
<return value> String Returns the value or an error message

Validates what is entered for a field against the field definition in PCC.

80.13 External Relations
Entity Name Description
Package IHS PCC DATA Users standard PCC APIs and Files

80.14 Internal Relations
None.

80.15 Archiving and Purging
There are no archiving or purging requirements within this software.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Eye Exam
April 2020

25

80.16 Components
This component supports the following properties and methods:

80.17 Properties
Property Datatype Access Description
ALIGN Enum RW Sets the alignment of the component relative to its

parent. One of:
0 = None – no alignment occurs
1 = Top – aligns to the top boundary of the parent
2 = Bottom – aligns to the bottom boundary of the parent
3 = Left – aligns to the left boundary of the parent
4 = Right – aligns to the right boundary of the parent
5 = All – expands to the dimensions of the parent
6 = Center – centers itself within the parent

ANCHORS Flag RW Anchors the component’s position relative to its parent.
Zero or more of:
1 = Top
2 = Left
4 = Right
8 = Bottom

HEIGHT Integer RW Sets the height (in pixels) of the component.
LEFT Integer RW Sets the position (in pixels) of the left boundary of the

component.
TOP Integer RW Sets the position (in pixels) of the top boundary of the

component.
WIDTH Integer RW Sets the width (in pixels) of the top boundary of the

component.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Anticoagulation Goal
April 2020

26

81.0 Anticoagulation Goal

81.1 Introduction
The Anticoagulation module enables clinicians to establish anticoagulation goals for
their patients. This sets and tracks the goals. The goals can be modified as needed,
based on anticoagulation results and current medication therapy.

Figure 81-1: Anticoagulation component

81.2 Architecture and Business Process Overview

Figure 81-2: Architecture and business process overview

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Anticoagulation Goal
April 2020

27

81.3 Implementation and Maintenance
This component has the following configuration:

Entity Value
Programmatic Identifier BEHANTICOAG.BEHANTICOAG
Class Identifier {0C8D9769-D849-4D5B-B495-17C9E11DB1B7}
Image File BEHAntiCoag.dll
Property Initializations None
Serializable Properties None
Required Files BEHAntiCoag.chm
Security Keys None
Multiple Instances Allowed No
Internal Property Editor No
All Keys Required No
Hidden from Property Editor No
Side-by-Side Versioning No
Service No
.Net Component Nes
Associated Build BGO*1.1*17

There are no specific implementation or maintenance tasks associated with this
component.

81.4 Routine Descriptions
This component has been assigned the namespace designation of “BGOVCOAG.”
The following routines are distributed:

Routine Description
BGOVCOAG Used to Get and set anticoagulant data

81.5 File List
None.

81.6 Cross References
None.

81.7 Exported Options
None.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Anticoagulation Goal
April 2020

28

81.8 Exported Security Keys
None.

81.9 Exported Protocols
None.

81.10 Exported Parameters
None.

81.11 Exported Mail Groups
None.

81.12 Callable Routines

81.12.1 RPC: BGOVCOAG DEL
Scope: Private

Parameter Datatype Description
VFIEN String Delete reason is a set of codes

INP = V File IEN ^ DELETE REASON ^ OTHER
<return value> Boolean 1 for success or 0^error text

Logically deletes an item in the V ANTICOAGULATION file. If the delete reason is
OTHER, a text comment must be sent.

81.12.2 BGOVCOAG GET
Scope: Private

Parameter Datatype Description
INP String INP = Patient IEN ^ Number to return
<return value> Array .RET = Returned as a list of records:

 V IEN [1] ^ Indication [2] ^ Visit Date [3] ^ Goal [4] ^ min [5] ^ max [6]
^ duration [7] ^Strt Date [8] ^Facility Name [9] ^
Provider IEN [10] ^ Location IEN [11] ^ Entered Date [12] ^ Visit ^
Visit Locked [15] ^ COMMENT[16] ^ Provider Name [17]

Returns an array of V ANTICOAGULATION for the selected patient.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Anticoagulation Goal
April 2020

29

81.12.3 RPC: BGOVCOAG SET
Scope: Private

Parameter Datatype Description
INP Array INP = V anticoag IEN (if edit) [1] ^Indication [2] ^ Patient IEN [3]

^ Visit IEN [4] ^ Provider IEN [5] ^ Goal [6] ^ MIN [7] ^ Max [8]
^Duration [9] ^ Strt date [10] ^Event Date [11] ^ Location IEN [12]
 ^ Other Location [13] ^ Historical Flag [14] ^comment [15]

<return value> String IEN of entry or an error message

Creates a new entry in the V anticoagulation file or edits an existing entry.

81.13 External Relations
None.

81.14 Internal Relations
None.

81.15 Archiving and Purging
There are no archiving or purging requirements within this software.

81.16 Components
This component supports the following properties and methods:

81.17 Properties
Property Datatype Access Description
ALIGN Enum RW Sets the alignment of the component relative to its parent.

One of:
0 = None – no alignment occurs
1 = Top – aligns to the top boundary of the parent
2 = Bottom – aligns to the bottom boundary of the parent
3 = Left – aligns to the left boundary of the parent
4 = Right – aligns to the right boundary of the parent
5 = All – expands to the dimensions of the parent
6 = Center – centers itself within the parent

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Anticoagulation Goal
April 2020

30

Property Datatype Access Description
ANCHORS Flag RW Anchors the component’s position relative to its parent. Zero

or more of:
1 = Top
2 = Left
4 = Right
8 = Bottom

HEIGHT Integer RW Sets the height (in pixels) of the component.
LEFT Integer RW Sets the position (in pixels) of the left boundary of the

component.
TOP Integer RW Sets the position (in pixels) of the top boundary of the

component.
WIDTH Integer RW Sets the width (in pixels) of the top boundary of the

component.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Infant Feeding
April 2020

31

82.0 Infant Feeding

82.1 Introduction
The Infant Feeding component is only active for children less than five years old.
Otherwise, the Not Applicable message displays.

The Infant Feeding History grid displays the feeding choices, the event dates already
entered for the current (infant) patient, and any secondary fluids given to the infant.
The records are listed in date order, with the most recent on top. This component
requires that a visit is selected in order to update the data.

A red 1 in the column before the Feeding Choice column indicates the visit is locked
(and the record cannot be edited), and a zero indicates the visit is not locked and can
be edited.

This data is collected because it is used in conjunction with the Childhood Weight
Control Government Performance and Results Act (GPRA) measure. This is a long-
term measure to support the reduction of the incidence of childhood obesity.
Breastfeeding rates are used in the Program Assessment Rating Tool (PART) report
for congress and Office of Management and Budget (OMB). Additionally, facilities
can use this data to track infant feeding patterns and breastfeeding rates within their
own patient populations.

Figure 82-1: Infant Feeding component

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Infant Feeding
April 2020

32

82.2 Architecture and Business Process Overview

Figure 82-2: Architecture and business process overview

82.3 Implementation and Maintenance
This component has the following configuration:

Entity Value
Programmatic Identifier IHSBGOINFANTFEED.IHSBGOINFANTFEEDCTRL
Class Identifier {DAD1EB63-400C-4AB1-834A-DA36E56FB96C}
Image File IhsbgoInfantFeed.ocx
Property Initializations None
Serializable Properties None
Required Files IhsBgoInfantFeed.chm
Security Keys None

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Infant Feeding
April 2020

33

Entity Value
Multiple Instances Allowed No
Internal Property Editor No
All Keys Required No
Hidden from Property Editor No
Side-by-Side Versioning Yes
Service No
.Net Component No
Associated Build BGO*1.1*17

There are no specific implementation or maintenance tasks associated with this
component.

82.4 Routine Descriptions
This component has been assigned the namespace designation of “BGOVIF.” The
following routines are distributed:

Routine Description
BGOVIF Used to Get and set infant feeding data

82.5 File List
None.

82.6 Cross References
None.

82.7 Exported Options
None.

82.8 Exported Security Keys
None.

82.9 Exported Protocols
None.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Infant Feeding
April 2020

34

82.10 Exported Parameters
None.

82.11 Exported Mail Groups
None.

82.12 Callable Routines

82.12.1 RPC: BGOVIF DEL
Scope: Private

Parameter Datatype Description
VFIEN Pointer (#9000010.44) IEN of Infant Feeding to be deleted
<return value> Boolean 1 for success or 0^error text

Physically deletes an item in the infant feeding file.

82.12.2 RPC: BGOVIF GET
Scope: Private

Parameter Datatype Description
IMP String If only the first piece is sent in, it returns all infant feeding data for this

patient
INP = Patient IEN [1] ^ V File IEN [2] ^ Visit IEN [3]

<return value> Array List of records in the format:
IEN [1] ^ Visit Locked [2] ^ Visit [3] ^ Feeding Choice [4] ^Event Date
[5] ^ Encounter Provider [6]
Where each field except IEN and Visit Locked has the form:
External Value | Internal Value

Returns an array of infant feeding data for the selected patient.

82.12.3 RPC: BGOVIF SET
Scope: Private

Parameter Datatype Description
INP String If the IEN is sent, it is an edit, otherwise it makes a new entry

INP = V File IEN ^ Visit IEN ^ Feeding Choice ^ EXTRA
EXTRA can be more than one separated by ~

<return value> String IEN OF entry or an error message

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Infant Feeding
April 2020

35

Creates a new entry in the infant feeding file or edits an existing entry.

82.13 External Relations
None.

82.14 Internal Relations
None.

82.15 Archiving and Purging
There are no archiving or purging requirements within this software.

82.16 Components
This component supports the following properties and methods:

82.17 Properties
Property Datatype Access Description
ALIGN Enum RW Sets the alignment of the component relative to its parent.

One of:
0 = None – no alignment occurs
1 = Top – aligns to the top boundary of the parent
2 = Bottom – aligns to the bottom boundary of the parent
3 = Left – aligns to the left boundary of the parent
4 = Right – aligns to the right boundary of the parent
5 = All – expands to the dimensions of the parent
6 = Center – centers itself within the parent

ANCHORS Flag RW Anchors the component’s position relative to its parent. Zero
or more of:
1 = Top
2 = Left
4 = Right
8 = Bottom

HEIGHT Integer RW Sets the height (in pixels) of the component.
LEFT Integer RW Sets the position (in pixels) of the left boundary of the

component.
TOP Integer RW Sets the position (in pixels) of the top boundary of the

component.
WIDTH Integer RW Sets the width (in pixels) of the top boundary of the

component.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Reproductive Factors
April 2020

36

83.0 Reproductive Factors

83.1 Introduction
The Reproductive Factors application is available for female patients only. After
selecting a female patient, the application displays the most recent reproductive
factors information, if available. A visit does not need to be selected. The
Reproductive Factors application is used for populating PCC data in RPMS.

Figure 83-1: Reproductive Factors

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Reproductive Factors
April 2020

37

83.2 Architecture and Business Process Overview

Figure 83-2: Architecture and business process overview

83.3 Implementation and Maintenance
This component has the following configuration:

Entity Value
Programmatic Identifier IHSBGOREPFACTORS.IHSBGOREPFACTORSCTRL
Class Identifier {BCDD2780-00A6-40D5-B5DD-07DEFC1A78E5}
Image File IHSbgoRepFactors.ocx
Property Initializations None
Serializable Properties None

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Reproductive Factors
April 2020

38

Entity Value
Required Files IhsBgoRepFactors.chm
Security Keys None
Multiple Instances Allowed No
Internal Property Editor No
All Keys Required No
Hidden from Property Editor No
Side-by-Side Versioning Yes
Service No
.Net Component Yes
Associated Build BGO*1.1*17

There are no specific implementation or maintenance tasks associated with this
component.

83.4 Routine Descriptions
This component has been assigned the namespace designation of “BGOREP.” The
following routines are distributed:

Routine Description
BGOREP Used to Get reproductive history data
BGOREP1 Utility calls for Reproductive factors and calls for contraceptive data

83.5 File List
None.

83.6 Cross References
None.

83.7 Exported Options
None.

83.8 Exported Security Keys
None.

83.9 Exported Protocols
None.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Reproductive Factors
April 2020

39

83.10 Exported Parameters
None.

83.11 Exported Mail Groups
None.

83.12 Callable Routines

83.12.1 RPC: BGOREP DEL
Scope: Private

Parameter Datatype Description
DFN String Patient’s IEN
<return value> String Failure: -n^error text

Success: null

Delete reproductive factors for a patient.

83.12.2 RPC: BGOREP GET
Scope: Private

Parameter Datatype Description
INP String Specified as:

Patient IEN |1| ^ Date Obtained |2| ^ Expand History (opt) |3| ^
<return value> String List Formatted as:

“L” ^ LMP Date |2|
“C” ^ Contraception Method |2| ^ Contraception Begun |3|
“P” ^ How EDC Determined |2| ^ EDC Date |3| ^ Pregnant |4|
“R” ^ Gravida |2| ^ Date |3| ^ Multiple Births |4| ^ Date |5| ^ Full term |6|
^ Date |7| ^ Premature |8| ^ Date |9| ^ Ectopics |10| ^ Date |11| ^ Living
Children |12| ^ Date |13| ^ Spontaneous abortions |14| ^ Date |15| ^
Therapeutic abortions |16| ^ Date |17|

Returns reproductive factor information for a patient.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Reproductive Factors
April 2020

40

83.12.3 RPC: BGOREP SET
Scope: Private

Parameter Datatype Description
INP String Specified as:

Patient IEN [1] ^ LMP Date [2] ^ Contraceptive Method [3] ^
Contraception Begun [4] ^ EDC Date [5] ^ EDC Determined [6] ^
Gravida [7] ^ Date Updated [8]
 ^ Multiple Births [9] ^ Date Updated [10] ^ Full term[11] ^ Date
Updated [12] ^Premature[13] ^ Date Updated [14] ^Ectopics[15] ^
Date Updated [16]
 ^Living Children [17] ^ Date Updated [18] ^ Spontaneous
abortions[19] ^ Date Updated [20] ^Therapeutic abortions[21]^Date
Updated[22] ^Currently pregnant [23]

<return value> String Failure: -n^error text
Success: null

Supports add/edit reproductive factors for a patient.

83.12.4 RPC: BGOREP1 CONTALL
Scope: Private

Parameter Datatype Description
DFN String Patient’s IEN
<return value> String List Formatted as:

IEN of subfile [1]^method [2]^date started [3]^date ended [4]^reason
DC[5]^
comment[6]

Returns a list of all contraceptive entries for a patient.

83.12.5 RPC: BGOREP1 DELCONT
Scope: Private

Parameter Datatype Description
DFN String Patient’s IEN
IEN String Contraceptive Subfile IEN
<return value> String Failure: -n^error text

Success: null

Removes a contraceptive for a patient.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Reproductive Factors
April 2020

41

83.12.6 RPC: BGOREP1 SETCONT
Scope: Private

Parameter Datatype Description
DFN String Patient’s IEN
DATA String List Formatted as:

IEN of subfile (if edit) |1| ^ Type of contraception |2| ^ Date start |3| ^
Date end |4| ^ reason DC |5| ^ comment |6|

<return value> String Failure: -n^error text
Success: DFN

Stores contraceptives for a patient.

83.13 External Relations
None.

83.14 Internal Relations
None.

83.15 Archiving and Purging
There are no archiving or purging requirements within this software.

83.16 Components
This component supports the following properties and methods:

83.17 Properties
Property Datatype Access Description
ALIGN Enum RW Sets the alignment of the component relative to its parent.

One of:
0 = None – no alignment occurs
1 = Top – aligns to the top boundary of the parent
2 = Bottom – aligns to the bottom boundary of the parent
3 = Left – aligns to the left boundary of the parent
4 = Right – aligns to the right boundary of the parent
5 = All – expands to the dimensions of the parent
6 = Center – centers itself within the parent

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Reproductive Factors
April 2020

42

Property Datatype Access Description
ANCHORS Flag RW Anchors the component’s position relative to its parent. Zero

or more of:
1 = Top
2 = Left
4 = Right
8 = Bottom

HEIGHT Integer RW Sets the height (in pixels) of the component.
LEFT Integer RW Sets the position (in pixels) of the left boundary of the

component.
TOP Integer RW Sets the position (in pixels) of the top boundary of the

component.
WIDTH Integer RW Sets the width (in pixels) of the top boundary of the

component.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Suicide Form
April 2020

43

84.0 Suicide Form

84.1 Introduction
You use the Suicide Form component to record suicide incidents for the patient on the
Suicide Reporting Form.

Figure 84-1: Suicide Form (Patient Centric)

Figure 84-2: Suicide Form (non-Patient Centric)

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Suicide Form
April 2020

44

84.2 Architecture and Business Process Overview

Figure 84-3: Architecture and business process overview

84.3 Implementation and Maintenance
This component has the following configuration:

Entity Value
Programmatic Identifier INDIANHEALTHSERVICE.BEH.IBH.SUICIDE.CONTROLS.CTLSUICIDE_

FORM
Class Identifier {A47DFD65-4878-4635-A4F3-E9122CFCC453}
Image File SuicideForm.dll
Property Initializations None

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Suicide Form
April 2020

45

Entity Value
Serializable Properties PatientCentric – BOOL
Required Files Suicide_Form.chm
Security Keys APCDZ SUICIDE FORMS
Multiple Instances
Allowed

Yes

Internal Property Editor No
All Keys Required No
Hidden from Property
Editor

No

Side-by-Side Versioning No
Service No
.Net Component Yes
Associated Build BEHO*1.1*013004

There are no specific implementation or maintenance tasks associated with this
component.

84.4 Routine Descriptions
This component has been assigned the namespace designation of “BEHOAMH.” The
following routines are distributed:

Routine Description
BEHOAMH Support for Suicide Form

84.5 File List
None.

84.6 Cross References
None.

84.7 Exported Options
None.

84.8 Exported Security Keys
None.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Suicide Form
April 2020

46

84.9 Exported Protocols
None.

84.10 Exported Parameters
None.

84.11 Exported Mail Groups
None.

84.12 Callable Routines

84.12.1 RPC: AMHBH SUICIDE FORM DSP
Scope: Private

Parameter Datatype Description
AMHIEN String Suicide Form IEN
<return value> String List Suicide Form Display content

Returns Suicide Form display content.

84.12.2 RPC: BEHOAMH FORMIENS
Scope: Private

Parameter Datatype Description
IEN String MHSS SUICIDE FORMS IEN
<return value> String Formatted as:

Fld #: IEN; Fld #:IEN; Fld #:IEN
Sample:
.03:1^.07:2429^.25:2

Returns the pointed to IENs for field data in the MHSS SUICIDE FORM file.

84.13 External Relations
Entity Name Description
Library IHS RPC Broker (BGU) General Utilities to support calls to RPMS using

the CIA Listener
File MHSS SUICIDE FORMS Contains content related to an attempt.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Suicide Form
April 2020

47

84.14 Internal Relations
None.

84.15 Archiving and Purging
There are no archiving or purging requirements within this software.

84.16 Components
This component supports the following properties and methods:

84.17 Properties
Property Datatype Access Description
ALIGN Enum RW Sets the alignment of the component relative to its parent.

One of:
0 = None – no alignment occurs
1 = Top – aligns to the top boundary of the parent
2 = Bottom – aligns to the bottom boundary of the parent
3 = Left – aligns to the left boundary of the parent
4 = Right – aligns to the right boundary of the parent
5 = All – expands to the dimensions of the parent
6 = Center – centers itself within the parent

ANCHORS Flag RW Anchors the component’s position relative to its parent. Zero
or more of:
1 = Top
2 = Left
4 = Right
8 = Bottom

HEIGHT Integer RW Sets the height (in pixels) of the component.
LEFT Integer RW Sets the position (in pixels) of the left boundary of the

component.
TOP Integer RW Sets the position (in pixels) of the top boundary of the

component.
WIDTH Integer RW Sets the width (in pixels) of the top boundary of the

component.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 SNOMED Service
April 2020

48

85.0 SNOMED Service

85.1 Introduction
The SNOMED Service provides access to the SNOMED Search dialog used to select
a SNOMED Concept ID.

85.2 Architecture and Business Process Overview

Figure 85-1: Architecture and business process overview

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 SNOMED Service
April 2020

49

85.3 Implementation and Maintenance
This component has the following configuration:

Entity Value
Programmatic Identifier BEHSNMDSVC.SNMDSVC
Class Identifier {78BA9201-1BAE-4341-B8F5-54762E12825F}
Image File BEHSNMDSvc.dll
Property Initializations None
Serializable Properties None
Required Files None
Security Keys None
Multiple Instances Allowed N/A
Internal Property Editor No
All Keys Required No
Hidden from Property Editor No
Side-by-Side Versioning Yes
Service Yes
.Net Component Yes
Associated Build BEHO*1.1*013004

There are no specific implementation or maintenance tasks associated with this
component.

85.4 Routine Descriptions
None.

85.5 File List
None.

85.6 Cross References
None.

85.7 Exported Options
None.

85.8 Exported Security Keys
None.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 SNOMED Service
April 2020

50

85.9 Exported Protocols
None.

85.10 Exported Parameters
None.

85.11 Exported Remote Procedures
None.

85.12 Exported Mail Groups
None.

85.13 Callable Routines
None.

85.14 External Relations
Entity Name Description
Package IHS Standard Terminology

2.0
Support APIs for SNOMED search

Dialog INDIANHEALTHSERVICE.
SNOMEDCTSEARCH.DLL

External library that prompts the user for SNOMED
Concept ID selection.

85.15 Internal Relations
Entity Name Description
Library BEHCPRS20.bpl Finds and instantiates the service.

85.16 Archiving and Purging
There are no archiving or purging requirements within this software.

85.17 Components
This component supports the following properties and methods:

85.17.1 Execute
Scope: public

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 SNOMED Service
April 2020

51

Parameter Datatype Description
<Return
value>

String SNOMED DescriptionID^ConceptID^Description^Associated ICD
codes delimited by ‘;’

Invokes the SNOMED Search dialog.

85.17.2 Execute_2
Scope: public

Parameter Datatype Description
ValueToSearch String Term to restrict list
<Return value> String SNOMED DescriptionID^ConceptID^Description^Associated ICD

codes delimited by ‘;’

Invokes the SNOMED Search dialog with a term for lookup.

85.17.3 ExecuteSubList
Scope: public

Parameter Datatype Description
Defaults String List of subsets to be included on the left portion of the search dialog
Selected String List of subsets to be selected on the left portion of the search dialog
<Return value> String SNOMED DescriptionID^ConceptID^Description^Associated ICD

codes delimited by ‘;’

Invokes the SNOMED Search dialog.

85.17.4 ExecuteSubList_2
Scope: public

Parameter Datatype Description
ValueToSearch String Term to restrict list
Defaults String List of subsets to be included on the left portion of the search dialog
Selected String List of subsets to be selected on the left portion of the search dialog
<Return value> String SNOMED DescriptionID^ConceptID^Description^Associated ICD

codes delimited by ‘;’

Invokes the SNOMED Search dialog.

85.17.5 ExecuteICD9toSNMD
Scope: public

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 SNOMED Service
April 2020

52

Parameter Datatype Description
ValueToSearch String Term to restrict list
Defaults String List of subsets to be included on the left portion of the search dialog
Selected String List of subsets to be selected on the left portion of the search dialog
<Return value> String SNOMED DescriptionID^ConceptID^Description^Associated ICD

codes delimited by ‘;’

Invokes the SNOMED Search dialog.

85.18 Properties
None

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 eRx Queue Service
April 2020

53

86.0 eRx Queue Service

86.1 Introduction
The eRx Queue Service provides access to the Surescripts refill request form in the
BEH EHR support library.

86.2 Architecture and Business Process Overview

Figure 86-1: Architecture and business process overview

86.3 Implementation and Maintenance
This component has the following configuration:

Entity Value
Programmatic Identifier BEHERXQUEUE.QUEUE
Class Identifier {CF925F24-B500-4E89-B550-75BB84CB4CDB}
Image File BEHeRxQueue.dll
Property Initializations none
Serializable Properties none
Required Files none
Security Keys none
Multiple Instances Allowed No
Internal Property Editor No
All Keys Required No
Hidden from Property Editor No
Side-by-Side Versioning Yes
Service Yes
.Net Component No

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 eRx Queue Service
April 2020

54

Entity Value
Associated Build BEHO*1.1*062001

There are no specific implementation or maintenance tasks associated with this
component.

86.4 Routine Descriptions
None.

86.5 File List
None.

86.6 Cross References
None.

86.7 Exported Options
None.

86.8 Exported Security Keys
None.

86.9 Exported Protocols
None.

86.10 Exported Parameters
None.

86.11 Exported Remote Procedures
None.

86.12 Exported Mail Groups
None.

86.13 Callable Routines
None.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 eRx Queue Service
April 2020

55

86.14 External Relations
Entity Name Description
Library BEH EHR Support Library Main OE/RR support library

86.15 Internal Relations
None

86.16 Archiving and Purging
There are no archiving or purging requirements within this software.

86.17 Components
This component supports the following properties and methods:

86.17.1 Execute
Scope: public

Parameter Datatype Description
Report String OE/RR Report ID^Health Summary Type^Dialog Caption

Displays the eRx Refill Request form.

86.17.2 ViewMailbox
Scope: public

Parameter Datatype Description
Report String OE/RR Report ID^Health Summary Type^Dialog Caption

Displays the Surescripts Mailbox dialog.

86.18 Properties
None.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 eRx QueueView
April 2020

56

87.0 eRx QueueView

87.1 Introduction
The eRx QueueView component is a button allowing the user access to the
Surescripts Renewal Request processing dialog.

87.2 Architecture and Business Process Overview

Figure 87-1: Architecture and business process overview

87.3 Implementation and Maintenance
This component has the following configuration:

Entity Value
Programmatic Identifier BEHERXQUEUEVIEW.VIEWQUEUE

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 eRx QueueView
April 2020

57

Entity Value
Class Identifier {9EABE0DB-B058-4160-B19A-4CF81490EE73}
Image File BEHeRxQueueView.ocx
Property Initializations none
Serializable Properties CAPTIONCOLOR1=COLOR,

CAPTIONCOLOR2=COLOR, CAPTIONTEXT=TEXT,
DISPLAYCOUNT=BOOL, REPORT=TEXT

Required Files none
Security Keys none
Multiple Instances Allowed no
Internal Property Editor no
All Keys Required no
Hidden from Property Editor no
Side-by-Side Versioning yes
Service no
.Net Component no
Associated Build BEHO*1.1*062001

There are no specific implementation or maintenance tasks associated with this
component.

87.4 Routine Descriptions
None.

87.5 File List
None.

87.6 Cross References
None.

87.7 Exported Options
None.

87.8 Exported Security Keys
None.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 eRx QueueView
April 2020

58

87.9 Exported Protocols
None.

87.10 Exported Parameters
None.

87.11 Exported Mail Groups
None.

87.12 Callable Routines
None.

87.13 External Relations
Entity Name Description
Package Order Entry/Results Reporting v3.0 Uses supported APIs for orders
Package IHS Pharmacy Modifications v7 Uses supported APIs for Surescripts renewal

requests

87.14 Internal Relations
Entity Name Description
Component CPRS Support Library Uses supported APIs.

87.15 Archiving and Purging
There are no archiving or purging requirements within this software.

87.16 Components
This component supports the following properties and methods:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 eRx QueueView
April 2020

59

87.16.1 Properties
Property Datatype Access Description
ALIGN Enum RW Sets the alignment of the component relative to its

parent. One of:
0 = None – no alignment occurs
1 = Top – aligns to the top boundary of the parent
2 = Bottom – aligns to the bottom boundary of the
parent
3 = Left – aligns to the left boundary of the parent
4 = Right – aligns to the right boundary of the parent
5 = All – expands to the dimensions of the parent
6 = Center – centers itself within the parent

ANCHORS Flag RW Anchors the component’s position relative to its
parent. Zero or more of:
1 = Top
2 = Left
4 = Right
8 = Bottom

AUTOSIZE Boolean RW If true, the component automatically resizes itself to
accommodate its contents.

BORDERSTYLE Enum RW Sets the style of the border surrounding the
component. May be one of:
0 = None
1 = Single
2 = Sunken
3 = Raised

CAPTION String RW Sets the text displayed in the title bar. To justify
portions of the caption text, use the “\” character to
delimit the left-, center-, and right-justified portions of
the caption text.

CAPTIONCOLOR1
CAPTIONCOLOR2

Color RW Colors to apply to the title bar. If the two colors differ
and a gradient style is set, a gradient effect is
created. For a standard title bar style, only the first
color is applied.

CAPTIONSTYLE Enum RW Sets the caption style. May be one of:
0 = None – No caption (hides title bar)
1 = Title – Standard title bar
2 = Frame – Framed title bar (group box style)
3 = Left – Left gradient title bar
4 = Right – Right gradient title bar
5 = Center – Center gradient title bar

CAPTIONTEXT String RW Text that appears on button
COLOR Color RW Sets the background color of the component.
DISPLAYCOUNT Bool RW Enables/Disables queue counter

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 eRx QueueView
April 2020

60

Property Datatype Access Description
FONT Font RW Set the default font used by the component. Some

elements of a component may override this setting.
HEIGHT Integer RW Sets the height (in pixels) of the component.
HELPFILE String RW Sets the name of the help file associated with the

component.
LAYOUT String RW Property representing the internal layout of the form.
LEFT Integer RW Sets the position (in pixels) of the left boundary of

the component.
TOP Integer RW Sets the position (in pixels) of the top boundary of

the component.
WIDTH Integer RW Sets the width (in pixels) of the top boundary of the

component.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Designated Primary Provider
April 2020

61

88.0 Designated Primary Provider

88.1 Introduction
The Designated Primary Provider component (Figure 88-1) allows users to view, add,
edit, and delete primary providers from several different categories for a patient.

Figure 88-1: Designated Primary Provider component

88.2 Architecture and Business Process Overview

Figure 88-2: Architecture and business process overview

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Designated Primary Provider
April 2020

62

88.3 Implementation and Maintenance
This component has the following configuration:

Entity Value
Programmatic Identifier BEHPCP.PCP
Class Identifier {666CC312-DE18-4D73-A283-3F5279FEF5D5}
Image File BEHPCP.dll
Property Initializations

Serializable Properties

Required Files BEHPCP.chm
Security Keys

Multiple Instances Allowed No
Internal Property Editor No
All Keys Required No
Hidden from Property Editor No
Side-by-Side Versioning Yes
Service No
.Net Component Yes
Associated Build BEHO*1.1*063001

There are no specific implementation or maintenance tasks associated with this
component.

88.4 Routine Descriptions
None.

88.5 File List
None.

88.6 Cross References
None.

88.7 Exported Options
None.

88.8 Exported Security Keys
None.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Designated Primary Provider
April 2020

63

88.9 Exported Protocols
None.

88.10 Exported Parameters
None.

88.11 Exported Mail Groups
None.

88.12 Callable Routines

88.12.1 RPC: BEHOPTPC GETBDP
Scope: Private

Parameter Datatype Description
DFN Pointer (#2) Patient IEN
<return value> String List BDPRET(category name)=name of provider^ien of

provider ^provider class of provider^date updated

Returns a list of a patient’s designated providers.

88.12.2 RPC: BEHOPTPC GETCATS
Scope: Private

Parameter Datatype Description
<return value> String List Data from BDP DESG SPEC PROV CATEGORY file

Returns an array of categories for designated provider.

88.12.3 RPC: BEHOPTPC SETBDP
Scope: Private

Parameter Datatype Description
DFN Pointer (#2) Patient IEN
TYPE String Name of Category
Prov Pointer (#200) Provider IEN
<return value> Boolean 1 if successful 0^error code if not

Stores a new or edits an existing designated provider for a patient

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Designated Primary Provider
April 2020

64

88.13 External Relations
Entity Name Description
Package DESIGNATED PROVIDER

MGT SYSTEM (BDP)
Uses Standard API calls to get and store data in
this application.

88.14 Internal Relations
Entity Name Description

88.15 Archiving and Purging
There are no archiving or purging requirements within this software.

88.16 Components
This component supports the following properties and methods:

88.17 Properties
Property Datatype Access Description
ALIGN Enum RW Sets the alignment of the component relative to its

parent. One of:
0 = None – no alignment occurs
1 = Top – aligns to the top boundary of the parent
2 = Bottom – aligns to the bottom boundary of the parent
3 = Left – aligns to the left boundary of the parent
4 = Right – aligns to the right boundary of the parent
5 = All – expands to the dimensions of the parent
6 = Center – centers itself within the parent

ANCHORS Flag RW Anchors the component’s position relative to its parent.
Zero or more of:
1 = Top
2 = Left
4 = Right
8 = Bottom

HEIGHT Integer RW Sets the height (in pixels) of the component.
LEFT Integer RW Sets the position (in pixels) of the left boundary of the

component.
TOP Integer RW Sets the position (in pixels) of the top boundary of the

component.
WIDTH Integer RW Sets the width (in pixels) of the top boundary of the

component.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Level of Intervention (PHN)
April 2020

65

89.0 Level of Intervention (PHN)

89.1 Introduction
The level of intervention module enables nurses to document PHN visits for their
patients. They can document goals and nursing interventions and nursing diagnoses.

Figure 89-1: Level of Intervention component

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Level of Intervention (PHN)
April 2020

66

89.2 Architecture and Business Process Overview

Figure 89-2: Architecture and business process overview

89.3 Implementation and Maintenance
This component has the following configuration:

Entity Value
Programmatic Identifier BEHINTERVENTION.INTERVENTION
Class Identifier {03BB82FD-F7D4-4E08-84D7-754B4806CE21}
Image File BEHIntervention.dll
Property Initializations None
Serializable Properties None
Required Files BEHIntervention.chm

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Level of Intervention (PHN)
April 2020

67

Entity Value
Security Keys None
Multiple Instances Allowed No
Internal Property Editor No
All Keys Required No
Hidden from Property Editor No
Side-by-Side Versioning No
Service No
.Net Component Yes
Associated Build BGO*1.1*17

There are no specific implementation or maintenance tasks associated with this
component.

89.4 Routine Descriptions
This component has been assigned the namespace designation of “BGOVPHN.” The
following routines are distributed:

Routine Description
BGOVPHN Used to Get and set PHN data

89.5 File List
None.

89.6 Cross References
None.

89.7 Exported Options
None.

89.8 Exported Security Keys
None.

89.9 Exported Protocols
None.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Level of Intervention (PHN)
April 2020

68

89.10 Exported Parameters
None.

89.11 Exported Mail Groups
None.

89.12 Callable Routines

89.12.1 RPC: BGOVPHN CHKPRV
Scope: Private

Parameter Datatype Description
IEN Pointer (#9000010.32) IEN of file entry
USER Pointer (#200) IEN of provider
<return value> Boolean 1 for they can edit this entry or 0^error text

Returns true if user is a CHIEF,MAS or the encounter provider.

89.12.2 RPC: BGOVPHN DEL
Scope: Private

Parameter Datatype Description
INP Pointer (#9000010.32) IEN of entry
<return value> Boolean 1 for success or 0^error text

Physically deletes an item in the V PHN file.

89.12.3 RPC: BGOVPHN GET
Scope: Private

Parameter Datatype Description
INP String INP = Patient IEN ^ Number to return
<return value> String List ; .RET = Returned as a list of records:

; RET(1)= "D" ^ IEN [2] ^ Visit Date [3] ^ Date Done [4]^ level of
intervention [5] ^Type Decision [6]^Facility Name [7] ^Provider IEN [8]
^ Location IEN [9] ^ Visit IEN [10] ^ Visit Category [11] ^ Visit Locked
[12]
; RET(2)= "P"^ IEN [2] ^ PSYCH [3]
; RET(3)= "N" ^ IEN[2] ^ NSG DX [3]
; RET(4)= "S" ^ IEN[2] ^ SHORT TERM GOAL [3]
; RET(5)= "L" ^ IEN[2] ^ LONG TERM GOAL [3]

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Level of Intervention (PHN)
April 2020

69

Returns an array of V PHN for the selected patient.

89.12.4 RPC: BGOVPHN SET
Scope: Private

Parameter Datatype Description
INP Array ; INP(1) = "D" ^ V IEN (if edit) [2] ^Level [3] ^ Type [4] ^ Patient IEN

[5] ^ Visit IEN [6] ^ Provider IEN [7] ^Event Date [8] ^ Location IEN [9]
^ Other Location [10]^ Historical Flag [11]
 ; INP(2)= "P" ^ PSYCH
 ; INP(3)= "N" ^ NSG DX
 ; INP(4)= "S" ^ SHORT TERM GOAL
 ; INP(5)= "L" ^ LONG TERM GOAL

<return value> String IEN of entry or an error message

Creates a new entry in the V PHN or edits an existing entry.

89.13 External Relations
None.

89.14 Internal Relations
None.

89.15 Archiving and Purging
There are no archiving or purging requirements within this software.

89.16 Components
This component supports the following properties and methods:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Level of Intervention (PHN)
April 2020

70

89.17 Properties
Property Datatype Access Description
ALIGN Enum RW Sets the alignment of the component relative to its parent.

One of:
0 = None – no alignment occurs
1 = Top – aligns to the top boundary of the parent
2 = Bottom – aligns to the bottom boundary of the parent
3 = Left – aligns to the left boundary of the parent
4 = Right – aligns to the right boundary of the parent
5 = All – expands to the dimensions of the parent
6 = Center – centers itself within the parent

ANCHORS Flag RW Anchors the component’s position relative to its parent.
Zero or more of:
1 = Top
2 = Left
4 = Right
8 = Bottom

HEIGHT Integer RW Sets the height (in pixels) of the component.
LEFT Integer RW Sets the position (in pixels) of the left boundary of the

component.
TOP Integer RW Sets the position (in pixels) of the top boundary of the

component.
WIDTH Integer RW Sets the width (in pixels) of the top boundary of the

component.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Direct Mail Button
April 2020

71

90.0 Direct Mail Button

90.1 Introduction
The Direct Mail button exposes the user dialog and communication layer for sending
secure emails.

90.2 Architecture and Business Process Overview

Figure 90-1: Architecture and business process overview

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Direct Mail Button
April 2020

72

90.3 Implementation and Maintenance
This component has the following configuration:

Entity Value
Programmatic Identifier BEHDIRECT.MAILBUTTON
Class Identifier {2DFDE9CB-0D04-4C94-A368-CE6D511FF331}
Image File BEHDirectButton.dll
Property Initializations none
Serializable Properties none
Required Files BEHDirectButton.chm
Security Keys none
Multiple Instances Allowed No
Internal Property Editor No
All Keys Required No
Hidden from Property Editor No
Side-by-Side Versioning No
Service No
.Net Component Yes
Associated Build BEHO*1.1*069001

There are no specific implementation or maintenance tasks associated with this
component.

90.4 Routine Descriptions
This component has been assigned the namespace designation of “BEHODMA.” The
following routines are distributed:

Routine Description
BEHODMA Support routine – Calls the PHR API of BPHRMUPM

90.5 File List
None.

90.6 Cross References
None.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Direct Mail Button
April 2020

73

90.7 Exported Options
None.

90.8 Exported Security Keys
None.

90.9 Exported Protocols
None.

90.10 Exported Parameters
Parameter Instance

Type
Value
Type

Precedence Description

BEHODMA
BALLOON TIME

 Numeric System, Division,
User

The balloon display time in
seconds (0-60)

BEHODMA SILENT
MODE

 Yes/No System, Division,
User

Disable the sent message
sound

BEHODMA
SUBJECT TEXT

 Text System, Division,
User

The Default subject text (1 –
100)

90.11 Exported Mail Groups
None.

90.12 Callable Routines
This section describes supported entry points for routines exported with this
component.

90.12.1 RPC: BEHODMA PTEMADR
Scope: public

Parameter Datatype Description
DFN Pointer (#2) IEN of file entry

90.13 External Relations
Entity Name Description
Library BEHDirectService.dll DIRECT mail service library. Contains UI and

communication layers.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Direct Mail Button
April 2020

74

90.14 Internal Relations
None

90.15 Archiving and Purging
There are no archiving or purging requirements within this software.

90.16 Components
This component supports the following properties and methods:

Property Datatype Access Description
ALIGN Enum RW Sets the alignment of the component relative to its parent.

One of:
0 = None – no alignment occurs
1 = Top – aligns to the top boundary of the parent
2 = Bottom – aligns to the bottom boundary of the parent
3 = Left – aligns to the left boundary of the parent
4 = Right – aligns to the right boundary of the parent
5 = All – expands to the dimensions of the parent
6 = Center – centers itself within the parent

ANCHORS Flag RW Anchors the component’s position relative to its parent.
Zero or more of:
1 = Top
2 = Left
4 = Right
8 = Bottom

HEIGHT Integer RW Sets the height (in pixels) of the component.
LEFT Integer RW Sets the position (in pixels) of the left boundary of the

component.
TOP Integer RW Sets the position (in pixels) of the top boundary of the

component.
WIDTH Integer RW Sets the width (in pixels) of the top boundary of the

component.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 EPCS Credentialing
April 2020

75

91.0 EPCS Credentialing

91.1 Introduction
The EPCS Credentialing component supports a two-step process authorizing a user
profile for medication ordering of scheduled medications.

91.2 Architecture and Business Process Overview

Figure 91-1: Architecture and business process overview

91.3 Implementation and Maintenance
This component has the following configuration:

Entity Value
Programmatic Identifier BEHEPCS.CREDENTIALING

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 EPCS Credentialing
April 2020

76

Entity Value
Class Identifier {2DFDE9CB-0D04-4C94-A368-CE6D511FF331}
Image File BEHEPCSCredentialing.dll
Property Initializations none
Serializable Properties none
Required Files BEHEPCSCredentialing.chm
Security Keys none
Multiple Instances Allowed No
Internal Property Editor No
All Keys Required No
Hidden from Property Editor No
Side-by-Side Versioning No
Service No
.Net Component Yes
Associated Build BEHO*1.1*070001

There are no specific implementation or maintenance tasks associated with this
component.

91.4 Routine Descriptions
This component has been assigned the namespace designation of “BEHOEP.” The
following routines are distributed:

Routine Description
BEHOEP1 Supporting RPCs for the credentialing component. RPCs for the creation and

reading of the provider profiles and logical access requests
BEHOEP2 RPCs for the verification or deletion of pending provider profile. Supporting

APIs for the profile hash, profile input transforms and modifications in
provider profile and logical access requests i.e. ACTIVATED/REVOKED or
other profile modifications

BEHOEP3 Common - BUSA, hash creation, hash verification. Supporting APIs for the
credentialing RPMS reports

BEHOEP4 Credentialing RPMS Audit and Hash Mismatch Reports
BEHOEP5 Supporting APIs for hash
BEHOEP6 Credentialing and 2FA Common APIs
BEHOEP7 Certificates validations and checks
BEHOEPAD Controlled Substance Ad Hoc Report
BEHOEPIC EPCS Audit Summary Report
BEHOEPIP Installation support
BEHOEPR1 EPCS and Pharmacy Audit Reports

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 EPCS Credentialing
April 2020

77

Routine Description
BEHOEPR2 EPCS Audit Summary Report
BEHOEPR3 EPCS Audit Summary Report
BEHOEPR4 EPCS Audit Summary Report
BEHOEPR5 EPCS Audit Summary Report
BEHOEPUT EPCS related utilities

91.5 File List
The component delivers the following FileMan file:

91.5.1 BEH EPCS OE/RR PARAMETERS DATA (#90460.09)
Field Name # Datatype Indexes Description
NAME .01 Pointer B –

Standard
Pointer to the NEW PERSON (#200)
File.

EDITED BY .02 Pointer Pointer to the NEW PERSON (#200)
File.

FACILITY .03 Pointer Pointer to the INSTITUTION (#4) File.
ENABLED USER .04 Set of Codes

0:NO
1:YES

 Indicates if the user has been enabled
or disabled.

DATE/TIME
EDITED

.05 Date/Time Captures last edited date/time.

VERIFIED BY .06 Pointer Pointer to the NEW PERSON (#200)
File.

DATE/TIME
VERIFIED

.07 Date/Time Captures verified dated/time.

91.5.2 BEHO EPCS INCIDENT REPORT VARIABLES (#90460.13)

Field Name # Datatype Indexes Description
VARIABLE LONG
NAME

.01 Free Text B –
Standard

VARIABLE SHORT
NAME

.02 Free Text

USER .03 Pointer Pointer to the NEW PERSON (#200)
File

INCIDENT
REPORT
VARIABLE

.04 Set of Codes
E:EPCS Daily
Report
P:Pharmacy Daily
report

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 EPCS Credentialing
April 2020

78

Field Name # Datatype Indexes Description
DEFAULT VALUE .05 Numeric
SITE VALUE .06 Numeric
SITE VALUE TYPE .07 Set of Codes

I:COUNT
P:PERCENTAGE

 Is the SITE VALUE variable a count
(integer) threshold or a percentage
threshold.

DESCRIPTION .08 Free Text

91.5.1 BEH EPCS AUDIT LOG MESSAGES (#90460.14)
Field Name # Datatype Indexes Description
LOG ID .01 Free Text B –

Standard
Assigned Log ID (i.e. EPCS31). Also, it
saves as piece 7 of DESC parameter in
the BUSA log.

AUDIT MESSAGE 1 Free Text BUSA log and Mailman message text.
Credentialing component, Two Factor
Authentication service and Monitoring
Services are sending audit related
Identifiers and additional information in
<INFO1>, <INFO2> and <INFO3>.

STATUS 2 Set of Codes
S:SUCCESS
F:FAILURE

 Holds piece 3 for the DESC parameter
of the BUSA log.

ACTION 3 Set of Codes
A:AUDIT
M:MAILMAN
B:BOTH

Indicates if log ID will be used for audit,
MailMan or both.

TYPE 4 Set of Codes
S:Service
PP:Provider Profile
P:Pharmacy
X:Prescribing
E:EPCS

 Holds piece 2 for the DESC parameter
of the BUSA log.

EVENT 5 Set of Codes
E:EPCS
P:PHARMACY
EP:BOTH

 Holds piece 6 for the DESC parameter
of the BUSA log.

MAIL GROUP 6 Pointer Pointer to the MAIL GROUP (3.8) file.
BUSA AUDIT TYPE 7 Free Text Holds TYPE parameter of the BUSA

audit log, i.e.
R:RPC Call
W:Web Service
A:API Call
O:Other

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 EPCS Credentialing
April 2020

79

Field Name # Datatype Indexes Description
BUSA AUDIT
CATEGORY

8 Free Text Holds CATEGORY parameter of the
BUSA audit log i.e. O: Other Event

BUSA AUDIT
ACTION

9 Free Text Holds ACTION parameter of the BUSA
audit log i.e.
A:Additions
D:Deletions
Q:Queries
E:Changes
C:Copy

BUSA AUDIT CALL 10 Free Text Holds associated BUSA Group
originated the audit.

MESSAGE
DESCRIPTION

11 Free Text Short description for the audit
message.

91.6 Cross References
None.

91.7 Exported Options
Name Description
BEHO EPCS AUDIT LOG SUMMARY EPCS Audit Log Summary
BEHO EPCS AUDIT REPORT Controlled substance audit log report
BEHO EPCS AUDIT REPORTS EPCS Audit Reports
BEHO EPCS AUDIT SUMMARY REPORT Run the daily EPCS Audit Summary Report
BEHO EPCS CONFIGURATION EPCS Configuration Menu
BEHO EPCS DIG SIG RX EXPORT Digitally Signed Rxs Export
BEHO EPCS EXPORT MENU EPCS Export Reports
BEHO EPCS INCIDENT VARS EPCS Incident Report Variable Edit
BEHO EPCS MAIN IHS EPCS Main Menu
BEHO EPCS OR VALID REPORTS EPCS Validation Reports
BEHO EPCS ORDER EXPORT Export Orders for Provider
BEHO EPCS ORDER REPORT Controlled Substance Order Report
BEHO EPCS PHARMACY AUDIT LOG EPCS Pharmacy Audit Log Summary
BEHO EPCS PHARMACY REPORTS EPCS Pharmacy Reports
BEHO EPCS PROFILE INTEGRTY RPT EPCS Integrity Check Report
BEHO EPCS PROV CONFIG CHECK Check Provider EPCS Configuration
BEHO EPCS PROVIDER AUDIT RPT Ad hoc Provider Audit Report
BEHO EPCS PROVIDER PROFILE RPT Provider Profile Integrity Report
BEHO EPCS PRV AD HOC EXPORT EPCS Ad hoc Provider Order Export

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 EPCS Credentialing
April 2020

80

Name Description
BEHO EPCS SITE CONFIGURATION EPCS Site Configuration

91.8 Exported Security Keys
Name Description
BEHOZEPCSREPORT This key will allow access on credentialing and audit reports

91.9 Exported Protocols
None.

91.10 Exported Parameters
Name Description
BEHO EPCS CERT
NAME THRESHOLD

Holds the number of character difference based on the
Levenshtein edit distance algorithm.

91.11 Exported Remote Procedures
Name Description
BEHOEP1 ENTRYEP RPC creates pending profile entry.
BEHOEP1 GETPUBKY RPC returns user public certificate
BEHOEP1 LDPNDNGV RPC returns all pending profiles.
BEHOEP1 LOACREAD RPC reads EPCS status of provider.
BEHOEP1 PROV RPC reads pending provider profile.
BEHOEP1 READP200 RPC reads provider profile.
BEHOEP2 DELPNDVF RPC deletes the selected pending profile.
BEHOEP2 ENTRYLA RPC creates pending EPCS status for a provider.
BEHOEP2 INPTRANS RPC reads Input transforms for VA# and DEA#.
BEHOEP2 LDPNDGLA RPC reads pending EPCS status of a provider.
BEHOEP2 PENDPROF RPC returns pending profile for a provider.
BEHOEP2 PROVPRFV RPC verify pending profile.
BEHOEP3 AUDTEVTS RPC for audit events.
BEHOEP5 ADDCHK RPC check addresses for providers/patients.
BEHOEP5 VRFYPHSH RPC returns current status of hash.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 EPCS Credentialing
April 2020

81

91.12 Exported Mail Groups
Name Description
BEHO EPCS INCIDENT
RESPONSE

People responsible for taking action on incidents.
Also, for taking action on:
- Provider credentials and any tampering that occurs - Order and Pharmacy
Certificates
- Server Time Sync

91.13 Callable Routines

91.13.1 $$VRFYPHSH^BEHOEP3(.INP,PROVIEN)
Description: Returns current status of provider profile hash.
Input: Provider IEN

Output: 0 or 1

91.13.2 RPC: BEHOEP1 ENTRYEP
Scope: Private

Parameter Datatype Description
DATA String DATA= Provider IEN^DUZ^Field Number^Old Data^New

Data “~” separated strings.
<return value> Boolean Creates a pending profile request for a provider profile.

Returns 1 or 0 based on Success/Failure.

91.13.3 RPC: BEHOEP1 GETPUBKY
Scope: Private

Parameter Datatype Description
SERIAL String The serial number of the certificate to look up.
<return value> String Returns the public certificate

91.13.4 RPC: BEHOEP1 LDPNDNGV
Scope: Private

Parameter Datatype Description
<return value> Array Read all pending profile or pending

ACTIVATED/REVOKED requests.
Array of strings with the following structure:
PROVIDER IEN^PROVIDER NAME^MODIFIED BY
IEN^MODIFIED

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 EPCS Credentialing
April 2020

82

91.13.5 RPC: BEHOEP1 LOACREAD
Scope: Private

Parameter Datatype Description
Provider IEN Pointer Pointer to NEW PERSON (#200) file
<return value> String Read current status i.e. ACTIVATED/REVOKED for a

provider in EPCS.
String with the following structure:
Facility IEN^Facility Name^Facility DEA^ENABLED
EPCS 0/1

91.13.6 RPC: BEHOEP1 PROV
Scope: Private

Parameter Datatype Description
Provider
Search Text

String Provider Name; minimum is three characters.

<return value> Array Search providers starting search text and holding ORES
security key.
Array of strings with the following structure:
provider id (DUZ)^provider name

91.13.7 RPC: BEHOEP1 READP200
Scope: Private

Parameter Datatype Description
Provider IEN Pointer Pointer to NEW PERSON (#200) file
<return value> String Reads current provider profile from NEW PERSON file.

String with the following structure of fields from the NEW
PERSON (#200) file:
53.1^53.2^
53.3^53.11^55.1^55.2^55.3^55.4^55.5^55.6^501.2^747.4
4

91.13.8 RPC: BEHOEP2 DELPNDVF
Scope: Private

Parameter Datatype Description
Provider IEN Pointer Pointer to NEW PERSON (#200) file
<return value> String Delete both pending profile and logical access request

and returns a 1 for success or 0^Message for the failure.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 EPCS Credentialing
April 2020

83

91.13.9 RPC: BEHOEP2 ENTRYLA
Scope: Private

Parameter Datatype Description
INPUT String INPUT= Provider IEN^DUZ^Facility IEN^ENABLE USER

(YES/NO)
<return value> String Create logical access requests i.e.

ACTIVATED/REVOKED. Returns 1 for success or
0^Message for the failure.

91.13.10 RPC: BEHOEP2 INPTRANS
Scope: Private

Parameter Datatype Description
INPUT String INPUT IEN^DEA^VA
<return value> String DEA#, VA# fields validation returns a 1 or 0^Failed

Validation

91.13.11 RPC: BEHOEP2 LDPNDGLA
Scope: Private

Parameter Datatype Description
Provider IEN Pointer Pointer to NEW PERSON (#200) file
<return value> String Provider pending logical access request.

Returns a string with the structure of:
Facility IEN^Facility Name^ ^ACTIVATED
/REVOKED^MODIFIED BY Name ^DATE/TIME
MODIFIED

91.13.12 RPC: BEHOEP2 PENDPROF
Scope: Private

Parameter Datatype Description
Provider IEN Pointer Pointer to NEW PERSON (#200) file
<return value> Array Returns Pending Provider Profile in an array of strings with

the following structure:
ProviderIEN^ModifiedByName^FieldNumber^OldData^Ne
wData^DateModified^ModifiedByIEN

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 EPCS Credentialing
April 2020

84

91.13.13 RPC: BEHOEP2 PROVPRFV
Scope: Private

Parameter Datatype Description
Provider IEN Pointer Pointer to NEW PERSON (#200) file
<return value> Array Pending Profile Verification saves the profile to NEW

PERSON and pending logical access to OE/RR EPCS
PARAMETERS (100.7). Also, mark request as Verified,
perform BUSA Logging and Profile hash.

91.13.14 RPC: BEHOEP3 AUDTEVTS
Scope: Private

Parameter Datatype Description
INPUT String LOGID is mandatory and all other parameters are

optional.
INPUT= LOGID^Message1^Message 2^Message 3

<return value> String Returns a 1 for the successful log or 0 otherwise.

91.13.15 RPC: BEHOEP5 ADDCHK
Scope: Private

Parameter Datatype Description
DFN Pointer Pointer to PATIENT (#2) file
Provider IEN Pointer Pointer to NEW PERSON (#200) file
Flag String Null-check both addresses

1-check patient address
2-check provider address

<return value> String Returns a 1 for a match, 0 for no match

91.13.16 RPC: BEHOEP5 VRFYPHSH
Scope: Private

Parameter Datatype Description
Provider IEN Pointer Pointer to NEW PERSON (#200) file
<return value> String Returns a 1 or 0 indicating if the provider hash has been

tampered with.

91.14 External Relations
Entity Name Description
Library BEH2FA Two Factor Authentication Service

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 EPCS Credentialing
April 2020

85

91.15 Internal Relations
None

91.16 Archiving and Purging
There are no archiving or purging requirements within this software.

91.17 Components
This component supports the following properties and methods:

Property Datatype Access Description
ALIGN Enum RW Sets the alignment of the component relative to its parent.

One of:
0 = None – no alignment occurs
1 = Top – aligns to the top boundary of the parent
2 = Bottom – aligns to the bottom boundary of the parent
3 = Left – aligns to the left boundary of the parent
4 = Right – aligns to the right boundary of the parent
5 = All – expands to the dimensions of the parent
6 = Center – centers itself within the parent

ANCHORS Flag RW Anchors the component’s position relative to its parent. Zero
or more of:
1 = Top
2 = Left
4 = Right
8 = Bottom

HEIGHT Integer RW Sets the height (in pixels) of the component.
LEFT Integer RW Sets the position (in pixels) of the left boundary of the

component.
TOP Integer RW Sets the position (in pixels) of the top boundary of the

component.
WIDTH Integer RW Sets the width (in pixels) of the top boundary of the

component.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Two-Factor Authentication Service
April 2020

86

92.0 Two-Factor Authentication Service

92.1 Introduction
The service is an intermediary between the user and the external authentication
system. The service prompts the user to select certificate from cryptographic token
and validates against the two-factor authentication provider.

92.2 Architecture and Business Process Overview

Figure 92-1: Architecture and business process overview

92.3 Implementation and Maintenance
This component has the following configuration:

Entity Value
Programmatic Identifier BEH2FA.AUTHSVC
Class Identifier {0516BAC0-D073-40A2-8034-B3DABE7A2DC8}
Image File BEH2FA.dll
Property Initializations None
Serializable Properties None
Required Files None

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Two-Factor Authentication Service
April 2020

87

Entity Value
Security Keys None
Multiple Instances Allowed No
Internal Property Editor No
All Keys Required No
Hidden from Property Editor Yes
Side-by-Side Versioning No
Service Yes
.Net Component Yes
Associated Build BEHO*1.1*071001

There are no specific implementation or maintenance tasks associated with this
component.

92.4 Routine Descriptions
This component has been assigned the namespace designation of “BEHOEP.” The
following routines are distributed:

Routine Description
BEHOEPS Supports digital signature/hash creation for Order and Pharmacy and

Pharmacy hash comparison during medication request processing.
BEHOEP7 Cryptographic certificates validations and checks.

92.5 File List
The service delivers the following FileMan files:

92.5.1 BEH EPCS CERTIFICATE STATUS (#90460.12)
Field Name # Datatype Indexes Description
SERIAL NUMBER .01 Free Text B –

Standard
Certificate Serial
Number

VERIFIED STATUS .02 Set Of Codes
A:ACTIVE
P:PROPOSED
R:RETIREDD

PROVIDER .03 Pointer to NEW PERSON
(#200) file.

STATUS .04 Set Of Codes
R: REVOKED
V: VALID

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Two-Factor Authentication Service
April 2020

88

Field Name # Datatype Indexes Description
LAST CHECKED
DATE/TIME

.05 Date/Time

EXPIRATION DATE .06 Date/Time
SECURITY HASH .07 Free Text
CRL DISTRIBUTION
POINT

1 Multiple

PRIORITY .01 Numeric
CRL DISTRIBUTION
POINT

.02 Pointer to BEH EPCS
CRL DISTRIBUTION
POINTS (#90460.15) file.

USER PUBLIC CERT 2 Word Processing
CERTIFICATE NAME 4.0

1
Free Text

CERTIFICATE USER 4.0
2

Free Text

92.5.2 BEH EPCS CRL DISTRIBUTION POINTS (#90460.15)
Field Name # Datatype Indexes Description
CRL DISTRIBUTION
POINT

.01 Free Text B - Standard

92.6 Cross References
None.

92.7 Exported Options
None.

92.8 Exported Security Keys
None.

92.9 Exported Protocols
None.

92.10 Exported Parameters
None.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Two-Factor Authentication Service
April 2020

89

92.11 Exported Remote Procedures
Name Description
BEHOEP7 AUDITSVC Audit log events
BEHOEP7 BUSASVC BUSA Log support
BEHOEP7 CHKCRTST RPC will return current status of the Certificate.
BEHOEP7 GETCERT Retrieve certificate registered to provider
BEHOEP7 KEYHLDRS Return holders of security key
BEHOEP7 LISTCERT Retrieve certificates for provider
BEHOEP7 SETCERT Create/Update provider certificate
BEHOEP7 UTC Returns the current local time of the server in UTC.
BEHOEP7 GETCERT RPC retrieve the certificate registered to the provider.
BEHOEPS GORDIDIG Returns information needed for creation of digital signature
BEHOEPS STORDSIG Stores digital signature for the order.

92.12 Exported Mail Groups
None.

92.13 Callable Routines

92.13.1 EN^BEHOEPS
Scope: private

Parameter Datatype Description
ACTION String Two-character flag defined by OE/RR
DFN Numeric Number representing the IEN to the PATIENT (#2) File
ORNP Numeric Number representing the IEN to the NEW PERSON

(#200) File
ORIFN Numeric Number representing the IEN to the ORDER (#100) File
OETID Numeric Number representing the Order Action entry in the

ORDER (#100) File

Generates and stores a digital certificate and hash for the order.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Two-Factor Authentication Service
April 2020

90

92.13.2 EN1^BEHOEPS
Scope: private

Parameter Datatype Description
POIEN Numeric Number representing the IEN to the PENDING

OUTPATIENT ORDERS (#52.41) File

Generates and stores a digital certificate and hash for the pending medication order.

92.13.3 RXVER^BEHOEPS
Scope: private

Parameter Datatype Description
POIEN Numeric Number representing the IEN to the PENDING

OUTPATIENT ORDERS (#52.41) File

Generates a digital certificate and hash and compares to the stored hash for the
associated entry in the APSP DEA ARCHIVE INFO (#9009036.1) File

92.13.4 RPC: BEHOEP7 AUDITSVC
Scope: Private

Parameter Datatype Description
LOGID String LOGID is mandatory and all other parameters are

optional.
P1 String Optional
P2 String Optional
P3 String Optional
<return value> String Returns a 1 for the successful log or 0 otherwise.

Loads audit log configurations.

92.13.5 RPC: BEHOEP7 BUSASVC
Scope: Private

Parameter Datatype Description
ACTION String
CALL String
MSG String
STATUS String
EVENT String

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Two-Factor Authentication Service
April 2020

91

Parameter Datatype Description
<return value> String Failure: 0

Success: 1

92.13.6 RPC: BEHOEP7 CERTSTAT
Scope: Private

Parameter Datatype Description
SERIAL String Serial number
STATUS Set R:Revoked

V:Valid
<return value> String Failure: 0^Error Message

Success: 1

92.13.7 RPC: BEHOEP7 CHKCRTST
Scope: Private

Parameter Datatype Description
SERIAL String Serial Number
<return value> String Failure: -n^Error Message

Success: 1^Success

92.13.8 RPC: BEHOEP7 GETCERT
Scope: Private

Parameter Datatype Description
Provider IEN Pointer Pointer to NEW PERSON (#200) file
Flag String 1 – Return proposed value,

Null – Return current value
<return value> String Serial Number^Thumbprint (blank for

proposed)^Expiration Date

92.13.9 RPC: BEHOEP7 KEYHLDRS
Scope: Private

Parameter Datatype Description
KEY String Security Key
<return value> Array List of users holding the security key formatted as:

IEN^Name

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Two-Factor Authentication Service
April 2020

92

92.13.10 RPC: BEHOEP7 LISTCERT
Scope: Private

Parameter Datatype Description
<return value> Array Returns array of certificates on system for a user.

92.13.11 RPC: BEHOEP7 SETCERT
Scope: Private

Parameter Datatype Description
PVIEN Integer Provider IEN (File #200)
SERIAL String Serial Number
CRL String Web address to Certificate Revocation List
EDATE Date/Time Expiration Date
CNAME String Certificate Name
CISSUER String Company issuing certificate
PCERT String Public certificate
<return value> String Failure: 0^Error Message

Success: 1

92.13.12 RPC: BEHOEP7 UTC
Scope: Private

Parameter Datatype Description
<return value> String Returns local server time in UTC format.

92.13.13 RPC: BEHOEPS GORDIDIG
Scope: Private

Parameter Datatype Description
DFN Integer IEN to Patient File
ORNP String IEN to the New Person file for the ordering provider
ORIFN Integer IEN to Order File representing the order
<return value> String Returns a string of data to generate a digital signature.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Two-Factor Authentication Service
April 2020

93

92.13.14 RPC: BEHOEPS STORDSIG
Scope: Private

Parameter Datatype Description
PAT Integer IEN to Patient File
PRV Integer IEN to New Person File
ORD Integer IEN to Order File
INPUT String Digital signature to be stored^Hash of digital signature
<return value> String Failure: -1^Error Message

Success: 1

92.14 External Relations
Entity Name Description
Library Cryptographic Token Commercial Authentication Hardware.

92.15 Internal Relations
None.

92.16 Archiving and Purging
There are no archiving or purging requirements within this software.

92.17 Components
None.

92.18 Templates
None.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Surescripts Mailbox
April 2020

94

93.0 Surescripts Mailbox

93.1 Introduction
The Surescripts Mailbox component is a button allowing the user access to
Surescripts related orders and requests and the ability to act on pending requests.

93.2 Architecture and Business Process Overview

Figure 93-1: Architecture and business process overview

93.3 Implementation and Maintenance
This component has the following configuration:

Entity Value
Programmatic Identifier BEHERXSSMAILBOX.VIEWMAILBOX
Class Identifier {33F94CEC-EFCB-4F20-8E6F-1C7130CB91AC}
Image File BEHeRxSSMailbox.ocx
Property Initializations none

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Surescripts Mailbox
April 2020

95

Entity Value
Serializable Properties CAPTIONCOLOR1=COLOR, CAPTIONCOLOR2=COLOR,

CAPTIONTEXT=TEXT
Required Files none
Security Keys none
Multiple Instances Allowed no
Internal Property Editor no
All Keys Required no
Hidden from Property Editor no
Side-by-Side Versioning yes
Service no
.Net Component no
Associated Build BEHO*1.1*072001

There are no specific implementation or maintenance tasks associated with this
component.

93.4 Routine Descriptions
None.

93.5 File List
None.

93.6 Cross References
None.

93.7 Exported Options
None.

93.8 Exported Security Keys
None.

93.9 Exported Protocols
None.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Surescripts Mailbox
April 2020

96

93.10 Exported Parameters
None.

93.11 Exported Mail Groups
None.

93.12 Callable Routines

93.12.1 RPC: APSPESM DENIED
Scope: Private

Parameter Datatype Description
PRV Number NEW PERSON (#200) pointer. Required
STATUS String Optional. Defaults to ‘01’
DAYS Number Number of days to go back. Defaults to 30
<return value> String Returns a list of requests

Returns a list of denied requests.

93.12.2 RPC: APSPESM GETITM
Scope: Private

Parameter Datatype Description
IEN Number APSP SURESCRIPTS REQUEST (#9009033.91)

pointer. Required
<return value> String Returns a string containing details of the related

Surescripts request.

Returns information for the requested entry.

93.12.3 RPC: APSPESM ORDERS
Scope: Private

Parameter Datatype Description
PRV Number NEW PERSON (#200) pointer. Required
DAYS Number Number of days back. Defaults to 30
<return value> String Returns a list of orders from the PHARMACY

EXTERNAL INTERFACE (#52.51) file match criteria.

Returns a string of data for each entry matching the criteria.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Surescripts Mailbox
April 2020

97

93.12.4 RPC: APSPESM REQUESTS
Scope: Private

Parameter Datatype Description
PRV Number NEW PERSON (#200) pointer. Required
STATUS String A string containing one or more status types. Defaults to

1 (processing)
<return value> String Returns a list of requests matching the criteria.

Returns a list of requests.

93.12.5 RPC: APSPESM SSMBCNT
Scope: Private

Parameter Datatype Description
PRV Number NEW PERSON (#200) pointer. Required
<return value> String # of Renewal Requests^# of Change Requests^# of

Verify Requests^Current patient has requests(0/1)

Returns a string of data used by button to relay request information to the user.

93.12.6 RPC: APSPESM1 RPTRPC
Scope: Private

Parameter Datatype Description
PRV Number NEW PERSON (#200) pointer.
INP String Contains: ‘F’<PrescriberAgent Flag: P>Detail Level:’ Dn’

(where n represents the slider position)
SDT Date Start Date
EDT Date End Date
<return value> String Returns a string of XML formatted information

Returns XML content containing results of the search.

93.13 External Relations
Entity Name Description
Package Order Entry/Results Reporting v3.0 Uses supported APIs for orders
Package IHS Pharmacy Modifications v7 Uses supported APIs for Surescripts requests
Package Outpatient Pharmacy v7 References file Pharmacy External Interface

(#52.51) File

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Surescripts Mailbox
April 2020

98

93.14 Internal Relations
Entity Name Description
Component CPRS Support Library Uses supported APIs.

93.15 Archiving and Purging
There are no archiving or purging requirements within this software.

93.16 Components
This component supports the following properties and methods:

93.16.1 Properties
Property Datatype Access Description
ALIGN Enum RW Sets the alignment of the component relative to its

parent. One of:
0 = None – no alignment occurs
1 = Top – aligns to the top boundary of the parent
2 = Bottom – aligns to the bottom boundary of the
parent
3 = Left – aligns to the left boundary of the parent
4 = Right – aligns to the right boundary of the parent
5 = All – expands to the dimensions of the parent
6 = Center – centers itself within the parent

ANCHORS Flag RW Anchors the component’s position relative to its
parent. Zero or more of:
1 = Top
2 = Left
4 = Right
8 = Bottom

AUTOSIZE Boolean RW If true, the component automatically resizes itself to
accommodate its contents.

BORDERSTYLE Enum RW Sets the style of the border surrounding the
component. May be one of:
0 = None
1 = Single
2 = Sunken
3 = Raised

CAPTION String RW Sets the text displayed in the title bar. To justify
portions of the caption text, use the “\” character to
delimit the left-, center-, and right-justified portions of
the caption text.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Surescripts Mailbox
April 2020

99

Property Datatype Access Description
CAPTIONCOLOR1
CAPTIONCOLOR2

Color RW Colors to apply to the title bar. If the two colors differ
and a gradient style is set, a gradient effect is
created. For a standard title bar style, only the first
color is applied.

CAPTIONSTYLE Enum RW Sets the caption style. May be one of:
0 = None – No caption (hides title bar)
1 = Title – Standard title bar
2 = Frame – Framed title bar (group box style)
3 = Left – Left gradient title bar
4 = Right – Right gradient title bar
5 = Center – Center gradient title bar

CAPTIONTEXT String RW Text that appears on button
COLOR Color RW Sets the background color of the component.
DISPLAYCOUNT Bool RW Enables/Disables queue counter
FONT Font RW Set the default font used by the component. Some

elements of a component may override this setting.
HEIGHT Integer RW Sets the height (in pixels) of the component.
HELPFILE String RW Sets the name of the help file associated with the

component.
LAYOUT String RW Property representing the internal layout of the form.
LEFT Integer RW Sets the position (in pixels) of the left boundary of

the component.
TOP Integer RW Sets the position (in pixels) of the top boundary of

the component.
WIDTH Integer RW Sets the width (in pixels) of the top boundary of the

component.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 System Requirements
April 2020

100

Appendix A: System Requirements

A.1 Minimum System Requirements

A.1.1 Windows – RPMS server
• Windows 2008 R2

• Minimum 40 GB RAM

• 2 x 1 TB HDD (over a five year period)

• All Microsoft Updates

• Ensemble 2012.2.5.962.0.13037 (Windows 64 bit version)

A.1.2 AIX – RPMS server
• AIX 7.1

• Minimum 16 GB RAM

• 2 x 1 TB disk space (over a five year period)

• Ensemble 2012.2.5.962.0.13037 (AIX 64 bit version)

A.1.3 Windows – Application server
• Windows 2008 R2

• Minimum 40 GB RAM

• 80+ GB HHD

• All Microsoft Updates

• .Net 4.5.1

• MS Silverlight

• MS Visual C++ 2013 (x86) Redistributable

A.1.4 Client Workstations
• Windows 7

• Minimum 16 GB RAM

• 60 GB HDD

• All Microsoft Updates

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 System Requirements
April 2020

101

• .Net 4.5.1 with .NET 3.5 implemented

• MS Silverlight

• MS Visual C++ 2013 (x86) Redistributable

• Adobe Reader 11.0.04

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

102

Appendix B: Developer Tutorial
This tutorial targets software developers wanting to learn the skills and techniques
necessary to create components for the VueCentric® Framework. While the
document provides examples for the Delphi and Visual Basic user, it should prove to
be of use to developers using other programming languages as well. Upon completion
of this tutorial, the software developer will have an in-depth understanding of the
VueCentric Framework and its major components and how to create visual and non-
visual plug-in components.

Note: The examples in this document apply to version 6.0 of
Delphi and Visual Basic and Visual Studio .Net 2003.
Other versions may differ somewhat from the examples
shown.

B.1 Introduction
The first VistA/RPMS applications sported relatively simple, character-based user
interfaces. This limited in a significant way the types of user interactions that could
be supported. With the advent of client-server programming by way of the remote
procedure call broker (aka, RPC Broker), developers were empowered to create much
more sophisticated user interfaces supported under the Windows operating system.

However, being of the traditional monolithic design, applications so developed were
bulky, integrated poorly with other applications, did little to embrace code reuse, and
generally were not very extensible. The VueCentric Framework was developed to
address these deficiencies by creating an enabling infrastructure that supports the
deployment of applications as reusable components rather than standalone
executables. To this end, the Framework provides a number of benefits to the
software developer:

• Version-control and Automated Deployment

• User Authentication and Access Control

• Support for Common Tasks

• Debugging Support

• Synchronous and Asynchronous Remote Data Access

• Event Subscription/Propagation

• Choice of Software Development Tools

• Collaborative Software Development Environment

• Context Management

• Visual Design Tool

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

103

A component may be either a visual component (ActiveX) or a service (in-process
COM server). An example of a visual component might be one the supports
management of the problem list. In contrast, a component that maintains information
about the currently selected patient would be an example of a service. Note that
services may manifest themselves visually (e.g., the patient selection dialog produced
by the patient context object), but in their baseline state, they remain invisible to the
user. While the initial creation of these two component types differs somewhat, the
programming techniques for both are essentially the same.

B.2 Using Debug Mode
Debug mode is activated when the debug command line parameter is specified at
application startup. This feature permits debugging of remote procedure calls on the
remote host. Normally, when a connection request is made, a dedicated background
process is automatically created on the server to handle communications with the
client. In contrast, in debug mode when a connection request is made the following
Information dialog (Figure B-1) displays.

Figure B-1: Information dialog

1. This dialog instructs you to manually start the listener process on the target
machine using the specified entry point. Set any breakpoints needed before doing
this if your M environment requires it.

2. At the prompt, type the IP Address (192.168.1.105).

3. At the prompt, type the Port (3335).

4. Click OK to dismiss the dialog. The remainder of the connection process will
resume in the usual manner.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

104

Notes: If you close the dialog before manually starting a listener, a
background listener will be used instead.

If you use the Serenji debugger, be sure to start the listener
after invoking the Serenji shell.

Using debug mode with some network configurations may
fail to establish a connection. This is especially true for
some VPNs and networks where NAT is utilized. Because
debug mode performs a connection callback from the
remote host to the client, the remote host must be able to
determine the route to the client’s IP address. If a VPN is in
use, supply the VPN-assigned IP address when starting the
listener process rather than the address supplied by the
client.

B.3 Using the Trace Log
Trace mode is an extremely useful debugging tool. This mode is activated by starting
the VIM with the /trace command line parameter. When activated, a new menu item
appears on the system menu called Show Trace Log. Checking this menu item reveals
the Trace Log Viewer (see below). The viewer may be used to examine a multitude of
activities such as remote procedure calls (synchronous and asynchronous), events,
context changes, status messages, as well as custom entries created by running
components (see Appendix B.23.7).

The Trace Log is divided into four panes: the trace list, the trace detail, the toolbar,
and the status bar. It has the following layout:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

105

Figure B-2: Trace Log

The trace list is located in the upper left. If this pane is not visible, click the minimize
bar that separates this from the trace detail pane. The trace list shows a list of all
activities logged by the application. Each entry consists of three columns. From left to
right these are the sequence number, which reflects the chronology of log entries and
is incremented as each new entry is logged, the class, which represents the category
of the entry (e.g., remote procedure call vs. host event), and the type, which provides
further sub-classification of the entry within its class. The trace list may be sorted by
any column by clicking the column header. Clicking the same column header in
succession toggles the sort order of that column. Right clicking an entry elicits a pop-
up menu that permits further manipulation of the event list.

The upper right pane represents detailed information about the currently selected
event. The toolbar permits navigation of the event list and controls other aspects of
event logging. The status bar at the bottom of the dialog displays information about
the state of the event log.

Figure B-3: Filters menu

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

106

The following list describes the actions that may be launched from the menu or the
toolbar:

• Remove Entry: Removes the selected entry from the event log.

• Filter this Class: Removes from the event log all entries belonging to the same
class as the selected entry and suppresses logging of future events of the same
class.

• Filter this Type: Removes from the event log all entries belonging to the same
type as the selected entry and suppresses logging of future events of the same
type. This affects only event types within the currently selected event class.

• Clear Filters: Removes existing filters. Choose the type of filter to remove, or all
filters:

− Class Filters
− Type Filters
− All Filters

• Navigation Buttons: Navigate the event log.

Figure B-4: Navigation buttons

− First: Moves to the first entry
− Previous: Moves to the previous entry
− Next: Moves to the next entry
− Last: Moves to the last entry

• Resume and Suspend buttons:

Figure B-5: Event buttons

Toggle between resuming and suspending event capture.

• Clear button: Clears the event log.

Figure B-6: Clear button

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

107

• Hide button: Hides the event log dialog. This does not affect the capture of event
data.

Figure B-7: Hide button

• Print button: Prints the contents of the event detail pane.

Figure B-8: Print button

• Max Entries field: Sets the maximum number of event log entries. When this
limit is reached, the oldest entries are removed.

Figure B-9: Max Entries field

B.4 About Component Support Services
The Component Support Services (CSS) provide the following types of services to
the component author:

• Remote Procedure Support (synchronous and asynchronous)

• Event Management

• Context Management

• Dynamic Discovery

• Miscellaneous Utilities

Accessing these services requires acquiring an interface reference to the session
object. The session object is shared across all components within the same application
process space. It may not be instantiated directly, but instead must be acquired from
the server object. The sole purpose of the server object is to create a single instance of
the session object and return its reference to the caller. Thus, accessing the session
object involves two steps: instantiate the server object and request of it a reference to
the session object. Once this is done, the server object is no longer needed and can be
released.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

108

The following are examples of how this process is done in Delphi and Visual Basic:

Delphi Visual Basic
uses CIA_CSS_TLB;
…
var
 vcSession: ICSS_Session;
begin
 vcSession :=
CoCSS_Server.Create.Session;
end;

Dim vcServer As New
CIA_CSS.CSS_Server
Dim vcSession As
CIA_CSS.CSS_Session
Set vcSession = vcServer.Session
Set vcServer = Nothing

Typically, a programmer will acquire the reference to the session object in the
component’s initializer (the Initialize method in both Delphi and Visual Basic),
storing it in an instance variable that persists for the life of the component. This
avoids the overhead of repeatedly creating the server object each time the session
object needs to be accessed.

A detailed description of the services provided by the CSS and how to use them may
be found in the sections that follow.

B.5 About COM and ActiveX
The Component Object Model, or COM, is a Microsoft specification for ensuring
interoperability between components regardless of the programming language or
development tool used in their creation. Key to this specification is the concept of
interfaces.

An interface is a collection of method (i.e., procedures and functions) and property
declarations. More than this, an interface represents an immutable contract — a
guarantee that any object supporting a particular interface will always implement
each and every method or property declared within it. While the implementations
may differ, the means for invoking them are identical.

COM builds upon the concept of interfaces by providing a standardized means of
invoking interfaces that works within and across process boundaries and adjusts for
internal differences in calling conventions and data representation. COM further
standardizes on an established set of supported core datatypes (though these can be
extended using custom marshaling techniques — a practice that is rarely necessary
and very complex).

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

109

Also central to the success of COM is the concept of self-description, or the ability to
interrogate a component’s metadata to determine the interfaces it supports and their
declarations. This metadata is provided in the form of a type library. A type library
can be supplied separately from the component’s executable file, but more typically it
is imbedded in that file as a resource. Visual Basic automatically generates type
library information for its components based on the program code itself and has no
provision for directly accessing the type library itself. Delphi provides a type library
editor that may be used to modify an existing type library.

Figure B-10: CSS window

ActiveX, also a Microsoft specification, builds upon the COM specification by
defining a specific set of interfaces designed to support the hosting of visual
components within container applications. A COM component that supports these
interfaces is known as an ActiveX component. In Delphi, wizards exist to create
ActiveX components either as wrappers for existing components or as Active Forms,
which behave like regular forms in that other components may be placed upon them.
Visual Basic has the equivalent of the Active Form in the User Control class. Again,
because ActiveX controls are COM objects, it does not matter to the application
hosting them what programming language or tool created them.

All components within the VueCentric Framework are COM objects. This includes
the VIM, CSS, CMS and all plug-in services and visual components. Further, the
visual components are ActiveX components. This means that any visual object
created for the VueCentric Framework can be hosted in any ActiveX-compliant
container. The VIM is one such container. Internet Explorer is an example of another.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

110

B.6 Component Types
The VueCentric Framework recognizes two basic types of components: visual
components (ActiveX) and services (COM). Visual components may be manipulated
in the VIM Designer (services cannot). Services extend the capabilities of the
framework and although they may manifest themselves visually, they do not require a
container (unlike visual components). The techniques for creating these two
component types differ somewhat as does the manner in which they are loaded and
executed. However, once created, the coding is very similar for both types. In fact, it
is possible to create a visual component and a service within one executable file.

The sections that follow first address programming techniques common to both
component types. Following that are sections that describe the procedures specific to
a particular component type.

B.7 Component Registration
Component registration has three separate meanings, depending upon the context.
They are:

B.7.1 COM Registration
In the COM model, all components must be registered before they may be used. In
this sense, information about the component’s interfaces and capabilities is stored in
the Windows Registry under the HKEY_CLASSES_ROOT key. This registration is
typically done by the component itself through a standard published entry point
(DllRegisterServer). For Visual Basic and Delphi programmers, this code is
automatically generated. When a component is requested from the CSS that has not
been previously registered on the target machine, it is retrieved and registered
automatically. A tool is also available in Windows called regsvr32.exe (usually
located in the system directory) that can be used to manually register and unregister
components. Running this tool with no command line options displays information on
how it is used. The VueCentric System Management Utility can also be used to
register and unregister components. See the online documentation that accompanies
this utility for more information.

B.7.2 Framework Registration
Before a component may be utilized within the VueCentric Framework, it must also
be registered to the framework. This registration information is stored on the remote
host in the VUECENTRIC OBJECT REGISTRY file. This may be done using the
VueCentric System Management Utility, or it may be directly entered into the file
using VA FileMan. This information determines what objects are available, how they
are classified, who can use them, where to get them, and what their capabilities and
special requirements are.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

111

B.7.3 Runtime Registration
At execution time under the VueCentric Framework, component registration has yet
another meaning. In this context, registration means that the component advertises its
presence to the CSS at runtime. The CSS maintains an internal table of all
components so registered. It also interrogates the component to determine what
context events it handles and connects any handlers it finds to the appropriate context
objects.

This registration process is automatic if the component is loaded by the VIM (unless
its object registry settings suppress this). An object may also register itself by calling
the RegisterObject method, passing a reference to itself. If an object registers itself in
this manner, it must also unregister itself prior to unloading by calling the
UnregisterObject method. In general, self-registration is only necessary if the object
is to be used outside the VIM (e.g., in Internet Explorer). For more information about
this topic, see Section B.23.3 (Other Containers).

While the latter form of registration is not required to use an object within the
framework, unregistered objects cannot be discovered by other objects nor will they
be connected to any context events.

B.8 Naming Conventions
Every COM object has a globally unique identifier (GUID) associated with it and
each of its interfaces. While an object can be, and often is, referenced by its GUID,
there is a second identifier that is more user friendly: the programmatic identifier
(PROGID). The PROGID typically consists of two parts, separated by a period (e.g.,
“Word.Application”). Occasionally, a third part consisting of a version number is
added (the so-called version-dependent PROGID, e.g., “Word.Application.8”). There
are no fixed conventions for these identifiers and it should be readily apparent that the
risk of naming conflicts is real. In the event that there is a naming conflict, the last
object registered is the one referenced. Therefore, some naming convention is needed
to minimize this risk.

For Delphi and Visual Basic environments, the PROGID is generated automatically,
formed from the type library name (which initially comes from the project name) and
the component name. In Delphi, both can later be changed using the type library
editor see COM and ActiveX in the previous section). Thus, the selection of a
PROGID is contingent upon your selection of a project name and a component name.
We advise beginning your project name with a namespace prefix. We have reserved
the prefixes “CIA,” “VC,” and “CW” for our projects. These prefixes refer to
framework components, plug-in components, and legacy components, respectively.
For example, CIA_VIM.VIM refers to the automation interface for the VIM and
vcNotifications.vcNotificationsX refers to the visual notifications component.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

112

PROGIDs are mapped to their GUID equivalents in the Windows Registry under the
HKEY_CLASS_ROOT node. For example, if you were to examine the registry key
HKEY_CLASSES_ROOT\Word.Application\CLSID, you would find that the default
value associated with that key is the GUID corresponding to the object. Knowing this
structure makes it easy to understand how two objects with the same PROGID cannot
happily coexist on the same machine, even though there GUIDs differ. Remember: it
is much harder to change a PROGID after deployment than to give careful thought to
naming at the beginning of a project.

B.9 Multiple vs. Single Instancing
Multiple instancing refers to the ability to create more than one copy of a component
within the same application space at the same time. For some components, this may
clearly not be desirable for a couple of reasons. First, some components that perform
a very central function should be limited to a single instance. For example, one would
not want to have more than one order-entry component as this would be very
confusing to the user. On the other hand, a component that provides a read-only view
of the problem list might be useful in several different locations within the user
interface. Second, some components are programmatically designed to be singletons
(single instance). This would be true if, for example, a component required exclusive
use of a shared resource, such as a database file.

In Delphi, the use of global variables (i.e., variables declared outside the scope of a
class or method) can cause serious problems because these are shared across multiple
instances of the component. A good example of this is the form declarations. The
Delphi form wizard automatically generates a global variable to hold the form
instance (this is not the case for Active Forms, but does hold true for any additional
forms created within an Active Form project). If one instance of a component creates
a form and saves the reference in the global form variable, and a second instance does
the same, the first instance loses its reference and now refers to the form created by
the second. This can result in some very odd behaviors. On the other hand, this can be
used to advantage if, for example, the programmer wants to create a shared instance
of a form to be used among all instances of the component. Visual Basic, on the other
hand, declares all of its variables (even its “global” variables) as instance variables.
This eliminates the problem (but also the advantage) of shared variables.

To control whether more than one instance of a component is allowed, set the Allow
Multiple Instances field in the VUECENTRIC OBJECT REGISTRY file
accordingly. If you are uncertain as to a component’s suitability for multiple
instancing, disallow multiple instances.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

113

B.10 Remote Procedure Calls
Remote procedure calls are conceptually very simple. Essentially, they permit calling
a procedure on a remote host as if it were local. The VueCentric Framework
encapsulates the Medsphere Remote Procedure Broker in its Communications
Services Layer (CSL). This encapsulation permits all components within the
application space to share a single instance of the broker. Interaction with the CSL
occurs through a suite of APIs provided by the session object.

Remote procedure creation is very straightforward. First, create and configure the
remote procedure on the remote host. Then write the client code to invoke the remote
procedure. Remote procedures may be invoked synchronously, where the client
pauses until the procedure completes and returns its data, or asynchronously, where
control immediately returns to the client after the call and the client is notified when
the call has completed through a callback. All of these techniques are described in the
sections that follow.

B.10.1 Create the M Routine
First, you must create M routine that contains the code that is to be executed. The
entry point must be parameterized, with the first parameter reserved for returning data
to the caller. Each subsequent parameter corresponds to a parameter passed by the
client application and may be a single scalar value or a local array of values. Up to
forty parameters may be specified.

The following example illustrates code implementing a simple remote procedure that
accepts a string and a count as input parameters and returns an array of that string
duplicated the number of times specified by the count. The return data type is
assumed to be a global array (see next section).

Required parameters are missing or incorrect.

B.10.2 Create a Remote Procedure Definition
The next step is to create an entry for the remote procedure in the REMOTE
PROCEDURE file. At a minimum, you must define the following fields:

Field Length
NAME The name of the remote procedure. This is the name that the client application

will use to invoke the remote procedure. The name should be appropriately
namespaced and descriptive of its purpose.

TAG The line label of the entry point in the M code. In the above example, this
would be “ENTRY.”

ROUTINE The name of the routine in which the remote procedure code resides.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

114

Field Length
RETURN VALUE
TYPE

The type of data returned by the remote procedure. This may be one of the
following:
1 = Single value, 2 = Local array, 3 = Word processing, 4 = Global array, 5 =
Global instance, H = Host file

WORD WRAP ON Affects only return types 3, 4, and H. If true, a carriage return character is
appended to each value in the array or line in the host file. If false, no carriage
return is appended.

Though not required, the INPUT PARAMETER multiple should be completed to
document the expected parameters and their purpose. The DESCRIPTION field
should likewise be completed to document the purpose of the remote procedure.

The RETURN VALUE TYPE merits further elaboration. The Broker daemon passes
the return value parameter (the first parameter of the remote procedure entry point) by
reference. Therefore, any change to the parameter is returned to the daemon and then
to the caller. The simplest return type, single value, returns whatever value is set in
the first parameter. Like the single value type, the global instance type returns a single
value to the caller. In this case, the return value parameter must be set to a valid
global reference. For the local array and word processing return types, all subscripted
values are returned to the caller. The global array return type returns all subscripted
values beneath a root node specified in the return value parameter. The daemon sets
this to a default value prior to calling the remote procedure. The remote procedure
may use this value, or assign a different one.

Note: The daemon deletes this global root upon completion.

For all return types that are arrays (global and local), the daemon returns the data to
the caller in the collation order of the subscripts (the subscripts themselves are not
returned, only the data).

B.10.3 Register the Remote Procedure
Every remote procedure is invoked within an execution context (see the RPCContext
property). This context dictates which remote procedures may be executed and rejects
any attempts to execute a remote procedure outside the context. Execution contexts
are simply entries in the OPTION file of type Broker. To register a remote procedure
to an execution context, select the desired entry in the OPTION file (or create a new
one with the TYPE field set to Broker), and add the remote procedure to the RPC
multiple.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

115

B.10.4 Calling a Remote Procedure
Once the remote procedure has been created and properly registered on the remote
host, it may be invoked by the client application using one of a number of method
calls provided by the session object. All methods for calling remote procedures begin
with “CallRPC” and can be divided into two groups: synchronous and asynchronous,
reflecting the two modes in which a remote procedure may be invoked. Synchronous
calls do not return until the remote procedure has completed and returned its data.
Asynchronous calls return immediately, notifying the caller at a later time when the
remote procedure has completed.

Choosing which mode to use depends upon a number of factors:

Requirement Use
User interaction requires immediate results before application may
continue.

Synchronous

Availability of data is not time critical. Asynchronous
Remote procedure requires considerable time to complete. Asynchronous
Series of sequenced transactions. Synchronous

B.10.5 Synchronous Calls

B.10.5.1 RPC Methods
Calling a remote procedure in synchronous mode is very straightforward. There are
six method calls that support this mode. They differ only in the type of return data
that is expected. They are:

Method Name Return Type
CallRPCBool Boolean value
CallRPCDate Date (Delphi: TDateTime; Visual Basic: Date)
CallRPCInt 32-bit integer
CallRPCList Multi-valued string list in "comma-text" format. This format encloses

each entry in double quotes and separates them with commas.
CallRPCString String (Delphi: WideString; Visual Basic: BSTR)
CallRPCText Multi-valued string list in "plain-text" format. This format separates

each entry with a <CR><LF> pair.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

116

If the remote procedure return type is multi-valued (either local or global array), you
must use either CallRPCList or CallRPCText to retrieve all of the list elements
returned. Otherwise, only the first element is returned. The choice between “comma-
text” and “plain-text” formats is somewhat arbitrary. If list elements could contain
either a <CR> or <LF> character, comma-text format is preferred. Delphi’s TStrings
class provides a means to convert either of these formats into string lists (the
CommaText and Text properties, respectively). Visual Basic requires parsing the
result values into a string array.

Regardless of which of the above methods is used, the parameters passed are
identical:

Parameter Datatype Description
RPCName String Name of the remote procedure to be invoked. If an

execution context other than the default is desired, precede
the RPC name with a context name and the ‘^’ delimiter. To
specify a version number, prefix the RPC name with the
version number enclosed in vertical bars.

Parameters Variant Parameters to be passed to the remote procedure.

B.10.5.2 Specifying the Remote Procedure
The RPCName property specifies the name of the remote procedure to invoke. If the
remote procedure needs to be invoked in an execution context other than the default,
precede the remote procedure name with the context name and a caret (^) character. If
the remote procedure requires a version number, you may include this by prefixing
the version number enclosed in vertical bars (|) to the remote procedure name.
Consider the following examples:

RPCName Value Description
CIAV GET PATIENT Executes the remote procedure named ‘CIAV GET

PATIENT’ in the default framework execution context. No
version information is passed.

MYCONTEXT^MYRPC Executes the remote procedure named ‘MYRPC’ in the
execution context named ‘MYCONTEXT.’ No version
information is passed

|1.5|MYRPC Executes the remote procedure named ‘MYRPC’ in the
default execution context. The XWBAPVER variable will be
set to 1.5.

MYCONTEXT^|2.1|MYRPC Executes the remote procedure named ‘MYRPC’ in the
execution context named ‘MYCONTEXT.’ The
XWBAPVER variable will be set to 2.1.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

117

B.10.5.3 Specifying the Parameter List
The Parameters property specifies the parameter values to be passed to the remote
procedure. These correspond to the second and subsequent parameters of the remote
procedure’s entry point (recall that the first parameter is reserved for the return
value). Because parameter lists typically differ for each remote procedure, the
datatype of the Parameters property must accommodate these variations. As a
consequence, the datatype of the Parameters property is a variant. The following table
describes the techniques for packaging scalar (non-array) parameters in the
Parameters property:

of Parameters Format
0 Set Parameters to NULL (nothing).
1 Set Parameters to the value of the single parameter.
>1 Set Parameters to an array of variants. Set each element of the array

to the value of the corresponding parameter.

B.10.5.4 Specifying Array Parameters
Passing array parameters to your remote procedure requires some additional effort.
An array parameter must be passed as an array of variants. If any parameter to be
passed is an array type, the Parameters property must be set to an array of variants
even if the array parameter is the only parameter. Otherwise, the CSS would not be
able to distinguish a parameter list from a single array parameter. Thus, to pass an
array parameter, two arrays of variants must be created: one for the parameter list (we
will call it the parameter list array) and one for the array parameter (we will call it the
array parameter array). Set the reference to the array parameter array into the
corresponding entry of the parameter list array. Set each entry of the array parameter
array to the values to be passed. By default, array parameters are passed to the remote
host with the same subscript values as the original. To override the default subscript
value for an entry, prefix the entry with the subscript value (in comma-text format)
followed by a character whose ASCII value is 1.

If passing parameters, especially array parameters, sounds confusing, it can be. This
process can be greatly simplified by writing helper functions that take parameters in a
format native to the programming language used and packages them in the manner
described above. CIA has developed a number of Delphi and Visual Basic helper
functions for this purpose. See Appendix B.24.

B.10.5.5 Handling Exceptions
If the remote procedure raises an unhandled exception on the remote host, that
exception is trapped and raised on the client. Therefore, the caller should be prepared
to handle any exceptions that may be raised during the remote procedure invocation.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

118

B.10.6 Asynchronous Calls
Calling a remote procedure in asynchronous mode is not altogether different from
doing so in synchronous mode. Naming the remote procedure and packaging the
parameter list are identical. However, there is only one method call for invoking a
remote procedure in asynchronous mode and its return value is a handle that uniquely
identifies the call. So how does the caller know when the remote procedure has
completed and how is its data returned? The CSS provides a declaration for a callback
interface (ICSS_SessionEvents) that is used to signal all asynchronous activities
(including events and asynchronous RPCs). The caller must implement this interface
and provide implementations for each of its methods. When the caller invokes a
remote procedure asynchronously, it must pass a reference to this callback interface.
The session object then invokes methods (callbacks) on this interface to notify the
caller when an asynchronous activity has completed.

B.10.6.1 Calling the Remote Procedure Asynchronously
The Session object provides one method, CallRPCAsync, for calling a remote
procedure asynchronously. It takes the following parameters:

Parameter Datatype Description
RPCName String Name of the remote procedure to be invoked. If an execution

context other than the default is desired, precede the RPC
name with a context name and the caret (^) delimiter. To
specify a version number, prefix the RPC name with the
version number enclosed in vertical bars.

Parameters Variant Parameters to be passed to the remote procedure.
Callback ICSS_SessionEvents Callback interface to be invoked on completion of the remote

procedure.
PlainText Boolean If true, data returned to the callback interface is in plain-text

format. Otherwise, format is in comma-text format.
<return value> Integer A 32-bit handle that uniquely identifies this asynchronous call.

Note that the first two parameters are identical to those used by the synchronous
remote procedure methods. The Callback parameter refers to the callback interface
the Session object will use to notify the caller when the remote procedure has
completed. PlainText indicates whether the data is to be returned in plain-text or
comma-text format. Data returned from asynchronous calls are always formatted as
lists in one of these two formats. This is not to imply that only remote procedures that
return lists can be called asynchronously. Indeed, a remote procedure that returns, for
example, a single Boolean value can be called asynchronously (in fact, any remote
procedure may be called asynchronously).

In the case of a remote procedure returning a single Boolean value, the return value
would be a list containing a single element and the caller must convert that element
from a string to the desired format.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

119

The CallRPCAsync method returns a 32-bit integer handle that uniquely identifies the
call. Because a client may have multiple outstanding asynchronous calls, this handle
is critical to identify which call is being signaled.

B.10.6.2 Implementing the Callback Interface
The ICSS_SessionEvents interface has the following declaration:

• Delphi

 procedure RPCCallback(Handle: Integer; const Data: WideString); safecall;
 procedure RPCCallbackError(Handle: Integer; ErrorCode: Integer; const
ErrorText: WideString); safecall;
 procedure EventCallback(const EventType: WideString; const EventStub:
WideString); safecall;

• Visual Basic

 Sub ICSS_SessionEvents_RPCCallback(ByVal Handle As Long, ByVal Data As
String)
 Sub ICSS_SessionEvents_RPCCallbackError(ByVal Handle As Long, ByVal
ErrorCode As Long, ByVal ErrorText As String)
 Sub ICSS_SessionEvents_EventCallback(ByVal EventType As String, ByVal
EventStub As String)

The first two methods in the ICSS_SessionEvents interface provide support for
asynchronous remote procedure calls. The third is used for reporting events and is
discussed in the section on events. Note that the client must supply implementations
for all three methods, even if only one or two are actually used. This is a requirement
for implementing any COM interface. If a method is not needed, its implementation
can be left empty (an “NOP” implementation).

The Session object invokes the caller’s RPCCallback method when an asynchronous
remote procedure has completed successfully. The Handle parameter is the same
value returned by the CallRPCAsync method. The Data parameter is the data returned
by the remote procedure in either plain-text or comma-text format.

If an asynchronous remote procedure raises an unhandled exception on the remote
host, that exception is trapped and the RPCCallbackError method is called instead.
This method includes the Handle parameter as expected, but also supplies ErrorCode
and ErrorText parameters that provide information about the exception.

B.10.6.3 Aborting a Pending Call
Occasionally, the caller may want to abort an asynchronous call that has not yet
completed. This might occur, for example, if a patient context change has occurred
and the pending remote procedure no longer applies. To abort an asynchronous
remote procedure, call the CallRPCAbort method, passing the handle of the call that
is to be aborted.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

120

If the remote procedure has already completed, the request is ignored. If the remote
procedure is pending execution, it is removed from the execution queue. If the remote
procedure is in progress, it is requested to abort. Even if the remote procedure ignores
the abort request, any data it may return is discarded and its completion is not
signaled to the caller.

B.11 Context Management
The VueCentric Framework provides support for special services known as context
objects. A context object is used to establish a common context for a specific entity,
such as patient or user. For context objects to be useful, a mechanism must exist to
notify interested parties when the context is about to change. The Framework
accomplishes this through the use of a callback interface.

Every context object defines a callback interface that is a descendant of the
ICSS_ContextEvents interface. When a context object registers itself as a service with
the CSS, the CSS recognizes that it is a context object and enters its callback interface
into an internal table. When a component (visual or non-visual) registers itself with
the CSS, that component is interrogated to determine if it implements any of the
callback interfaces in this table. If it does, the component is registered as a subscriber
to the callback. This means that all a component must do to be notified of context
changes for a particular context object is to implement the callback interface for that
context object. The CSS takes care of the rest.

B.11.1 Callbacks
Every context object defines a callback interface that is a descendant of the
ICSS_ContextEvents interface. This interface has the following declaration:

• Delphi

 function Pending(Silent: WordBool): WideString; safecall;
 procedure Canceled; safecall;
 procedure Committed; safecall;

• Visual Basic

 Function ICSS_ContextEvents_Pending(ByVal Silent As Boolean) As String
 Sub ICSS_ContextEvents_Canceled()
 Sub ICSS_ContextEvents_Committed()

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

121

Context change is a democratic process and occurs in two phases. In the first phase,
known as the polling phase, every subscriber to the context change is interrogated for
its acceptance of the change. This is done through a call to the Pending method.
Subscribers indicate their acquiescence to the proposed change by returning a null
value. By returning a non-null value, the subscriber is indicating that it does not want
the context change to occur. The Silent parameter indicates whether or not the
subscriber is permitted to interact with the user during this decision-making process.
If Silent is true, no user interaction is permitted. This will be the case under one of
two conditions: the context change was initiated by an external application through
the CCOW interface, or the context change was initiated during a forced shutdown of
the application.

If all subscribers acquiesce to the proposed context change, the context is changed
and each subscriber is notified of the change through a call to the Committed method.
If any subscriber rejects the context change, the proposed change is aborted and
subscribers are notified through the Canceled method. Note that in the case where a
silent context change is occurring, the context change may occur even when a
subscriber rejects the change. This will always be the case in a forced shutdown and
can also occur in the case of a CCOW-initiated context change if the requester
decides to force the change despite the objection. Therefore, a component must be
prepared to react to a context change even if it has rejected the request.

B.11.2 Requesting a Context Change
How a context change request is made is dependent upon the individual context
object. For example, setting the Handle property of the patient context object initiates
a context change request. Depending on whether or not the context change is
accepted, the value of the Handle property may or may not be changed. The Select
method of the patient context object is another means for changing the patient
context. Yet a third method, is through a call to the SETCTX^BEHOPTCX method
on the remote host. Thus, there is no “standard” mechanism for initiating a context
change request.

B.12 Events
Events are an extremely powerful tool for communicating information. The
VueCentric Framework implements events utilizing a subscribe/publish
(consumer/producer) model. In this model, clients may subscribe to a particular event.
When an event is generated (published), the Framework forwards that event to all
subscribers of that type of event. Some important features of the VueCentric event
model are:

• Events are fully extensible. New event types may be defined at any time.

• Event notification is asynchronous. Subscribers may be notified at any time that
an event has occurred.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

122

• Sequence of event delivery depends upon order of event subscription. Generally
one should not rely upon a particular sequence of event delivery.

• Event subscription and publication can be restricted using security keys.

• Event publication can be local (current process) or remote (all active sessions).

• Events are hierarchical. This allows the publishing of events at one level of detail
and subscribing of events at another.

• Events may be generated by the client (local or remote) or by the remote host
(remote only).

• Distribution of remote events may be restricted to a subset of subscribers (at user
or session level).

B.12.1 Defining an Event
Events should be defined by creating an entry in the CIA EVENT TYPE file. While
this is technically not necessary in order to use an event, it is strongly encouraged to
do so for two reasons. First, this file provides a place to formally document each
event and helps avoid naming collisions between events. Second, this file permits
applying business rules that can restrict publication and subscription rights.

B.12.2 Firing Events: Local vs. Remote
Events fired locally are distributed only to subscribers within the current session.
Events fired remotely are sent to the host system which then distributes them to all
subscribing sessions. A receiver of an event handles both types identically.

The Session object provides two methods for firing (signaling) events:
EventFireLocal and EventFireRemote, for firing an event to local and remote
subscribers, respectively. They are defined elsewhere in this document.

B.12.3 Receiving Events: Callbacks
When an event is fired, the Session object notifies each subscriber through the
EventCallback method of the ICSS_SessionEvents callback interface. This callback
interface is specified at the time the subscription is established in the call to the
EventSubscribe method. This callback interface is the same ICSS_SessionEvents
interface described in the section on asynchronous remote procedure calls. Any
component wanting to subscribe to an event must implement this interface and
provide implementations for all three methods declared within it.

The EventCallback method has the following parameters:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

123

B.12.4 Hierarchical Events
There are times when an event publisher may want to specify an event at one level of
granularity, but an event subscriber may want to subscribe at a less granular level. For
example, the publisher of a NOTIFY event might want to specify the type of
notification (for example, critical lab value vs. order needing signature) as part of the
event type. While one subscriber might want to know about only notifications of a
particular type, another subscriber might want to know about all NOTIFY events. To
reconcile differing event granularity requirements between producers and consumers,
the Broker implements a hierarchical schema for event naming and subscription.

Hierarchical events are named using the following convention:

<Event name>.<Event subtype>.<Event sub-subtype>.<…>

The convention uses a period to separate each subtype specifier. Subtypes appear in
order of increasing specificity, from left to right. A consumer may subscribe to a
hierarchical event at any level of specificity. In the above example, the event
producer may publish the following two events:

• NOTIFY.CRITICALVALUE

• NOTIFY.ORDERNEEDSSIG
A consumer caring only about critical value notifications may subscribe to the
NOTIFY.CRITICALVALUE event while a second consumer wanting to know about
all notification events may subscribe to NOTIFY events. Both subscribers would
receive NOTIFY.CRITICALVALUE events, but only the second would receive
NOTIFY.ORDERNEEDSSIG events.

When defining hierarchical events in the CIA EVENT TYPE file, one may create an
entry for only the top level event type or for each subtype or both. Setting the
DISABLE field to YES for an event also disables all events of greater specificity
below it in the hierarchy. In the above example, setting the DISABLE field of the
NOTIFY entry to YES would disable the NOTIFY.CRITICALVALUE and
NOTIFY.ORDERNEEDSSIG events even if those events had separate entries in the
file with their DISABLE field set to NO. This inheritance pattern also holds true for
security keys associated with events. Thus, it is only necessary to create entries for
event subtypes if one desires to apply business rules to those subtypes that differ from
the parent entry.

B.13 Creating Visual Components with Delphi
Delphi offers two project types for creating visual components: Active Form and
ActiveX Control. The latter type generates a simple wrapper for an existing control
and cannot be used for creating more complex controls. Therefore, its use will not be
addressed here. The Active Form, on the other hand, allows one to create a form as an
ActiveX control. This project type is much more useful.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

124

B.13.1 Creating the Active Form Project
To create an Active Form project, select File | New | Other....This will display the
project selection dialog as shown in Figure B-11.

Figure B-11: New Items dialog

Select the ActiveX tab, pick the Active Form project type, and click OK. The Active
Form Wizard dialog (Figure B-12) displays.

Figure B-12: Active Form wizard

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

125

Change the first three editable entries to the desired names. Note that the New
ActiveX Name will become the name of your component (and the second part of the
programmatic identifier) and the Project Name will become the name of the type
library (and the first part of the programmatic identifier). Changing these later can be
done, but can be problematic, so choose wisely here. Leave the Threading Model
field as Apartment. Select the Include Version Information option check box. The
other two options are at the component author’s discretion, but we will leave them
unchecked.

After making these changes, the Active Form Wizard dialog now looks like this:

Figure B-13: Active Form wizard

Click OK and the wizard will create your project. The project will consist of a single
form and its class declaration (class name TDemoControlX) and a type library.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

126

Figure B-14: Created project

The component class declaration already has a number of event handlers and methods
defined. These are standard entries created by the Active Form Wizard. While the
declarations for these should not be modified, their implementations may be. Among
the events of particular interest are the DestroyEvent and the PaintEvent, whose
implementations may be modified to accomplish tasks that need to occur during
object destruction and painting, respectively.

For tasks that need to occur immediately following object creation, complete the
implementation of the Initialize method that may be found in the public declarations
for the Active Form class. Do not use the CreateEvent for this purpose as our
experience has shown that this is not reliably invoked during object creation.

B.13.2 Designing the Form
Next, we will add a TMemo control and four buttons to the form. First, double-click
the TMemo component on the component palette to add it to the form. Set its Align
property to alTop and adjust its height as desired. Add four TButton components to
the form using the same technique, and arrange them at the bottom of the form as
shown below. Set the Anchors property of each to [akLeft,akBottom].

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

127

Figure B-15: Designing the form

Now modify the Caption property of each button, from left to right, to Sync RPC,
Async RPC, Fire Event, and Clear. Double-click the far-right button that is now
labeled Clear to generate a handler for its click event and complete it as follows:

Procedure TDemoControl1X.Button4Click(Sender: TObject);
Begin
 Memo1.Clear;
End;

B.13.3 Accessing the Session Object
Before we can perform a remote procedure call, we must obtain access to the Session
object within the CSS. For Delphi to access any COM object, it must first generate a
type declaration for the object’s type library. This type declaration consists of an
automatically generated unit that contains code that is the Delphi equivalent of the
type library’s object and interface declarations. This allows the Delphi compiler to
understand a type library declaration in its own native format. To do this, select
Project | Import Type Library... from the Delphi menu. Select CIAI Component
Support Services (Version x) from the list box.

If there are multiple versions listed, select the highest version. If this entry does not
exist, it means that that CSS has never been registered on your machine (see the
section on COM registration to see how this is done). Deselect the Generate
Component Wrapper check box as shown below:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

128

Figure B-16: Import Type Library dialog

Finally, click Create Unit. This will create a file called CIA_CSS_TLB.pas in the
Imports folder under the Delphi installation directory. Note that you only need to do
this procedure the first time you need to reference a COM object. The file created in
this manner is then available to all projects. It also should be done whenever an
object’s type library changes to ensure that Delphi recognizes the changes.

Now that you have a Delphi type declaration for the CSS, we can add code to access
the Session object. Select the DemoControl1 unit in the code editor and add a
reference to the CIA_CSS_TLB unit to the uses clause at the top as shown:

Next, add an instance variable to the private section of the TDemoControlX class
declaration call FSession. This will be used to hold a reference to the session object.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

129

Finally, add the following line of code to the Initialize method to obtain the Session
object reference:

B.13.4 Accessing the Patient Context Object
Before we can access the Patient Context object, its type library must be imported in
the same manner as shown above. From the Import Type Library dialog, select the
CIAI Patient Context Object (Version x) entry and click Create Unit. This will
create the CSS_Patient_TLB.pas file which contains the Delphi declarations
necessary for accessing the Patient Context object.

Add a reference to this unit to the uses clause of the DemoControl1 unit:

Declare an instance variable to hold the reference:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

130

Now, we need to obtain a reference to the Patient Context object. Because this object
is just a special kind of service, we use the Session object to retrieve a reference to it.
Insert the following line of code in the Initialize method to do this:

This code will cause the Session to locate (and start if not already started) the
indicated service, in this case the Patient Context object. Because this function returns
a reference to the default IUnknown interface, it must be cast to the desired interface,
in this case ICSS_Patient.

B.13.5 Calling a Remote Procedure in Synchronous Mode
Now we are ready to add code that will invoke a remote procedure and return its data
in the TMemo control. First, we will add a click handler to the first button (labeled
Sync RPC) to execute a remote procedure that returns detailed information about the
currently selected patient and populates the TMemo control with the results.

Double-click the far-left button in the form designer and add the following code to its
click event handler:

This code calls the remote procedure named BEHOPTCX PTINQ, passing it a single
parameter corresponding to the patient’s internal entry number (DFN), and places the
return text in the TMemo control. If the patient context is empty, it displays a
message to that effect instead.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

131

B.13.6 Testing the Component
Before we proceed to add additional functionality, let us test what we currently have.
To do this, we must first compile the project. Select Project | Build DemoControl
from Delphi's menu. The project should compile without errors. Next, we have to do
the COM registration. Select Run | Register ActiveX Server from Delphi’s menu to
do this. You should receive confirmation of successful registration.

Finally, we need to register our new component to the VueCentric Framework. The
easiest way to do this is to use the VueCentric System Management Utility. Run the
tool and login to the remote host. Select the Object Registry tab and in the Restrict
List To box, check Local Registry (this allows us to see local COM objects that are
not yet registered to the Framework). The list of objects will refresh. Now search the
list for the programmatic identifier of our newly created component,
DemoControl.DemoControlX, and select that entry.

In the upper right pane, click Copy to copy the local COM registration information
into the VueCentric Settings pane. In that pane, fill in the Name field with the display
name for the control. The choice of name is arbitrary. We’ll call it Demo Control.
Finally fill in the height and width fields with 100 and 200, respectively.

Click Apply at the bottom. The display should look something like this:

Figure B-17: VueCentric System Management window

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

132

You may now close the utility. To test the component:
1. Start the Visual Interface Manager with the following flags: vim.exe /noupdate

/blank /trace.

2. After logging in, enter Design Mode.

3. Right-click on the desktop and select Add Object.

4. Expand the Name node and locate and add the Patient Identification Header.

5. Top align this control (right-click it in Design Mode to do this).

6. Find and add the Demo Control.

7. Set the alignment of this control to all.

8. Save this as a template named %DEMO for later retrieval.

9. Exit design mode and click Sync RPC.

You should see text in the memo control. Try clicking the Patient Identification
Header control and changing the patient selection. The contents of the memo control
are unaffected since we have not yet subscribed to patient context change events.
However, if we click the Sync RPC button again, the text that appears in the memo
control now pertains to the newly selected patient.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

133

Figure B-18: VueCentric memo control

Now close the application.

Note: If you do not close the application now, you will receive an
error the next time you try to compile the project because
the control’s executable image is locked.

B.13.7 Subscribing to Patient Context Changes
As we noticed, our component retrieves information based on the currently selected
patient, but it does not respond when the patient selection changes. Let us fix this
deficiency by having our component subscribe to patient context changes and modify
the memo control’s contents when the context change occurs. To do this, we need to
use the type library editor.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

134

To view the type library editor, choose the View | Type Library menu option from
Delphi’s main menu. You should now see something similar to Figure B-19.

Figure B-19: DemoControl window

Your GUIDs will be different, but otherwise the dialog should look the same as this
one. On the left, you see several entries. The IDemoControlX entry refers to the
default interface for our control.

Expanding that entry would reveal all of the properties and methods that are exposed
on the COM interface. IDemoControlXEvents is the standard event interface for our
component, which we will not make use of. DemoControlX is the actual component
itself. To make a component respond to context changes, the component must
implement the context change callback interface that is declared by the context object
itself.

To add this interface declaration to our component, we must first reference the
context object’s type library in our component’s type library. To do this, select the top
node labeled DemoControl. This node corresponds to our type library. When it is
selected, several tabs appear on the right.

Select the one labeled Uses. You should see the following:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

135

Figure B-20: DemoControl window

This view shows the type libraries that are currently referenced by this type library.
To view all known type libraries, right-click the right pane and select Show All Type
Libraries from the pop-up menu.

You will now see a much longer list. Scroll down until you find the Patient Context
object and check that entry:

Figure B-21: DemoControl window

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

136

Now add the Patient Context object’s context change interface to the component.
Select the DemoControlX node on the left and the Implements tab on the right.
Right-click the right pane and choose Insert Interface from the pop-up menu. A list
of known interfaces displays (Figure B-22).

Figure B-22: Insert Interface dialog

Select the ICSS_PatientEvents interface from this list and click OK. The type
library editor should now look like this:

Figure B-23: DemoControl window

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

137

Now we need to synchronize our program code with the changes we have made in the
type library editor. To do this, click the refresh button in the toolbar to refresh your
code. You should now see three new methods in your components class declaration
and three empty implementations in the code section:

We will add code to each of these implementations to populate the memo control with
text indicating that each method has been invoked. Complete the implementations
with the code shown below:

When a context change is initiated, the Pending method will be called first. In this
method, we simply clear the memo control’s contents. Because we are not setting the
return value for the Pending method, we are essentially voting YES to the context
change. Assuming nothing else cancels the pending change, the Committed method is
called next. In that method, we set the memo control’s text to indicate that the context
change was committed. Now compile the project by selecting Project | Build
DemoControl from the menu. Since we made changes to the type library, we need to
re-register the control by selecting Run | Register ActiveX Server.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

138

Restart the Visual Interface Manager, this time with the following command line
options:

vim.exe /noupdate /trace /template=%DEMO

Once you login, you should see your component much as it looked before. Click the
Sync RPC button to verify that this still works. Now click the patient identification
header and select a different patient. Notice how the memo control’s contents have
now changed. We have now responded to a context change event.

Figure B-24: VueCentric dialog

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

139

B.13.8 Calling a Remote Procedure in Asynchronous Mode
Our next task is to support calling our remote procedure asynchronously. To do this,
we need to implement the ICSS_SessionEvents interface that is defined in the CSS
type library. This is done in an identical manner to the ICSS_PatientEvents interface
we implemented in the previous section. First, bring up the type library editor by
selecting View | Type Library. Select the DemoControl node on the left and the
Uses tab on the right.

If only checked entries are showing, right-click the right pane and select Show All
Type Libraries from the pop-up menu. Find the CIA Component Support Services
library in the list (select the highest version number if you see more than one) and
check it. Next select the DemoControlX node on the left and the Implements tab on
the right. Right-click the right pane and select Insert Interface from the pop-up
menu. Select the ICSS_SessionEvents interface and click OK. Finally, click the
refresh button to refresh your code. You should now see three new methods in your
code, all with empty implementations:

At this point, we will ignore the EventCallback method, but will return to it later. Let
us add the following code to the other two methods:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

140

Here, we add the data returned by the asynchronous call to the memo control if it
completed normally, or the text of the reported error if it did not.

Next, we will add code to the Async RPC button to call our remote procedure in
asynchronous mode. To do this, double-click that button in the form designer and
complete the click event handler as shown:

Note that we are first aborting any asynchronous remote procedure in progress before
we call it again.

Now add a declaration to the private section of the component’s class for the FHandle
variable used to store the returned handle:

Now, since we are already equipped to respond to patient context changes, let us add
code to abort an asynchronous call in progress when a context change occurs. We will
add this code to the Committed method:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

141

Now it is time to test our component again. Recompile the project by selecting
Project | Build DemoControl and, because we have again made type library
changes, re-register the component by selecting Run | Register ActiveX Server.
Now restart the Visual Interface Manager as before. This time, click the Async RPC
button. You should at first see the text “Asynchronous Remote Procedure Invoked” in
the memo control. After a small delay, you should see the results of the remote
procedure appear. Note that TaskMan must be running to invoke a remote procedure
asynchronously, so if you do not receive data from the call, make certain TaskMan is
running.

B.13.9 Firing an Event
Let us now add the capability of firing an event. We are going to fire a local event
called “STATUS.” The Visual Interface Manager subscribes to this event and
displays the data associated with it in its status bar. Double-click the Fire Event
button in the form designer and complete the click event handler as follows:

Recompile the project and test in the Visual Interface Manager as before. Click the
Fire Event button and you should see the event data appear in the status bar:

Figure B-25: Status bar

B.13.10 Subscribing and Responding to an Event
Finally, we will enable our component to respond to STATUS events. This requires
two steps. First, we must implement the callback interface for responding to events.
Since this is the same interface (ICSS_SessionEvents) we implemented earlier for
responding to asynchronous remote procedures, we have already done this. All we
need to do is to fill in the implementation for the EventCallback method.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

142

Find this method in your component’s implementation section and complete as
follows:

This will display the event name and data in the memo control.

Next, we need to subscribe to the STATUS event. To do this, return to the Initialize
method and add the following line of code:

Now recompile and test your component as before. Now, clicking the Fire Event
button also displays the event data in the memo control:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

143

Figure B-26: VueCentric dialog

B.13.11 Summary
You have learned how to create an Active Form control, edit type libraries, reference
the Session and Patient Context objects, call remote procedures synchronously and
asynchronously, and fire and receive events. You should now be well prepared to
create components on your own.

B.14 Creating Visual Components with Visual Basic
Visual Basic offers the ActiveX Control project type for creating visual components.
This control is the equivalent to Delphi’s Active Form in that it is essentially a form
hosted within an ActiveX wrapper.

B.14.1 Creating the ActiveX Control Project
To create an ActiveX Control project, select File | New Project from Visual Basic’s
main menu. This will bring up the project selection dialog as show below:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

144

Figure B-27: New Project dialog

Select the ActiveX Control project type and click OK. This creates a project called
Project1 (which will form the first part of the component’s programmatic identifier)
containing an ActiveX control called UserControl1 (which will form the second part
of the component’s programmatic identifier):

Figure 93-2: Visual Basic Design pane

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

145

Since we would like our programmatic identifier for this control to be
DemoControl.DemoControl2, we need to rename the project and the control. To
rename the project, select the project in the Project pane (upper right in the above
illustration), and edit its Name property in the Properties pane (lower right) to be
DemoControl. To rename the control, select the control name in the Project pane and
edit its Name property in the Properties pane to be DemoControl2.

Our project should now look like this:

Figure B-28: Visual Basic Design pane

There is one final setting we should change for our project. Select Project |
DemoControl Properties from the main menu. Select the Make tab and check the
Auto Increment check box under Version Number. Close the dialog by clicking OK.

B.14.2 Designing the Form
Next, we are going to add a TextBox control and four buttons to the form. First,
double-click the TextBox component on the component palette to add it to the form.
Resize the control in the form designer to fill the upper 3/4 of the form. In the
properties pane, change its MultiLine property to True. Add four CommandButton
controls to the form using the same technique, and arrange them at the bottom of the
form as shown in Figure B-29

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

146

Figure B-29: Visual Basic Design pane

Now modify the Caption property of each button, from left to right, to Sync RPC,
Async RPC, Fire Event, and Clear. Double-click the far-right button that is now
labeled Clear to generate a handler for its click event and complete it as shown
below:

B.14.3 Accessing the Session Object
Note: Visual Basic can have difficulty locating components that

are registered using side-by-side versioning. You may find
the need to copy the required components to the system
directory before adding them as references to the project.

Before we can perform a remote procedure call, we must obtain access to the Session
object within the CSS. For Visual Basic to access any COM object, it must first
reference that object within its project. To do this, select Project | References... from
the main menu. In the reference list, find the CIAI Component Support Services
entry and select it:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

147

Figure B-30: References dialog

Now click OK to close the form. The project now has a reference to the CSS type
library and can access objects within it.

Next, we need to declare a global variable to hold our reference to the Session Object.
To do this, select (General) in the code editor and add the following code:

Figure B-31: DemoControl2

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

148

Now we need to store a reference to the Session object in our global variable,
gSession. Select the UserControl class in the left drop-down box of the code editor
and its Initialize method in the right drop-down box. This will create an empty
implementation for the Initialize method. Next, complete the implementation by
adding the following code:

Figure B-32: DemoControl – Private Sub UserControl Initialize

This code obtains a temporary reference to the Server object, retrieves a reference to
its Session object, and releases the Server object. At this point, you now have a
reference to the Session object stored in the global variable, gSession.

B.14.4 Accessing the Patient Context Object
Before we can access the Patient Context object, we must add a reference to it to our
project in the same manner as the Session object. To do this, select Project |
References... from the main menu and locate “CIAI Patient Context Object” in the
reference list. Check the box next to the entry and close the dialog by clicking OK.

Next, we need to add a global variable to hold the reference to the Patient Context
object, just as we did for the Session object. Return to the (General) section of the
code editor and add a global variable declaration as shown:

Now return to the Initialize method of the UserControl and add the following code to
initialize the variable:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

149

B.14.5 Calling a Remote Procedure in Synchronous Mode
Now we are ready to add code that will invoke a remote procedure and return its data
in the TextBox control. First, we will add a click handler to the first button (labeled
Sync RPC) to execute a remote procedure that returns detailed information about the
currently selected patient and populates the TextBox control with the results. Double-
click the far-left button in the form designer and add the following code to its click
event handler:

This code calls the remote procedure named BEHOPTCX PTINQ, passing it a single
parameter corresponding to the patient’s internal entry number (DFN), and places the
return text in the TextBox control. If the patient context is empty, it displays a
message to that effect instead.

B.14.6 Testing the Component
Before we proceed to add additional functionality, let us test what we currently have.
To do this, we must first compile the project. Select File | Make DemoControl.ocx...
from the main menu. The project should compile without errors.

Next, we need to register our new component to the VueCentric Framework. The
easiest way to do this is to use the VueCentric System Management Utility. Run the
tool and login to the remote host. Select the Object Registry tab and in the Restrict
List To box, check Local Registry (this allows us to see local COM objects that are
not yet registered to the Framework).

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

150

The list of objects will refresh. Now search the list for the programmatic identifier of
our newly created component, DemoControl.DemoControl2, and select that entry. In
the upper right pane, click Copy to copy the local COM registration information into
the VueCentric Settings pane. In that pane, fill in the Name field with the display
name for the control. The choice of name is arbitrary. We’ll call it Demo Control.

Finally fill in the height and width fields with 100 and 200, respectively. Now click
Apply at the bottom. The display should look something like this:

Figure B-33: VueCentric System Management dialog

You may now close the utility. To test the component, start the Visual Interface
Manager with the following flags:

vim.exe /noupdate /blank /trace

After logging in, enter Design Mode, right-click the desktop and select Add Object.
Expand the Name node and locate and add the Patient Identification Header. Top
align this control (right-click it in Design Mode to do this).

Next find and add the Demo Control. Set the alignment of this control to all. Save this
as a template named %DEMO for later retrieval. Now exit design mode and click the
Sync RPC button. You should see text in the TextBox control. Try clicking the
Patient Identification Header control and changing the patient selection.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

151

Note that the contents of the TextBox control is unaffected, since we have not yet
subscribed to patient context change events. However, if we click the Sync RPC
button again, the text that appears in the TextBox control now pertains to the newly
selected patient.

Figure B-34: VueCentric dialog

Now close the application (note: if you do not close the application now, you will
receive an error the next time you try to compile the project because the control’s
executable image is locked).

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

152

B.14.7 Subscribing to Patient Context Changes
As we noticed, our component retrieves information based on the currently selected
patient, but it does not respond when the patient selection changes. Let us fix this
deficiency by having our component subscribe to patient context changes and modify
the TextBox control’s contents when the context change occurs. To do this, we need
to direct our component to implement the callback interface for patient context
changes, ICSS_PatientEvents. Return to the (General) section of the code editor and
enter the following line of code:

From the left drop-down box in the code editor, find and select the
“ICSS_PatientEvents” entry. In the right drop-down box, you will see three methods:
Pending, Canceled, and Committed. Select each one in turn to generate
implementations for each. Your code should look like this:

We will add code to each of these implementations to populate the TextBox control
with text indicating that each method has been invoked. Complete the
implementations with the code shown below:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

153

When a context change is initiated, the Pending method will be called first. In this
method, we simply clear the TextBox control’s contents. Because we are not setting
the return value for the Pending method, we are essentially voting YES to the context
change. Assuming nothing else cancels the pending change, the Committed method is
called next. In that method, we set the TextBox control’s text to indicate that the
context change was committed. Now compile the project by selecting File | Make
DemoControl.ocx... from the menu. Now restart the Visual Interface Manager, this
time with the following command line options:

vim.exe /noupdate /trace /template=%DEMO

Once you login, you should see your component much as it looked before. Click the
Sync RPC button to verify that this still works. Now click the patient identification
header and select a different patient. Notice how the TextBox control’s contents have
now changed. We have now responded to a context change event.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

154

Figure B-35: VueCentric dialog

B.14.8 Calling a Remote Procedure in Asynchronous Mode
Our next task is to support calling our remote procedure asynchronously. To do this,
we need to implement the ICSS_SessionEvents interface that is defined in the CSS
type library. This is done in an identical manner to the ICSS_PatientEvents interface
we implemented in the previous section. Return again to the (General) section of the
code editor and add the following:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

155

As we did with the ICSS_PatientEvents interface, select “ICSS_SessionEvents” from
the left drop-down box and each of its three methods in turn from the right drop-down
box. This will create blank implementations for each method.

At this point, we will ignore the EventCallback method, but will return to it later. Let
us add the following code to the other two methods:

Here, we add the data returned by the asynchronous call to the TextBox control if it
completed normally, or the text of the reported error if it did not.

Next, we will add code to the Async RPC button to call our remote procedure in
asynchronous mode. To do this, double-click that button in the form designer and
complete the click event handler as shown:

Note: We are first aborting any asynchronous remote procedure
in progress before we call it again.

Now add the global variable declaration to the (General) section of the code editor to
store the returned handle:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

156

Now, since we are already equipped to respond to patient context changes, let us add
code to abort an asynchronous call in progress when a context change occurs. We will
add this code to the Committed method:

Now it is time to test our component again. Recompile the project by selecting File |
Make DemoControl.ocx... Now restart the Visual Interface Manager as before. This
time, click the Async RPC button. You should at first see the text “Asynchronous
Remote Procedure Invoked” in the TextBox control. After a small delay, you should
see the results of the remote procedure appear. Note that TaskMan must be running to
invoke a remote procedure asynchronously, so if you do not receive data from the
call, make certain TaskMan is running.

B.14.9 Firing an Event
Let us now add the capability of firing an event. We are going to fire a local event
called “STATUS.” The Visual Interface Manager subscribes to this event and
displays the data associated with it in its status bar. Double-click the Fire Event
button in the form designer and complete the click event handler as follows:

Recompile the project and test in the Visual Interface Manager as before. Click the
Fire Event button and you should see the event data appear in the status bar:

Figure B-36: Status bar

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

157

B.14.10 Subscribing and Responding to an Event
Finally, we will enable our component to respond to STATUS events. This requires
two steps. First, we must implement the callback interface for responding to events.
Since this is the same interface (ICSS_SessionEvents) we implemented earlier for
responding to asynchronous remote procedures, we have already done this. All we
need to do is to fill in the implementation for the EventCallback method.

Find this method in your component’s implementation section and complete as
follows:

This will display the event name and data in the TextBox control.

Next, we need to subscribe to the STATUS event. To do this, return to the Initialize
method and add the following line of code:

Now recompile and test your component as before. Now, clicking the Fire Event
button also displays the event data in the TextBox control:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

158

Figure B-37: VueCentric dialog

B.14.11 Summary
You have learned how to create an ActiveX control, reference the Session and Patient
Context objects, implement interfaces, call remote procedures synchronously and
asynchronously, and fire and receive events. You should now be well prepared to
create components on your own.

B.15 Creating Visual Components with C#
.NET Window Controls may be used in the VIM through a COM-interoperability
feature of the .NET framework known as the COM Callable Wrapper (CCW). This
wrapper transparently exposes a .NET Window Control as an ActiveX object and
requires little effort on the part of the developer. While any .NET-compatible
language may be used, we choose C# for this example.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

159

B.15.1 Creating the Windows Control Project
To create an Active Form project, select File | New | Project.... This will display the
project selection dialog as shown below:

Figure B-38: New Project dialog

Select Visual C# Projects in the left pane and Windows Control Library in the right
pane. Modify the Name to DemoControl and click OK.

The form designer will display:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

160

Figure B-39: DemoControl window

Next, right-click the node named “DemoControl” from the Solution Explorer pane
(upper right) and select Properties from the pop-up menu. Select Configuration
Properties | Build from the left pane and change the “Register for COM Interop”
property in the right pane to True. Click OK to close the dialog.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

161

Figure B-40: DemoControl window

Next, rename the component from UserControl1 to DemoControlCS by first clicking
the control’s form in the Form Designer (upper left) and then modifying its Name
property in the Properties pane (lower right) to DemoControlCS.

Also, change the BackColor property to “ControlLight.” (If you do not change the
default color, it will appear black in the VIM.) Then resize the form on the form
designer to accommodate the controls you will be placing on it by grabbing the lower
right sizing grip and dragging it to its desired position. Your project should now look
like this:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

162

Figure B-41: DemoControl window

Now we are going to add a text box and four buttons to the form. First, open the
component palette by hovering the mouse pointer over the ToolBox icon to the left of
the Form Designer. Locate the TextBox control (you may need to scroll the
component list to find it) and double-click to add it to your form. Next, from the Form
Designer, select the newly added TextBox control by clicking it. In the Properties
pane, edit its Dock property to Top and its MultiLine property to True. Then resize it
to fill most of the form (allowing space at the bottom for buttons) by grabbing its
resizing grip and dragging to the desired position.

Next, add four buttons to the form by opening the component palette as before and
double-clicking the Button control. Repeat this three more times. You will see four
buttons on your form. Drag them to the desired positions at the bottom of the form.
Set the Anchor property for each button to (Bottom,Left). An easy way to do this is to
select the first button by clicking it, then clicking the remaining three while holding
down the Shift key. This will select all four buttons. Then modify the Anchor
property to the desired value. This will change the property values for all four
buttons.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

163

While we are here, we are going to add an empty handler for the Load Event. To do
this, switch the property editor view to events by clicking the lightning bolt icon in
the toolbar. Find the Load event in the list and double-click in the empty box to the
right of it. You should now see the code editor with your empty event handler:

We will complete this event handler in a moment. For now, return to the design view
by clicking the appropriate tab. Your form should now look like this:

Figure B-42: DemoControl window

Now modify the Text property of each button, from left to right, to Sync RPC, Async
RPC, Fire Event, and Clear. Double click the far-right button that is now labeled
Clear to generate a handler for its click event and complete it as shown below:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

164

B.15.2 Accessing the Session Object
Before we can perform a remote procedure call, we must obtain access to the Session
object within the CSS. For C# to access any COM object, we must first add its
reference information to the project. This is done by selecting Project | Add
Reference... from the menu. Select the COM tab and locate the entry named CIAI
Component Support Services from the list. Select that entry by clicking it, the click
the Select button. The list item should now appear in the bottom pane of the dialog as
shown:

Figure B-43: Add Reference dialog

Finally, click OK to close the dialog and add the reference to your project. You will
now see a new entry in the Solution Explorer pane under the References node named
CIA_CSS.

Now that you have added reference information for the CSS, we can add code to
access the Session object. First, add an instance variable to the class declaration of
your control and name it “Session.” This will be used to hold a reference to the
session object.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

165

To obtain a reference to the Session object, add the following line of code to the Load
event handler we created earlier:

We must also be sure to properly release this reference when the object is destroyed.
To do this, locate the Dispose method implementation for the control and add the
following lines of code:

B.15.3 Accessing the Patient Context Object
Before we can access the Patient Context object, its reference information must be
added to the project in the same manner as you did with the Session object. From the
Add Reference dialog, double-click the entry “CIAI Patient Context Object” to add it
and click OK to close the dialog. A new reference should appear in the Solution
Explorer pane named CSS_Patient.

Next, declare an instance variable to hold the reference:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

166

Now, we need to obtain a reference to the Patient Context object. Because this object
is just a special kind of service, we use the Session object to retrieve a reference to it.
Add the following line of code to the Load event handler to do this:

The above code will cause the Session to locate (and start if not already started) the
indicated service, in this case the Patient Context object. Because this function returns
a reference to the default IUnknown interface, it must be cast to the desired interface,
in this case ICSS_Patient.

As before, we must release all object references when the control is destroyed. To do
this, add the following lines of code to the Dispose method:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

167

B.15.4 Calling a Remote Procedure in Synchronous Mode
Now we are ready to add code that will invoke a remote procedure and display its
data in the TextBox control. First, we will add a click handler to the first button
(labeled Sync RPC) to execute a remote procedure that returns detailed information
about the currently selected patient and populates the TextBox control with the
results. Double-click the far-left button in the form designer and add the following
code to its click event handler:

This code calls the remote procedure named BEHOPTCX PTINQ, passing it a single
parameter corresponding to the patient’s internal entry number (DFN), and displays
the return text in the TextBox control. If the patient context is empty, it displays a
message to that effect instead.

B.15.5 Testing the Component
Before we proceed to add additional functionality, let us test what we currently have.
Before compiling the project, we must first assign a unique GUID to our new control.
If we do not do this, the control will be assigned a new GUID every time it is
registered, which is not desirable. First, we must add a reference to the COM Interop
Services namespace to our project as shown:

Next, we must obtain a unique GUID to assign to our component. To do this, select
Tools | Create GUID from the menu. The following dialog appears:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

168

Figure B-44: Create GUID dialog

Select the format labeled “Registry Format,” click the Copy button to copy the GUID
to the clipboard, then click Exit to close the dialog. To assign a static GUID to our
control, insert the following attribute declaration just prior to the class declaration for
the control. Where the GUID appears in the declaration, paste the contents of the
clipboard and delete the curly braces.

Now we are ready to compile the project. Select Build | Build Solution from the
menu.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

169

Finally, we need to register our new component to the VueCentric Framework. The
easiest way to do this is to use the VueCentric System Management Utility. Run the
tool and login to the remote host. Select the Object Registry tab and in the Restrict
List To box, check Local Registry (this allows us to see local COM objects that are
not yet registered to the Framework). The list of objects will refresh. Now search the
list for the programmatic identifier of our newly created component,
DemoControl.DemoControlCS, and select that entry. In the upper right pane, click
Copy to copy the local COM registration information into the VueCentric Settings
pane. In that pane, fill in the Name field with the display name for the control. The
choice of name is arbitrary. We’ll call it C# Demo Control. Next, fill in the height and
width fields with 100 and 200, respectively. Finally, switch to the Special Settings
tab and check the box labelled .NET Component. Switch back to the General
Settings tab and click Apply at the bottom. The display should look something like
this:

Figure B-45: VueCentric System Management dialog

You may now close the utility. To test the component, start the Visual Interface
Manager with the following flags:

vim.exe /noupdate /blank /trace

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

170

After logging in, enter design mode, right click the desktop and select Add Object.
Expand the Name node and locate and add the Patient Identification Header. Top
align this control (right-click it in design mode to do this). Next find and add the
Demo Control. Set the alignment of this control to all. Save this as a template named
%DEMO for later retrieval. Now exit design mode and click the Sync RPC button.
You should see text in the text box control. Try clicking the Patient Identification
Header control and changing the patient selection. The contents of the text box
control are unaffected, since we have not yet subscribed to patient context change
events. However, if we click the Sync RPC button again, the text that appears in the
text box control now pertains to the newly selected patient.

Figure B-46: VueCentric dialog

Now close the application.

Note: If you do not close the application now, you will receive an
error the next time you try to compile the project because
the control’s executable image is locked.

B.15.6 Subscribing to Patient Context Changes
As we noticed, our component retrieves information based on the currently selected
patient, but it does not respond when the patient selection changes. Let us fix this
deficiency by having our component subscribe to patient context changes and modify
the text box control’s contents when the context change occurs. To do this, we need
to add a callback interface to our component by modifying its class declaration:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

171

Visual Studio .NET prompts you to press the Tab key to implement method stubs
when you add a new interface. This is a convenience feature that can be a real
timesaver. Press the tab key now to generate these stubs. To view them, scroll to the
bottom of the program code. You should see a collapsed region named
“ICSS_PatientEvents Members.” Expand it to reveal the method stubs:

We will add code to each of these stub entries to populate the text box control with
text indicating that each method has been invoked. Complete the implementations
with the code shown below:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

172

When a context change is initiated, the Pending method will be called first. In this
method, we simply clear the text box control’s contents. Because we are returning a
null string for the Pending method, we are essentially voting YES to the context
change. Assuming nothing else cancels the pending change, the Committed method is
called next. In that method, we set the text box control’s text to indicate that the
context change was committed. Now compile the project by selecting Build | Build
Solution from the menu. Now restart the Visual Interface Manager, this time with the
following command line options:

vim.exe /noupdate /trace /template=%DEMO

Once you log in, you should see your component much as it looked before. Click the
Sync RPC button to verify that this still works. Now click the patient identification
header and select a different patient. Notice how the memo control’s contents have
now changed. We have now responded to a context change event.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

173

Figure B-47: VueCentric dialog

B.15.7 Calling a Remote Procedure in Asynchronous Mode
Our next task is to support calling our remote procedure asynchronously. To do this,
we need to implement the ICSS_SessionEvents interface that is defined in the CSS
type library. This is done in an identical manner to the ICSS_PatientEvents interface
we implemented in the previous section. First, add the interface to the component’s
class declaration:

Be sure to press the Tab key when prompted to create the method stubs:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

174

At this point, we will ignore the EventCallback method, but will return to it later. Let
us add the following code to the other two methods:

Here, we add the data returned by the asynchronous call to the text box control if it
completed normally, or the text of the reported error if it did not.

Next, we will add code to the Async RPC button to call our remote procedure in
asynchronous mode. To do this, double-click that button in the form designer and
complete the click event handler as shown:

Note that we are first aborting any asynchronous remote procedure in progress before
we call it again.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

175

Now add an instance variable declaration to the component’s class for the rpcHandle
variable used to store the returned handle:

Now, since we are already equipped to respond to patient context changes, let us add
code to abort an asynchronous call in progress when a context change occurs. We will
add this code to the Committed method:

Now it is time to test our component again. Recompile the project by selecting Build |
Build Solution. Now restart the Visual Interface Manager as before. This time click
the Async RPC button. You should at first see the text “Asynchronous Remote
Procedure Invoked.” in the memo control. After a small delay, you should see the
results of the remote procedure appear. Note that TaskMan must be running to invoke
a remote procedure asynchronously, so if you do not receive data from the call, make
certain TaskMan is running.

B.15.8 Firing an Event
Let us now add the capability of firing an event. We are going to fire a local event
called “STATUS.” The Visual Interface Manager subscribes to this event and
displays the data associated with it in its status bar. Double-click the Fire Event
button in the form designer and complete the click event handler as follows:

Recompile the project and test in the Visual Interface Manager as before. Click the
Fire Event button and you should see the event data appear in the status bar:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

176

Figure B-48: Status bar

B.15.9 Subscribing and Responding to an Event
Finally, we will enable our component to respond to STATUS events. This requires
two steps. First, we must implement the callback interface for responding to events.
Since this is the same interface (ICSS_SessionEvents) we implemented earlier for
responding to asynchronous remote procedures, we have already done this. All we
need to do is to fill in the implementation for the EventCallback method. Find this
method in your component’s implementation section and complete as follows:

Import Type Library dialog:

This will display the event name and data in the text box control.

Next, we need to subscribe to the STATUS event. To do this, return to the Load event
handler and add the following line of code:

Now recompile and test your component as before. Now, clicking the Fire Event
button also displays the event data in the memo control:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

177

Figure B-49: VueCentric dialog

B.15.10 Summary
You have learned how to create a .NET Windows Control, expose it as an ActiveX
object, reference the Session and Patient Context objects, call remote procedures
synchronously and asynchronously, and fire and receive events. You should now be
well prepared to create components on your own.

B.16 Creating Services
Services, like visual components, are COM objects. Unlike visual components, they
are not ActiveX controls, they cannot be manipulated at design time nor do they
manifest themselves visually in their baseline state. Despite these differences, the
programming techniques are very similar.

In the Delphi and Visual Basic examples that follow, we will be creating a simple
service that implements a function to return information about the remote host. We
will modify the visual component we created in the previous tutorial to use this
service.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

178

B.17 Creating Services with Delphi
This tutorial will demonstrate how to use Delphi to create a simple service object that
implements a single method and how to access that service from within another
component. Delphi offers several project types that can be used to create COM
objects. We will create an automation-compatible COM object, which will afford the
most flexibility for use in different settings.

B.17.1 Creating the Project
Creating a project to produce an automation-compatible COM object requires two
steps. First, we will create an ActiveX Library project by selecting File | New |
Other... from the main menu. From the dialog that appears, select the ActiveX tab as
shown below.

Figure B-50: New Items dialog

Select ActiveX Library and click OK.

B.17.2 Creating the Service Object
Next, we need to add a COM object that will be our service to our newly created
project. To do this, return to the project type dialog by selecting File | New | Other...,
select the ActiveX tab again, but this time select Automation Object and click OK.
In the Automation Object Wizard that appears, fill in the CoClass Name as shown
below. Leave the other settings as they are.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

179

Figure B-51: Automation Object Wizard

Click OK and you should see the type library editor appear with our newly created
type library and its automation object, DemoService1, with its default interface,
IDemoService1:

Figure B-52: Type Library editor

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

180

Select the top node labeled Project1 and rename the type library to DemoService by
changing the entry in the Name edit box in the right pane. Also change the entry in
the Help String edit box to DemoService as well. Click the refresh button in the
toolbar to synchronize your program code with the change. Now save the project to a
folder of your choice, naming the project file DemoService1 (this will give us an
executable filename of DemoService1.dll when we are done).

B.17.3 Accessing the Session Object
Since we will be making a remote procedure call, we need to access the Session
object. This is done in the exact same manner as we did with the visual component
we created earlier. Since we have already imported the type library for the CSS, we
do not have to repeat this step (see Appendix B.13). We do need to add a reference to
the CSS type declaration unit to the uses clause of the unit containing the Session
object. In the code editor, select the Unit1 unit and modify the uses clause as shown:

Now create a private section for the service object’s class and add a declaration for
the variable that will hold a reference to the Session object:

As with our visual component created earlier, we will initialize the FSession variable
in the Initialize method. Since the Automation Object Wizard does not automatically
generate this for us, we will need to add it manually. Create a public section and add
an override declaration for the Initialize method:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

181

To generate an implementation for the Initialize method, we will use a Delphi
shortcut. Right-click the service object’s class name (TDemoService1) and select
Complete class at cursor from the pop-up menu. This will produce a default
implementation for the Initialize method:

Now add the code to initialize the FSession variable:

B.17.4 Modifying the Interface
Now we want to add a method to the interface of our service object. This will be a
function that will receive one argument that specifies the type of information
requested and will return the requested information as a string. To modify the
interface, we will use the type library editor. If it is not already visible, make it visible
by selecting View | Type Library from the main menu. Select the node labeled
IDemoService1. This corresponds to the default interface for the service object. It
currently has no methods or properties associated with it.

To create a method, click the refresh button on the toolbar. This will generate a
method with the default name of Method1. Rename the method to GetInfo by either
changing the label associated with the node or by changing the Name edit box in the
right pane. Now switch to the Parameters tab. From the Return Type drop-down
box, select either WideString or BSTR (the list content depends upon whether you
have configured the editor to display Delphi or C syntax).

We also need to add the parameter that will contain the type of information we are
requesting. At the bottom of the Parameters tab, click Add. This will create a
parameter with a default name of Param1 and a datatype of Integer. Change the name
of the parameter to InfoType by selecting the name in its cell and modifying. Leave
the datatype as it is. Now click the refresh button on the toolbar to synchronize your
program code with these changes. At this point, the type library editor should look
like this:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

182

Figure B-53: Type Library editor

Your program code should now contain a new method:

B.17.5 Providing the Implementation
Now that we have created our method, we need to provide its implementation. Our
method will perform a synchronous remote procedure call, passing its single
parameter to indicate the type of information we are requesting. It will return the
result of the call in its return value. To do this, complete the implementation for the
GetInfo method as shown:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

183

B.17.6 Registering the Service
Now we need to register the service. First, let us compile the project by selecting
Project | Build DemoService1 from the menu. It should compile without errors.
Now, register the type library by selecting Run | Register ActiveX Server from the
menu. You should receive confirmation of successful registration.

Next, we need to register our service to the VueCentric Framework. This is done in
the same way we registered our visual component - using the VueCentric System
Management Utility. Run the tool and login to the remote host. Select the Object
Registry tab and in the Restrict List To box, check Local Registry (this allows us to
see local COM objects that are not yet registered to the Framework). The list of
objects will refresh. Now search the list for the programmatic identifier of our newly
created service, DemoService.DemoService1, and select that entry. In the upper right
pane, click Copy to copy the local COM registration information into the VueCentric
Settings pane. In that pane, fill in the Name field with the display name for the
control. The choice of name is arbitrary. We will call it “Demo Service 1.” Now
switch to the special settings tab and check the box labeled Service. Now click Apply
at the bottom. This completes the Framework registration process.

Finally, let’s import the service’s type library so that it is available to be used by other
projects. Select Project | Import Type Library... from the main menu. Find the
entry “DemoService (Version 1.0)” and select it. Make sure Create Component
Wrapper is unchecked and click Create Unit. You have now created a type
declaration unit in the Delphi Imports folder (if you receive a message that the unit is
already in the project, just ignore it and continue).

B.17.7 Accessing the Service
Next, we need to provide a means to test the GetInfo method of our service object. To
do this, we will modify the DemoControl we created in the earlier tutorial. Open the
DemoControl project now (be sure to save any changes to the existing one). Modify
the uses clause in the DemoControl1 unit to add a reference to our service’s type
library declaration unit.

Next, add a declaration for the variable that is to hold the reference to our service in
the private section of our TDemoControlX class.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

184

Add the code to initialize the FService variable to the Initialize method:

Note that we are using the FindServiceByProgID here. We could just as easily have
used the FindServiceByCLSID and passed the GUID for the service object.

Finally, add a fifth button to the form and position it as desired. Rename the caption
to “Demo Service” and set its Anchors property to [akLeft,akBottom]. Double-click
the button and complete its Click event handler as shown:

Compile the project by selecting Project | Build DemoControl and load it in the
Visual Interface Manager as before. Now click the Demo Service button. You should
see something similar to this:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

185

Figure B-54: VueCentric dialog

B.17.8 Summary
You have learned how to create a service object and access that service within
another component. The techniques for performing other programming tasks, such as
making synchronous and asynchronous remote procedure calls and firing and
receiving events, are identical to those used in creating visual components.

B.17.9 Creating Services with Visual Basic
This tutorial will demonstrate how to use Visual Basic to create a simple service
object that implements a single method and how to access that service from within
another component.

B.17.10 Creating the Project
To create the project for our service component, select File | New Project from
Visual Basic’s main menu. Select the ActiveX DLL project type and click Open.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

186

Figure B-55: New Project dialog

This creates a project containing a single automation-compatible COM object named
Class1 by default. Before continuing, let us rename our project and object to better
reflect their function. In the project pane, select the project node and change its name
in the property pane from Project1 to DemoService. Returning to the project pane,
select the object node labeled Class1 and change its name in the property pane to
DemoService2. This will provide a programmatic identifier for our service object of
DemoService.DemoService2. Now save the project to a folder of your choice.

B.17.11 Accessing the Session Object
Since we will be making a remote procedure call, we need to access the Session
object. This is done in the exact same manner as we did with the visual component
we created earlier. To do this, select Project | References... from the main menu,
locate and check the entry “CIA Component Support Services,” and click OK to
close the dialog.

Next, we need to declare a global variable to hold our reference to the Session Object.
To do this, select (General) in the code editor and add the following code:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

187

Now we need to store a reference to the Session object in our global variable,
gSession. Select the Class entry in the left drop-down box of the code editor and its
Initialize method in the right drop-down box. This will create an empty
implementation for the Initialize method. Next, complete the implementation by
adding the following code:

This code obtains a temporary reference to the Server object, retrieves a reference to
its Session object, and releases the Server object. At this point, you now have a
reference to the Session object stored in the global variable, gSession.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

188

B.17.12 Modifying the Interface
Now we want to add a method to the interface of our service object. This will be a
function that will receive one argument that specifies the type of information
requested and will return the requested information as a string. Return to the code
editor and add the following public function at the end as shown:

B.17.13 Registering the Service
Now we need to register the service. First, let us compile the project by selecting File
| Make DemoService.dll from the menu. It should compile without errors. Next, we
need to register our service to the VueCentric Framework. This is done in the same
way we registered our visual component - using the VueCentric System
Management Utility. Run the tool and login to the remote host. Select the Object
Registry tab and in the Restrict List To box, check Local Registry (this allows us to
see local COM objects that are not yet registered to the Framework). The list of
objects will refresh. Now search the list for the programmatic identifier of our newly
created service, DemoService.DemoService2, and select that entry. In the upper right
pane, click Copy to copy the local COM registration information into the VueCentric
Settings pane. In that pane, fill in the Name field with the display name for the
control. The choice of name is arbitrary. We’ll call it “Demo Service 2.” Now switch
to the special settings tab and check the box labeled Service. Now click Apply at the
bottom. This completes the Framework registration process.

B.17.14 Accessing the Service
Now we need to provide a means to test the GetInfo method of our service object. To
do this, we will modify the DemoControl we created in the earlier tutorial. Open the
DemoControl project now (be sure to save any changes to the existing one). Add a
reference to our service object by selecting Project | References... from the main
menu. Find the entry “DemoService” in the list, check it, and click OK to close the
dialog.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

189

Next, create a global variable to hold the reference to our service object in the
(General) section as shown:

Now initialize the gService variable in the Initialize method of the UserControl:

Finally, add a fifth button to the form and position it as desired. Rename the caption
to “Demo Service.” Double-click the button and complete its Click event handler as
shown:

Compile the project by selecting File | Make DemoControl.ocx... and load it in the
Visual Interface Manager as before. Now click the Demo Service button. You should
see something similar to this:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

190

Figure B-56: VueCentric dialog

B.17.15 Summary
You have learned how to create a service object and access that service within
another component. The techniques for performing other programming tasks, such as
making synchronous and asynchronous remote procedure calls and firing and
receiving events, are identical to those used in creating visual components.

B.18 Creating Services with C#
This tutorial will demonstrate how to use Visual Studio 2013 C# to create a simple
service object that implements a single method and how to access that service from
within another component.

B.18.1 Creating the Project
To create the project for our service component, select File | New | Project from
Microsoft Visual Studio main menu. Select the Class Library under C#

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

191

Figure B-57: New Project window

This creates a project containing a single automation-compatible COM object named
ClassLibrary1 by default. Before continuing, let us rename our project and object to
better reflect their function. In the project pane, select the Name control entry change
its name in the property pane from ClassLibrary1 to DemoService. Now save the
project to a folder of your choice. Go to the Solution Explorer pane, select the object
node labeled Class1 and change its name in the property pane to DemoService2. This
will provide a programmatic identifier for our service object of
DemoService.DemoService2.

B.18.2 Accessing the Session Object
Since we will be making a remote procedure call, we need to access the Session
object. This is done in the exact same manner as we did with the visual component
we created earlier. To do this, select Project | Add Reference... from the main menu,
locate and check the entry “Interop.CIA_CSS,” and click OK to close the dialog.

Next, we need to declare a local global variable to hold our reference to the Session
Object. To do this, select the Class Library (DemoService) in the code editor and
add the following code:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

192

Now we need to store a reference to the Session object in our global variable,
_session. Select the Class entry in the left drop-down box of the code editor and its
Initialize method in the right drop-down box. This will create an empty
implementation for the Initialize method. Next, complete the implementation by
adding the following code:

This code obtains a temporary reference to the Server object, retrieves a reference to
its Session object, and releases the Server object. At this point, you now have a
reference to the Session object stored in the global variable, _session.

B.18.3 Modifying the Interface
Now we want to add a method to the interface of our service object. This will be a
function that will receive one argument that specifies the type of information
requested and will return the requested information as a string. Return to the code
editor and add the following public function at the end as shown:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

193

B.18.4 Registering the Service
Now we need to register the service. First, let us compile the project by selecting
Build | Build DemoService from the menu. It should compile without errors. Next,
we need to register our service to the VueCentric Framework. This is done in the
same way we registered our visual component - using the VueCentric System
Management Utility. Run the tool and login to the remote host. Select the Object
Registry tab and in the Restrict List To box, check Local Registry (this allows us to
see local COM objects that are not yet registered to the Framework). The list of
objects will refresh. Now search the list for the programmatic identifier of our newly
created service, DemoService.DemoService2, and select that entry. In the upper right
pane, click Copy to copy the local COM registration information into the VueCentric
Settings pane. In that pane, fill in the Name field with the display name for the
control. The choice of name is arbitrary. We’ll call it “Demo Service 2.” Now switch
to the special settings tab and check the box labeled Service. Now click Apply at the
bottom. This completes the Framework registration process.

B.18.5 Accessing the Service
Now we need to provide a means to test the GetInfo method of our service object. To
do this, we will modify the DemoControl we created in the earlier tutorial. Open the
DemoControl project now (be sure to save any changes to the existing one). Add a
reference to our service object by selecting Project | References... from the main
menu. Find the entry “DemoService” in the list, check it, and click OK to close the
dialog.

Next, create a global variable to hold the reference to our service object in the
(General) section as shown:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

194

Now initialize the _demoservice variable in the Initialize method of the UserControl:

Finally, add a fifth button to the form and position it as desired. Rename the caption
to “Demo Service.” Double-click the button and complete its Click event handler as
shown:

Compile the project by selecting File | Build DemoControl.dll... and load it in the
Visual Interface Manager as before. Now click the Demo Service button. You should
see something similar to this:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

195

Figure B-58: VueCentric pane

B.18.6 Summary
You have learned how to create a service object and access that service within
another component. The techniques for performing other programming tasks, such as
making synchronous and asynchronous remote procedure calls and firing and
receiving events, are identical to those used in creating visual components.

B.19 Deploying Components
Successful deployment of a component relies on a thorough understanding of version
control and dependency control as implemented by the VueCentric Framework. In
addition, the VueCentric SDK can greatly facilitate the task of creating server-side
builds for your components.

B.20 Version Control
Proper version control is essential to ensuring that your components are updated
properly and that the correct version of your component is loaded at run-time. The
VueCentric Framework (specifically, the CMS) automatically recognizes that a
newer version of a requested component is available and retrieves and installs it (so-
called, just-in-time update). For this to work properly, a basic understanding of how
this is done is necessary.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

196

B.20.1 Version Numbers
Version numbers consist of up to four numbers separated by periods. These numbers
represent, from left to right, the major, minor, release, and build versions. These
numbers have a hierarchical relationship, so whenever a number is incremented, all
numbers below it (i.e., to the right) should be reset to 0. Build numbers should be
incremented every time a component is recompiled (most compilers can be
configured to do this automatically). The guidelines for when to increment the major,
minor, and release numbers are less clear. We typically increment the release number
whenever we add or change functionality, but do not break compatibility with a
previous version. We increment the minor version number when we break
compatibility with a previous version. We increment the major version number when
there is a major change to the functionality.

B.20.2 Which Version
COM allows associating version numbers with the type library and each imbedded
interface and object. While this has certain advantages, COM makes no provision for
supporting multiple versions of an object on a given machine. In addition, COM
versioning has no applicability to files that are not COM objects. Therefore, a version
control mechanism independent of COM is necessary. The CMS uses two different
mechanisms for file versioning. For binary files that have an imbedded version
resource, the CMS uses this information to determine the file version. Version
resources are a standard means for imbedding version information within binary files.
You may examine this resource in Windows by viewing a binary file’s properties. If
the binary file has a version resource, you will see a tab labeled Version and on that
tab you will find the file version. Most compilers can be configured to include version
information.

For non-binary files, the CMS uses the file’s modification timestamp to generate a
pseudo-version number. Like standard version numbers, this version number consists
of four hierarchically arranged numbers. From left to right, these numbers are the
year, month, day, and time. Because the timestamp uses universal time format, the
version number generated in this manner is not sensitive to varying time zones.

B.20.3 Registering Version Information
When a component is requested, the CMS searches the application directory of the
local machine to determine the version of the component currently residing there. It
does this by directly examining the component’s imbedded version resource. It then
compares the local version number to the version number specified for the component
in its VUECENTRIC OBJECT REGISTRY file entry. If the local version number is
less than the one specified in the VUECENTRIC OBJECT REGISTRY file, or if the
component was not found in the application directory, it is retrieved from the object
repository and installed in the application directory.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

197

Note that the CMS does not directly examine the file in the object repository to
determine its version. This means that the version entered in the VUECENTRIC
OBJECT REGISTRY file must truly reflect the version residing in the object
repository for the update mechanism to work. The reason the CMS does not directly
examine files in the object repository is twofold. First, if the repository resides on a
remote share, examining a file’s version resource can be very time consuming (in
fact, Windows makes a local copy of the file to do this). Second, if the repository
resides on a web or ftp server, there is no means to examine the file directly without
downloading it first. Therefore, be certain that you correctly update the version
information for your components.

B.20.4 Side-by-Side Versioning
Side-by-side versioning refers to the ability to have multiple versions of the same
component residing on a machine at the same time. When most COM objects are
registered, the full path to the executable is included in the Windows registry.
Because this registration overwrites any previous entry, it is not possible to register
more than one version at a time. Thus, the default behavior of COM is to share a
single copy of an object across all applications. This is rarely desirable, especially in
the situation where an object is not backward-compatible with previous versions. To
overcome this limitation, Microsoft has offered three possible solutions:

• Store only the object’s file name, not its path information, in the Windows
registry. In the absence of path information, Windows will search for the file in
the application directory first, then in the System and Windows directories. In this
manner, one can partition different object versions in the respective application
directories and be certain that the correct one is loaded. Modifying the default
COM registration behavior can be done in one of two ways. Since COM objects
register themselves through the DLLRegisterServer method, one can override the
default implementation of this method and modify the registration process. A
second option is to set the SIDE-BY-SIDE field of the corresponding
VUECENTRIC OBJECT REGISTRY file entry to true. When this field is true,
the CMS inspects the Windows registry entry for the COM object and removes
path information if it exists. This allows forcing side-by-side versioning on an
object-by-object basis.

• Microsoft offers a second solution to the versioning problem. If the COM
subsystem detects a file with the same name as the main application with “.local”
appended to it, it will ignore all path information in the Windows registry. For
example, if the file VIM.exe.local is placed in the application directory, all objects
loaded by the VIM application will be treated as if they had been registered
without path information. This option has three disadvantages. First, it is all-or-
nothing as far as the application is concerned. Second, this capability only applies
to versions of Windows including and subsequent to Windows 98 SE. Third, in
the presence of an application manifest (see below), this feature is disabled.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

198

• The third, and most recent, solution to versioning is in the form of an application
manifest, which may either be imbedded in the application or present in the form
of a file with the same name as the application with a “.manifest” appended to it.
The purpose of the manifest is to allow the application developer to specify which
version of a particular component is to be used. In contrast to the “.local” file
described above which affects the search behavior for all components, the
manifest affects search behavior only for those components listed. Furthermore,
the use of a manifest precludes the use of the “.local” file (except in Windows
2000 environments where the manifest is not supported). The EHR uses a
manifest to enable theme support for the application.

The choice of versioning techniques depends on many factors. Because of the
multiple run-time environments supported by the EHR, all three techniques are
utilized to ensure the correct components are used for a given application instance.

For a detailed treatment of this subject, see the MSDN article titled Implementing
Side-by-Side Component Sharing in Applications
(http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsetup/html/sidebyside.asp).

B.20.5 Imbedding Version Information
Both Delphi and Visual Basic can imbed version information in the binary files they
generate.

To include version information in Delphi projects, choose the Project | Options
menu. From the Project Options dialog that appears, select the Version Info tab.
Select the Include version information in project and Auto-increment build
number check boxes. You may optionally fill in other information located at the
bottom of the dialog.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsetup/html/sidebyside.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsetup/html/sidebyside.asp

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

199

Figure B-59: Project Options dialog

To imbed version information using Visual Basic, select the Project | Properties
menu. From the Project Properties dialog that appears, select the Make tab. Select
the Auto Increment check box. You may optionally fill in other version information
as desired.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

200

Figure B-60: Project Properties dialog

B.21 Handling Dependencies
It is not at all uncommon that a component depends upon the presence of other
components or files to function. So how does one insure that all of the necessary
pieces are in place when a component is executed? There are several possible
approaches to this problem.

If a given file is required by many components, it may make sense to deploy that file
using the same mechanism to deploy the core Framework. VueCentric provides a
configurable installer utility that installs and updates core components from a shared
directory, independent of the Framework. Alternatively, if the core files are installed
using a third-party installer, one could add the required file(s) to the installation.

The VUECENTRIC OBJECT REGISTRY file provides two options for handling
dependent files. Using the VueCentric System Management Utility, one can register
dependencies between entries in this file in the Dependencies section of the Object
Registry tab. When an object is requested, all listed dependencies are requested
automatically. This method has the advantage of applying version control over each
dependency. In addition, if a dependent file is marked as a service, the service is
automatically started. Dependencies are recursive so that any dependencies listed for
a dependent file are also requested.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

201

The Required Files section of the Object Registry tab provides an alternate means for
declaring dependencies. Whenever an object is installed or updated, any required files
listed here are also retrieved. This has the advantage of not requiring that these
dependent files be entered into the VUECENTRIC OBJECT REGISTRY file. The
main disadvantage is that no version control is applied to these files. They are only
retrieved when the object needs to be installed or updated.

B.22 Generating KIDS Builds
All components require some kind of installation on the remote host. At a minimum,
a component requires registration information to be entered into the VUECENTRIC
OBJECT REGISTRY file. Most will also require supporting code and remote
procedure declarations. Some will also define events and parameters. To facilitate the
delivery of these required elements to the remote host, the VueCentric SDK augments
the KIDS system by providing a means to easily package these elements into the
build and also provides support for common tasks such as registering remote
procedures.

The VueCentric SDK is delivered as a KIDS build. Once installed, the SDK provides
a template for creating component builds and a configuration file for controlling the
behavior of the build. The template is a KIDS build called VUECENTRIC DUMMY.
Do not modify this build directly. Rather, create a copy of the build and modify it.
This build is delivered with pre-installation, post-installation, and pre-transportation
methods that should be modified. In addition, it is also configured to deliver entries
from several key files based on information in the configuration file. You may add
additional files to the build, but you should not remove the existing entries. You may
also add any additional elements that are to be delivered (e.g., remote procedures,
options, etc.).

The configuration file delivered with the SDK is called the VUECENTRIC
DISTRIBUTION file. By associating an entry with your component build created
from the VUECENTRIC DUMMY template, you may control the elements delivered
with your build. The VUECENTRIC DISTRIBUTION file has the following fields:

Field # Datatype Description
NAME .01 Text This is typically the display name given to

the component.
BUILD .5 Pointer (#9.6) This is the build with which this entry is to be

associated.
OBJECT (multiple) 1 Pointer (#19930.2) Any VUECENTRIC OBJECT REGISTRY

entries to be included in the build.
PARAMETER
DEFINITION (multiple)

2 Pointer (#8989.51) Any parameter definitions to be included in
the build. The subfile also has fields for
initializing parameter values.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

202

Field # Datatype Description
PARAMETER
TEMPLATE (multiple)

3 Pointer (#8989.52) Any parameter templates to be included in
the build.

TEMPLATE (multiple) 4 Pointer (#19930.3) Any VUECENTRIC TEMPLATE REGISTRY
entries to be included in the build.

EVENT(multiple) 5 Pointer (#19941.21) Any CIA EVENT TYPE entries to be
included in the build.

PREINIT CODE 50 M Code Any code to be executed during the pre-
installation phase.

POSTINIT CODE 51 M Code Any code to be executed during the post-
installation phase.

PRETRANS CODE 52 M Code Any additional pretransportation code to be
executed when generating the build.

COMMENTS 99 Word Processing Used for documentation purposes.

When you generate your build, you will see the message “Target distribution:
<name>” where <name> is the name of the associated entry in the VUECENTRIC
DISTRIBUTION file. If more than one entry is associated with the build, you will be
prompted to select the one to use.

B.23 Pitfalls and Special Techniques
This section discusses potential pitfalls that the component developer may encounter
and special techniques that will facilitate component development.

B.23.1 Component Initialization
Both Delphi and Visual Basic define an Initialize method for its ActiveX controls.
This method is executed when an object is first created and should be used to perform
any necessary initializations. In Delphi, this is preferred over overriding the object’s
constructor since ActiveX objects typically have more than one constructor and the
Initialize method is guaranteed to be executed regardless of which constructor is
invoked.

B.23.2 Component Destruction
Under Delphi, accessing a component’s COM interface within the destructor may
cause a stack overflow. This happens because the destructor has been invoked
because the object’s reference count has reached zero. When the object’s COM
interface is referenced, the reference count increments and then decrements back to
zero, causing re-entry of the destructor. If there is a need to access an object’s COM
interface in its destructor, first make a call to the object’s _AddRef method. This
increments the reference count and ensures that it will not return to zero. Do not call
the _Release method since the object is already in the process of being released and
doing so would cause the reference count to return to zero.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

203

B.23.3 Other Containers
Because visual components are ActiveX-compliant, any visual component can
potentially be hosted in any ActiveX-compliant container (e.g., Internet Explorer).
Any component used in this manner should register itself with the CSS by calling the
Session object’s RegisterObject method. If this is not done, the component will not be
notified of context changes nor will it be accessible to other components.

B.23.4 Focus Issues
ActiveX controls created with Visual Basic have one anomaly associated with control
focus. The first mouse click a Visual Basic ActiveX control sets focus to the control.
Once the control has focus, subsequent mouse clicks perform as expected. This
means, for example, that if you click a button on a Visual Basic ActiveX control that
does not yet have focus, the click will not generate a button press event. Subsequent
clicks will.

One solution to this anomaly is to implement the MouseMove method for the
UserControl and make a call to SetFocus in the implementation. This causes the
control to automatically receive focus when the mouse moves over it.

B.23.5 Deferring Data Fetches
Retrieving data from the remote host can be time consuming and hamper application
performance. This burden can be lessened by devising intelligent strategies for
deferring data fetches until the data is actually needed. One common strategy is for a
component to defer populating its display until it becomes visible. For example, it
makes little sense to retrieve a patient’s problem list data into a component
immediately after a patient context change if the user never views that component. A
useful technique for deferring data fetches in this scenario would be to set a flag
indicating that a data fetch is required when the context change occurs and then
invalidate the component’s main window. In the component’s painting logic, one
could check for this flag and perform the fetch if it is set. By invalidating the
component’s main window, one insures that if the component is already visible, the
fetch will occur immediately. Otherwise, the fetch will occur only if the component
becomes visible.

B.23.6 Intercomponent Communication
Intercomponent communication refers to the technique of one component
communicating information to a second component in the application. This can be
very useful if the action of one component affects another or if one component needs
to make use of a service provided by another.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

204

The VueCentric Framework provides two methods for implementing intercomponent
communication. The first uses local events to send information to local subscribers.
This method is useful when a component wants to communicate information to
multiple targets. It has the disadvantage of being unidirectional and anonymous.

A second method provides a much more tightly coupled communication link between
components. This method utilizes a technique called dynamic discovery to locate
other components in the environment and establish an interface reference to them.
The Session object provides a number of methods that support dynamic discovery.
They are divided into two groups, one for discovering visual components and another
for discovering services. Each returns a reference to the IUnknown interface of the
requested object which may then be cast to the desired interface. Using this reference,
an object can then invoke any method or property on the interface. The methods are:

FindObjectByCLSID – This function searches the list of registered objects to find
one that implements the class identified by CLSID. If the Last parameter is not nil
(Nothing), the search begins following that object’s entry in the list. In this manner,
one can iterate through multiple object instances of the same class.

FindObjectByIID – This function searches the list of registered objects to find one
that implements the interface identified by IID. If the Last parameter is not nil
(Nothing), the search begins following that object’s entry in the list. In this manner,
one can iterate through all objects implementing a particular interface.

FindObjectByProgID – This function searches the list of registered objects to find
one that possesses the programmatic identifier specified by ProgID. If the Last
parameter is not nil (Nothing), the search begins following that object’s entry in the
list. In this manner, one can iterate multiple object instances of the same class.

FindServiceByCLSID – Request a reference to the service identified by CLSID. If
the service is not already running, the CSS starts the service. If the service is not
located, a nil (Nothing) value is returned. Otherwise, the return value is a reference to
the service’s default interface.

FindServiceByProgID – Request a reference to the service identified by ProgID. If
the service is not already running, the CSS starts the service. If the service is not
located, a nil (Nothing) value is returned. Otherwise, the return value is a reference to
the service’s default interface.

B.23.7 Creating Trace Log Entries
Component authors may create entries in the trace log for debugging purposes using
the API suite provided by the session object of the CSS. This suite consists of the
following:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

205

Method or Property Return Type Description
TraceMode Boolean This property indicates whether or not trace mode is

active. If trace mode is not active, calling any of the trace
methods will have no effect. While it is not required to
check the state of trace mode before invoking one of the
trace methods, it is generally advisable to do so to avoid
the overhead of sending trace information when trace
mode is inactive.

TraceBegin(TraceClass,
TraceType)

Integer Call this method to initiate a trace log entry. TraceClass
and TraceType determine how the entry is displayed in
the trace log viewer. TraceClass defines an overall
category for the log entry and TraceType defines a
subcategory within the TraceClass. This method returns
a handle that uniquely identifies the log entry being
created.

TraceAdd(Handle,Value,
IsHeader)

none Call this method to add to the newly created log entry.
Handle refers to the unique handle returned by the
TraceBegin method. Value is the text to be added to the
entry. If IsHeader is true, this indicates that the Value
represents header information. When displayed in the log
viewer, headers are centered, underlined, and red in
color.

TraceEnd(Handle) none Call this method to complete the entry. Once this is done,
the CSS fires a TRACE event which is intercepted by the
log viewer and entered into the trace log.

Consider the following Delphi code example:

 var
 Handle: Integer;
 begin
 if vcSession.TraceMode
 then begin
 Handle := vcSession.TraceBegin('RPC', 'BEHOPTCX LAST');
 vcSession.TraceAdd(Handle, 'Parameters', True);
 vcSession.TraceAdd(Handle, '#1 : 733', False);
 vcSession.TraceAdd(Handle, 'Results', True);
 vcSession.TraceAdd(Handle, '733', False);
 vcSession.TraceEnd(Handle);
 end;

This code would generate a trace log entry that would appear as follows in the trace
log viewer:

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

206

Figure B-61: Trace Log pane

B.23.8 Embedding Licensed Controls
The use of licensed third-party controls in the development of a component
sometimes produces an unauthorized license exception when it is imbedded within
another component. This is a problem that has been reported with ActiveX controls
produced in Visual Basic that contain licensed controls on the primary form. It is
unclear whether this is a “feature” or a “bug,” but it has received much discussion in
the technical newsgroups. It is not a container issue, but rather a problem with the
way Visual Basic passes license information to the imbedded control. Evidently, for
the primary form this does not occur. Interestingly, for secondary forms it does.
Therefore, imbedding a licensed component on a secondary form causes no problems.
This phenomenon lends itself to an interesting, albeit somewhat inelegant,
workaround:

Create a dummy form in your Visual Basic project. Place one copy of each licensed
component that you will be imbedding in your primary form onto the dummy form.
Load the dummy form in the Initialize method of your control. This registers the
license information for the controls. Unload the dummy form in the very next
statement (it is no longer needed). The licensed components will now function
properly on the primary form.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

207

B.23.9 Forced Context Changes
While context changes are a mostly democratic process, there are two situations
where a context change may be forced even when one of the participants rejects the
request. The first situation occurs during a forced shutdown of the application when
the context of each context object is cleared. The second situation occurs when a
CCOW client requests a context change and elects to override a participant’s
objection. In either event, the programmer should be prepared to react to a forced
context change and not assume that a rejection of the request will always abort the
change.

B.23.10 Integrating Help Content
The Visual Interface Manager interrogates each visual component as it is loaded to
determine which ones provide on-line help. It then provides access to the help
documentation by means of the Help | Help On menu. The VIM attempts to acquire
three pieces of information when it interrogates a component: the help file name, the
display name of the component, and the help context identifier. It first examines the
type library to determine if a Help File attribute is defined for the type library and
Help String and Help Context attributes are defined for the component’s default
interface. If these attribute values are found, they are used for the help file name,
display name, and help context identifier, respectively.

For example, the type library shown below defines a Help File attribute of
“vcPatientID.chm,” a Help String attribute of “Patient Selection,” and a Help Context
attribute of 124.

Figure B-62: Type Library pane

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

208

Figure B-63: Type Library pane

If the VIM does not obtain the required information from the type library, it then
examines the default interface of the component for a HelpFile and HelpContext
property. If it finds these, it uses those values for the help file name and help context
identifier, respectively, and uses the component’s Name property from the
VUECENTRIC OBJECT REGISTRY file as the display name.

If the VIM can obtain a value for the component’s help file name by one of these
methods, that component’s display name will appear as a submenu under the Help |
Help On menu. Invoking the submenu will load the specified help file (both
Windows and HTML help formats are supported) at the point referenced by the
context identifier (if found).

B.24 Delphi Helper Functions
unit vcWrappers;

{==
==========
 Helper Functions

 This unit contains wrappers for certain calls to the Session that
simplify the task of converting Delphi parameters to COM-compliant
parameters.

 Declarations Description

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

209

 TMultList TStringList descendant that supports specifying
subscript values when storing data.
 TWPList TStringList descendant that passes its subscripts
values in word processing format.

 Modification History

 Copyright © 2001-2003 by Clinical Informatics Associates, Inc. All
Rights Reserved.
===
=========}

interface

uses
 Classes, SysUtils, ActiveX, Variants, CIA_CSS_TLB;

type
 TMultList = class(TStringList) // Used to pass explicitly subscripted
data to broker
 public
 function Add(const Subscript, Data: String): Integer; reintroduce;
overload;
 function Add(const Subscript: String; Data: Extended): Integer;
reintroduce; overload;
 function Add(const Subscript: String; Data: Integer): Integer;
reintroduce; overload;
 function Add(const Subscript: array of const; Data: String): Integer;
reintroduce; overload;
 function Add(const Subscript: array of const; Data: Extended): Integer;
reintroduce; overload;
 function Add(const Subscript: array of const; Data: Integer): Integer;
reintroduce; overload;
 end;

 TWPList = class(TStringList); // Used to force WP formatting of
broker data

function CallRPCList(const Session: ICSS_Session; const RPCName: String;
const Args: array of const; Retlist: TStrings): TStrings; overload;
function CallRPCInt(const Session: ICSS_Session; const RPCName: String;
const Args: array of const): Integer; overload;
function CallRPCStr(const Session: ICSS_Session; const RPCName: String;
const Args: array of const): String; overload;
function CallRPCBool(const Session: ICSS_Session; const RPCName: String;
const Args: array of const): Boolean; overload;
function CallRPCDate(const Session: ICSS_Session; const RPCName: String;
const Args: array of const): TDateTime; overload;
function CallRPCAsync(const Session: ICSS_Session; const RPCName: String;
const Args: array of const; const Callback: ICSS_SessionEvents): Integer;
overload;
procedure CallRPC(const Session: ICSS_Session; const RPCName: String; const
Args: array of const); overload;

function ConstToVar(const Args: array of const): OleVariant;
function ListToVar(Strings: TStrings): OleVariant;

implementation

uses

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

210

 MFunctions, Utility;

const
 SUBSCRIPT_DELIMITER = #1;

function CallRPCList(const Session: ICSS_Session; const RPCName: String;
const Args: array of const; Retlist: TStrings): TStrings;
var
 DidCreate: Boolean;
begin
 try
 ShowBusy;
 DidCreate:=RetList=nil;
 if DidCreate
 then RetList:=TStringList.Create;

 try
 Retlist.CommaText:=Session.CallRPCList(RPCName,ConstToVar(Args));
 except
 if DidCreate
 then FreeAndNil(RetList);
 raise;
 end;

 finally
 Result:=RetList;
 ShowBusy(False);
 end;
end;

function CallRPCInt(const Session: ICSS_Session; const RPCName: String;
const Args: array of const): integer;
begin
 try
 ShowBusy;
 Result:=Session.CallRPCInt(RPCName,ConstToVar(Args));
 finally
 ShowBusy(False);
 end;
end;

function CallRPCStr(const Session: ICSS_Session; const RPCName: String;
const Args: array of const): String;
begin
 try
 ShowBusy;
 Result:=Session.CallRPCStr(RPCName,ConstToVar(Args));
 finally
 ShowBusy(False);
 end;
end;

function CallRPCBool(const Session: ICSS_Session; const RPCName: String;
const Args: array of const): Boolean;
begin
 try
 ShowBusy;
 Result:=Session.CallRPCBool(RPCName,ConstToVar(Args));
 finally
 ShowBusy(False);
 end;
end;

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

211

function CallRPCDate(const Session: ICSS_Session; const RPCName: String;
const Args: array of const): TDateTime;
begin
 try
 ShowBusy;
 Result:=Session.CallRPCDate(RPCName,ConstToVar(Args));
 finally
 ShowBusy(False);
 end;
end;

function CallRPCAsync(const Session: ICSS_Session; const RPCName: String;
const Args: array of const; const CallBack: ICSS_SessionEvents): Integer;
begin
 try
 ShowBusy;
 Result:=Session.CallRPCAsync(RPCName,ConstToVar(Args),CallBack,False);
 finally
 ShowBusy(False);
 end;
end;

procedure CallRPC(const Session: ICSS_Session; const RPCName: String; const
Args: array of const);
begin
 try
 ShowBusy;
 Session.CallRPCStr(RPCName,ConstToVar(Args));
 finally
 ShowBusy(False);
 end;
end;

function ConstToVar(const Args: array of const): OleVariant;
{ This converts an array of constants to a variant array of variants
suitable
 for passing to a COM object. Note that the variant array is locked and
 referenced via a pointer to improve performance.
}
type
 TVarArray = array [0..$FFFFFF] of OleVariant;
 PVarArray = ^TVarArray;
var
 i: integer;
 p: PVarArray;
begin
 if High(Args)=-1
 then begin
 Result:=Unassigned;
 exit;
 end;

 Result:=VarArrayCreate([0,High(Args)],varVariant);
 p:=VarArrayLock(Result);

 try
 for i:=0 to High(Args) do
 with Args[i] do begin
 p^[i]:=Unassigned;
 case VType of
 vtInteger: p^[i]:=VInteger;

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

212

 vtBoolean: p^[i]:=Ord(VBoolean);
 vtChar: p^[i]:=VChar;
 vtExtended: p^[i]:=VExtended^;
 vtString: p^[i]:=VString^;
 vtPChar: p^[i]:=VPChar^;
 vtObject: if VObject is TStrings
 then p^[i]:=ListToVar(TStrings(VObject));
 vtWideChar: p^[i]:=VWideChar;
 vtPWideChar: p^[i]:=VPWideChar^;
 vtAnsiString: p^[i]:=AnsiString(VAnsiString);
 vtCurrency: p^[i]:=VCurrency^;
 vtVariant: p^[i]:=VVariant^;
 vtInterface: p^[i]:=IUnknown(VInterface);
 vtWideString: p^[i]:=WideString(VWideString);
 vtInt64: p^[i]:=IntToStr(VInt64^);
 end;
 if VarIsEmpty(p^[i])
 then raise Exception.Create('Unrecognized datatype');
 end;
 finally
 VarArrayUnlock(Result);
 end;
end;

function ListToVar(Strings: TStrings): OleVariant;
{ Convert a TStrings to a variant array with base subscript starting at
one.
 Passes data in format <subscript>~<value>.
 If the TStrings list is empty, returns a null string instead.
 If the TStrings is a TMultList, this call assumes the entries are already
 formatted. Otherwise, the data are automatically formatted.
}
type
 TListType = (ltMult, ltWP, ltOther);
 TVarArray = array [0..$FFFFFF] of WideString;
 PVarArray = ^TVarArray;
var
 i: Integer;
 p: PVarArray;
 ListType: TListType;
begin
 if Strings.Count=0
 then Result:=''
 else try
 if Strings is TMultList
 then ListType:=ltMult
 else if Strings is TWPList
 then ListType:=ltWP
 else ListType:=ltOther;

 Result:=VarArrayCreate([1,Strings.Count],varOleStr);
 p:=VarArrayLock(Result);
 for i:=0 to Strings.Count-1 do
 case ListType of
 ltMult: p^[i]:=WideString(Strings[i]);
 ltWP:
p^[i]:=WideString(IntToStr(i+1)+',0'+SUBSCRIPT_DELIMITER+Strings[i]);
 ltOther:
p^[i]:=WideString(IntToStr(i+1)+SUBSCRIPT_DELIMITER+Strings[i]);
 end;
 finally
 VarArrayUnlock(Result);

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

213

 end;
end;

{ TMultList is used to pass explicitly subscripted data to the broker as a
string
 list. Entries in the string list should be of the format:
<subscript>~<data>
}

function TMultList.Add(const Subscript, Data: String): Integer;
{ This is an overloaded version of the TStrings Add function which is
provided
 to hide the underlying representation of the subscripted data and to
perform
 validity checks on the subscript. An exception is raised if the
subscript is
 null or contains the subscript delimiter.
}
begin
 if Subscript=''
 then raise Exception.Create('Null subscript in RPC call')
 else if Pos(SUBSCRIPT_DELIMITER,Subscript)<>0
 then raise Exception.Create('Invalid subscript in RPC call: '+Subscript);

 Result:=Add(Subscript+SUBSCRIPT_DELIMITER+Data);
end;

function TMultList.Add(const Subscript: String; Data: Integer): Integer;
{ Overloaded form of above to support integer datatypes.
}
begin
 Result:=Add(Subscript,IntToStr(Data));
end;

function TMultList.Add(const Subscript: String; Data: Extended): Integer;
{ Overloaded form of above to support floating point datatypes.
}
begin
 Result:=Add(Subscript,FloatToStr(Data));
end;

function TMultList.Add(const Subscript: array of const; Data: String):
Integer;
{ Overloaded form of above to support string datatypes and subscript passed
as array.
}
begin
 Result:=Add(BuildSubscript(Subscript),Data);
end;

function TMultList.Add(const Subscript: array of const; Data: Extended):
Integer;
{ Overloaded form of above to support floating point datatypes and
subscript passed as array.
}
begin
 Result:=Add(BuildSubscript(Subscript),Data);
end;

function TMultList.Add(const Subscript: array of const; Data: Integer):
Integer;

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

214

{ Overloaded form of above to support integer datatypes and subscript
passed as array.
}
begin
 Result:=Add(BuildSubscript(Subscript),Data);
end;

end.

B.25 Visual Basic Helper Functions
Attribute VB_Name = "RPCUtilities"
Option Explicit

'==
' This function creates an RPC parameter list (variant array)
' from any number of arguments or data types passed to it.
'
' For example, the following code creates an RPC parameter
' list from 5 totally different data types, then calls
' CallRPCList.
' dim params as variant
' params = CreateRPCParamList("abc", 1, today, 4/5, x)
' result = gSession.CallRPCText("Some RPC Name", params)
'==
Public Function CreateRPCParamList(ParamArray params() As Variant) As
Variant
 ' Passed parameters are automatically converted to variants array
members
 CreateRPCParamList = params
End Function

'==
' This function creates a single, pipe-delimited RPC parameter
' string from any number of arguments or data types passed to it.
'
' For example:
' dim params as string
' params = CreateRPCParamString("abc", 1, today, 4/5, x)
' result = gSession.CallRPCText("Some RPC Name", params)
'==
Public Function CreateRPCParamString(ParamArray params() As Variant) As
String
 Dim i As Integer, result As String

 result = ""
 For i = 0 To UBound(params)
 If i > 0 Then result = result & "|"
 result = result & params(i)
 Next i

 CreateRPCParamString = result
End Function

'==
' These helper functions makes it easier to parse data that is
' passed back from CallRPCText and CallRPCList. It parses the
' string using the appropriate delimiter, producing a string
' array that can then be accessed directly.
'

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Developer Tutorial
April 2020

215

' For Example:
' dim result as string, ResultArray() as string
' result = gSession.CallRPCText("Some RPC Name", params)
' ResultArray=ParseRPCText(result)
'
' msg = UBound(ResultArray) + 1 & " results returned:" & vbCrLf
' For i = LBound(ResultArray) To UBound(ResultArray)
' msg = msg & vbCrLf & ResultArray(i)
' Next i
'==

Public Function ParseRPCText(str As String) As String()
 ParseRPCText = Split(str, vbCrLf)
End Function

Public Function ParseRPCList(str As String) As String()
 Dim QuoteChar As String, tmp As String
 Dim quote As Integer, quote2 As Integer, comma As Integer
 Dim count As Integer, ResultArray() As String
 Dim piece As String, index As Integer

 tmp = str & ","
 QuoteChar = Chr(34)
 count = 0

 Do Until tmp = ""
 comma = InStr(1, tmp, ",")
 quote = InStr(1, tmp, QuoteChar)
 If quote = 0 And comma = 0 Then
 piece = tmp
 tmp = ""
 ElseIf quote < comma Then
 quote2 = InStr(quote + 1, tmp, QuoteChar)
 If quote2 = 0 Then quote2 = Len(tmp) + 1
 piece = Mid(tmp, quote + 1, quote2 - quote - 1)
 If Mid(tmp, quote2 + 1, 1) = "," Then quote2 = quote2 + 1
 tmp = Mid(tmp, quote2 + 1)
 Else
 piece = Left(tmp, comma - 1)
 tmp = Mid(tmp, comma + 1)
 End If

 index = count
 count = count + 1
 ReDim Preserve ResultArray(index)
 ResultArray(index) = Trim(piece)
 Loop
 ParseRPCList = ResultArray
End Function

Public Function ParseRPCResult(str As String, delim As String) As String()
 ' This function is an expanded version of the previous ParseRPC
routines
 ' and allows the developer to specify the delimiting character.
 ParseRPCResult = Split(str, delim)
End Function

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Glossary
April 2020

216

Glossary

Application Context
This is an entry in the Option file that provides access control at the client
application level. The Broker passes this information on the initial connection
request. A user must have access to the given option to establish a broker
connection.

Broker
Software that marshals remote procedure requests between a client application
and a remote host. Also known as RPC Broker.

Common Context Object Workgroup
An HL7-sponsored workgroup responsible for specifying standards for
context exchange among applications.

Context Object
A specialized service that maintains a common context for a specific entity
(e.g., patient or encounter) and supports the context change event interface.

Daemon
A background process that performs a specified service.

GPRA
Government Performance and Results Act.

Listener
A daemon that monitors a specified TCP port and handles communications
between the client and remote host.

Primary Listener Daemon
The daemon that listens for the initial connection request. The primary listener
daemon immediately passes the connection to a secondary listener daemon.

Remote Procedure
A procedure residing on a remote host that may be invoked by a client process
through a broker intermediary.

Remote Procedure Call
The act of invoking a remote procedure. This is often used interchangeably
with the term “Remote Procedure,” especially using its abbreviated form
“RPC.”

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Glossary
April 2020

217

RPC Context
This is an entry in the Option file that provides access control at the remote
procedure level. The Broker passes this information with each remote
procedure request. A user must have access to the given option to invoke the
associated remote procedure.

Secondary Listener Daemon
The daemon that handles communication interchange between the client and
remote host processes.

Session Context
This refers to the persistent state information associated with an establish
session.

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Acronym List
April 2020

218

Acronym List

Acronym Meaning
API Application Programming Interface
CCOW Clinical Context Object Workgroup
CMS Component Management Service
CSL Communication Service Layer
CSS Component Support Services
GUID Global Unique Identifier
IHS Indian Health Service
RPC Remote Procedure Call
RPMS Resource and Patient Management System
VIM Visual Interface Manager

Electronic Health Record (EHR) Version 1.1

Technical Manual Volume 4 Contact Information
April 2020

219

Contact Information

If you have any questions or comments regarding this distribution, please contact the
IHS IT Service Desk.

Phone: (888) 830-7280 (toll free)
Web: http://www.ihs.gov/helpdesk/
Email: itsupport@ihs.gov

http://www.ihs.gov/helpdesk/
mailto:itsupport@ihs.gov

	Table of Contents
	Document Revision History
	Preface
	78.0 Super-Bills
	78.1 Introduction
	78.2 Architecture and Business Process Overview
	78.3 Implementation and Maintenance
	78.4 Routine Descriptions
	78.5 File List
	78.5.1 BGO CPT Preferences (# 90362.31)
	78.5.1.1 MANAGERS subfile (#90362.313)
	78.5.1.2 CPT subfile (#90362.312)
	78.5.1.3 ASSOCIATIONS subfile (#90362.3121)

	78.6 Cross References
	78.7 Exported Options
	78.8 Exported Security Keys
	78.9 Exported Protocols
	78.10 Exported Parameters
	78.11 Exported Mail Groups
	78.12 Callable Routines
	78.12.1 RPC: BGOCPTP3 STORE
	78.12.2 RPC: BGOCPTPR CLONE
	78.12.3 RPC: BGOCPTPR CLONEOTH
	78.12.4 RPC: BGOCPTPR DELASSOC
	78.12.5 RPC: BGOCPTPR GETASSOC
	78.12.6 RPC: BGOCPTPR GETCATS
	78.12.7 RPC: BGOCPTPR GETITEMS
	78.12.8 RPC: BGOCPTPR GETLNAME
	78.12.9 RPC: BGOCPTPR GETMGRS
	78.12.10 RPC: BGOCPTPR OTHCATS
	78.12.11 RPC: BGOCPTPR QUERY
	78.12.12 RPC: BGOCPTPR SETACHK
	78.12.13 RPC: BGOCPTPR SETASSOC
	78.12.14 RPC: BGOCPTPR SETCAT
	78.12.15 RPC: BGOCPTPR SETFREQ
	78.12.16 RPC: BGOCPTPR SETITEM
	78.12.17 RPC: BGOCPTPR SETMGR
	78.12.18 RPC: BGOCPTPR SETNAME
	78.12.19 RPC: BGOCPTPR VSTASSOC

	78.13 External Relations
	78.14 Internal Relations
	78.15 Archiving and Purging
	78.16 Components
	78.17 Properties

	79.0 Family History
	79.1 Introduction
	79.2 Architecture and Business Process Overview
	79.3 Implementation and Maintenance
	79.4 Routine Descriptions
	79.5 File List
	79.6 Cross References
	79.7 Exported Options
	79.8 Exported Security Keys
	79.9 Exported Protocols
	79.10 Exported Parameters
	79.11 Exported Mail Groups
	79.12 Callable Routines
	79.12.1 RPC: BGOFHX DEL
	79.12.2 RPC: BGOFHX GET
	79.12.3 RPC: BGOFHX ICDLKUP
	79.12.4 RPC: BGOFHX SET

	79.13 External Relations
	79.14 Internal Relations
	79.15 Archiving and Purging
	79.16 Components
	79.17 Properties

	80.0 Eye Exam
	80.1 Introduction
	80.2 Architecture and Business Process Overview
	80.3 Implementation and Maintenance
	80.4 Routine Descriptions
	80.5 File List
	80.6 Cross References
	80.7 Exported Options
	80.8 Exported Security Keys
	80.9 Exported Protocols
	80.10 Exported Parameters
	80.11 Exported Mail Groups
	80.12 Callable Routines
	80.12.1 RPC: BGOVEYE DEL
	80.12.2 RPC: BGOVEYE GET
	80.12.3 RPC: BGOVEYE GETFLD
	80.12.4 RPC: BGOVEYE SET
	80.12.5 RPC: BGOVEYE1 VAL

	80.13 External Relations
	80.14 Internal Relations
	80.15 Archiving and Purging
	80.16 Components
	80.17 Properties

	81.0 Anticoagulation Goal
	81.1 Introduction
	81.2 Architecture and Business Process Overview
	81.3 Implementation and Maintenance
	81.4 Routine Descriptions
	81.5 File List
	81.6 Cross References
	81.7 Exported Options
	81.8 Exported Security Keys
	81.9 Exported Protocols
	81.10 Exported Parameters
	81.11 Exported Mail Groups
	81.12 Callable Routines
	81.12.1 RPC: BGOVCOAG DEL
	81.12.2 BGOVCOAG GET
	81.12.3 RPC: BGOVCOAG SET

	81.13 External Relations
	81.14 Internal Relations
	81.15 Archiving and Purging
	81.16 Components
	81.17 Properties

	82.0 Infant Feeding
	82.1 Introduction
	82.2 Architecture and Business Process Overview
	82.3 Implementation and Maintenance
	82.4 Routine Descriptions
	82.5 File List
	82.6 Cross References
	82.7 Exported Options
	82.8 Exported Security Keys
	82.9 Exported Protocols
	82.10 Exported Parameters
	82.11 Exported Mail Groups
	82.12 Callable Routines
	82.12.1 RPC: BGOVIF DEL
	82.12.2 RPC: BGOVIF GET
	82.12.3 RPC: BGOVIF SET

	82.13 External Relations
	82.14 Internal Relations
	82.15 Archiving and Purging
	82.16 Components
	82.17 Properties

	83.0 Reproductive Factors
	83.1 Introduction
	83.2 Architecture and Business Process Overview
	83.3 Implementation and Maintenance
	83.4 Routine Descriptions
	83.5 File List
	83.6 Cross References
	83.7 Exported Options
	83.8 Exported Security Keys
	83.9 Exported Protocols
	83.10 Exported Parameters
	83.11 Exported Mail Groups
	83.12 Callable Routines
	83.12.1 RPC: BGOREP DEL
	83.12.2 RPC: BGOREP GET
	83.12.3 RPC: BGOREP SET
	83.12.4 RPC: BGOREP1 CONTALL
	83.12.5 RPC: BGOREP1 DELCONT
	83.12.6 RPC: BGOREP1 SETCONT

	83.13 External Relations
	83.14 Internal Relations
	83.15 Archiving and Purging
	83.16 Components
	83.17 Properties

	84.0 Suicide Form
	84.1 Introduction
	84.2 Architecture and Business Process Overview
	84.3 Implementation and Maintenance
	84.4 Routine Descriptions
	84.5 File List
	84.6 Cross References
	84.7 Exported Options
	84.8 Exported Security Keys
	84.9 Exported Protocols
	84.10 Exported Parameters
	84.11 Exported Mail Groups
	84.12 Callable Routines
	84.12.1 RPC: AMHBH SUICIDE FORM DSP
	84.12.2 RPC: BEHOAMH FORMIENS

	84.13 External Relations
	84.14 Internal Relations
	84.15 Archiving and Purging
	84.16 Components
	84.17 Properties

	85.0 SNOMED Service
	85.1 Introduction
	85.2 Architecture and Business Process Overview
	85.3 Implementation and Maintenance
	85.4 Routine Descriptions
	85.5 File List
	85.6 Cross References
	85.7 Exported Options
	85.8 Exported Security Keys
	85.9 Exported Protocols
	85.10 Exported Parameters
	85.11 Exported Remote Procedures
	85.12 Exported Mail Groups
	85.13 Callable Routines
	85.14 External Relations
	85.15 Internal Relations
	85.16 Archiving and Purging
	85.17 Components
	85.17.1 Execute
	85.17.2 Execute_2
	85.17.3 ExecuteSubList
	85.17.4 ExecuteSubList_2
	85.17.5 ExecuteICD9toSNMD

	85.18 Properties

	86.0 eRx Queue Service
	86.1 Introduction
	86.2 Architecture and Business Process Overview
	86.3 Implementation and Maintenance
	86.4 Routine Descriptions
	86.5 File List
	86.6 Cross References
	86.7 Exported Options
	86.8 Exported Security Keys
	86.9 Exported Protocols
	86.10 Exported Parameters
	86.11 Exported Remote Procedures
	86.12 Exported Mail Groups
	86.13 Callable Routines
	86.14 External Relations
	86.15 Internal Relations
	86.16 Archiving and Purging
	86.17 Components
	86.17.1 Execute
	86.17.2 ViewMailbox

	86.18 Properties

	87.0 eRx QueueView
	87.1 Introduction
	87.2 Architecture and Business Process Overview
	87.3 Implementation and Maintenance
	87.4 Routine Descriptions
	87.5 File List
	87.6 Cross References
	87.7 Exported Options
	87.8 Exported Security Keys
	87.9 Exported Protocols
	87.10 Exported Parameters
	87.11 Exported Mail Groups
	87.12 Callable Routines
	87.13 External Relations
	87.14 Internal Relations
	87.15 Archiving and Purging
	87.16 Components
	87.16.1 Properties

	88.0 Designated Primary Provider
	88.1 Introduction
	88.2 Architecture and Business Process Overview
	88.3 Implementation and Maintenance
	88.4 Routine Descriptions
	88.5 File List
	88.6 Cross References
	88.7 Exported Options
	88.8 Exported Security Keys
	88.9 Exported Protocols
	88.10 Exported Parameters
	88.11 Exported Mail Groups
	88.12 Callable Routines
	88.12.1 RPC: BEHOPTPC GETBDP
	88.12.2 RPC: BEHOPTPC GETCATS
	88.12.3 RPC: BEHOPTPC SETBDP

	88.13 External Relations
	88.14 Internal Relations
	88.15 Archiving and Purging
	88.16 Components
	88.17 Properties

	89.0 Level of Intervention (PHN)
	89.1 Introduction
	89.2 Architecture and Business Process Overview
	89.3 Implementation and Maintenance
	89.4 Routine Descriptions
	89.5 File List
	89.6 Cross References
	89.7 Exported Options
	89.8 Exported Security Keys
	89.9 Exported Protocols
	89.10 Exported Parameters
	89.11 Exported Mail Groups
	89.12 Callable Routines
	89.12.1 RPC: BGOVPHN CHKPRV
	89.12.2 RPC: BGOVPHN DEL
	89.12.3 RPC: BGOVPHN GET
	89.12.4 RPC: BGOVPHN SET

	89.13 External Relations
	89.14 Internal Relations
	89.15 Archiving and Purging
	89.16 Components
	89.17 Properties

	90.0 Direct Mail Button
	90.1 Introduction
	90.2 Architecture and Business Process Overview
	90.3 Implementation and Maintenance
	90.4 Routine Descriptions
	90.5 File List
	90.6 Cross References
	90.7 Exported Options
	90.8 Exported Security Keys
	90.9 Exported Protocols
	90.10 Exported Parameters
	90.11 Exported Mail Groups
	90.12 Callable Routines
	90.12.1 RPC: BEHODMA PTEMADR

	90.13 External Relations
	90.14 Internal Relations
	90.15 Archiving and Purging
	90.16 Components

	91.0 EPCS Credentialing
	91.1 Introduction
	91.2 Architecture and Business Process Overview
	91.3 Implementation and Maintenance
	91.4 Routine Descriptions
	91.5 File List
	91.5.1 BEH EPCS OE/RR PARAMETERS DATA (#90460.09)
	91.5.2 BEHO EPCS INCIDENT REPORT VARIABLES (#90460.13)
	91.5.1 BEH EPCS AUDIT LOG MESSAGES (#90460.14)

	91.6 Cross References
	91.7 Exported Options
	91.8 Exported Security Keys
	91.9 Exported Protocols
	91.10 Exported Parameters
	91.11 Exported Remote Procedures
	91.12 Exported Mail Groups
	91.13 Callable Routines
	91.13.1 $$VRFYPHSH^BEHOEP3(.INP,PROVIEN)
	91.13.2 RPC: BEHOEP1 ENTRYEP
	91.13.3 RPC: BEHOEP1 GETPUBKY
	91.13.4 RPC: BEHOEP1 LDPNDNGV
	91.13.5 RPC: BEHOEP1 LOACREAD
	91.13.6 RPC: BEHOEP1 PROV
	91.13.7 RPC: BEHOEP1 READP200
	91.13.8 RPC: BEHOEP2 DELPNDVF
	91.13.9 RPC: BEHOEP2 ENTRYLA
	91.13.10 RPC: BEHOEP2 INPTRANS
	91.13.11 RPC: BEHOEP2 LDPNDGLA
	91.13.12 RPC: BEHOEP2 PENDPROF
	91.13.13 RPC: BEHOEP2 PROVPRFV
	91.13.14 RPC: BEHOEP3 AUDTEVTS
	91.13.15 RPC: BEHOEP5 ADDCHK
	91.13.16 RPC: BEHOEP5 VRFYPHSH

	91.14 External Relations
	91.15 Internal Relations
	91.16 Archiving and Purging
	91.17 Components

	92.0 Two-Factor Authentication Service
	92.1 Introduction
	92.2 Architecture and Business Process Overview
	92.3 Implementation and Maintenance
	92.4 Routine Descriptions
	92.5 File List
	92.5.1 BEH EPCS CERTIFICATE STATUS (#90460.12)
	92.5.2 BEH EPCS CRL DISTRIBUTION POINTS (#90460.15)

	92.6 Cross References
	92.7 Exported Options
	92.8 Exported Security Keys
	92.9 Exported Protocols
	92.10 Exported Parameters
	92.11 Exported Remote Procedures
	92.12 Exported Mail Groups
	92.13 Callable Routines
	92.13.1 EN^BEHOEPS
	92.13.2 EN1^BEHOEPS
	92.13.3 RXVER^BEHOEPS
	92.13.4 RPC: BEHOEP7 AUDITSVC
	92.13.5 RPC: BEHOEP7 BUSASVC
	92.13.6 RPC: BEHOEP7 CERTSTAT
	92.13.7 RPC: BEHOEP7 CHKCRTST
	92.13.8 RPC: BEHOEP7 GETCERT
	92.13.9 RPC: BEHOEP7 KEYHLDRS
	92.13.10 RPC: BEHOEP7 LISTCERT
	92.13.11 RPC: BEHOEP7 SETCERT
	92.13.12 RPC: BEHOEP7 UTC
	92.13.13 RPC: BEHOEPS GORDIDIG
	92.13.14 RPC: BEHOEPS STORDSIG

	92.14 External Relations
	92.15 Internal Relations
	92.16 Archiving and Purging
	92.17 Components
	92.18 Templates

	93.0 Surescripts Mailbox
	93.1 Introduction
	93.2 Architecture and Business Process Overview
	93.3 Implementation and Maintenance
	93.4 Routine Descriptions
	93.5 File List
	93.6 Cross References
	93.7 Exported Options
	93.8 Exported Security Keys
	93.9 Exported Protocols
	93.10 Exported Parameters
	93.11 Exported Mail Groups
	93.12 Callable Routines
	93.12.1 RPC: APSPESM DENIED
	93.12.2 RPC: APSPESM GETITM
	93.12.3 RPC: APSPESM ORDERS
	93.12.4 RPC: APSPESM REQUESTS
	93.12.5 RPC: APSPESM SSMBCNT
	93.12.6 RPC: APSPESM1 RPTRPC

	93.13 External Relations
	93.14 Internal Relations
	93.15 Archiving and Purging
	93.16 Components
	93.16.1 Properties
	Appendix A: System Requirements
	A.1 Minimum System Requirements
	A.1.1 Windows – RPMS server
	A.1.2 AIX – RPMS server
	A.1.3 Windows – Application server
	A.1.4 Client Workstations

	Appendix B: Developer Tutorial
	B.1 Introduction
	B.2 Using Debug Mode
	B.3 Using the Trace Log
	B.4 About Component Support Services
	B.5 About COM and ActiveX
	B.6 Component Types
	B.7 Component Registration
	B.7.1 COM Registration
	B.7.2 Framework Registration
	B.7.3 Runtime Registration

	B.8 Naming Conventions
	B.9 Multiple vs. Single Instancing
	B.10 Remote Procedure Calls
	B.10.1 Create the M Routine
	B.10.2 Create a Remote Procedure Definition
	B.10.3 Register the Remote Procedure
	B.10.4 Calling a Remote Procedure
	B.10.5 Synchronous Calls
	B.10.5.1 RPC Methods
	B.10.5.2 Specifying the Remote Procedure
	B.10.5.3 Specifying the Parameter List
	B.10.5.4 Specifying Array Parameters
	B.10.5.5 Handling Exceptions

	B.10.6 Asynchronous Calls
	B.10.6.1 Calling the Remote Procedure Asynchronously
	B.10.6.2 Implementing the Callback Interface
	B.10.6.3 Aborting a Pending Call

	B.11 Context Management
	B.11.1 Callbacks
	B.11.2 Requesting a Context Change

	B.12 Events
	B.12.1 Defining an Event
	B.12.2 Firing Events: Local vs. Remote
	B.12.3 Receiving Events: Callbacks
	B.12.4 Hierarchical Events

	B.13 Creating Visual Components with Delphi
	B.13.1 Creating the Active Form Project
	B.13.2 Designing the Form
	B.13.3 Accessing the Session Object
	B.13.4 Accessing the Patient Context Object
	B.13.5 Calling a Remote Procedure in Synchronous Mode
	B.13.6 Testing the Component
	B.13.7 Subscribing to Patient Context Changes
	B.13.8 Calling a Remote Procedure in Asynchronous Mode
	B.13.9 Firing an Event
	B.13.10 Subscribing and Responding to an Event
	B.13.11 Summary

	B.14 Creating Visual Components with Visual Basic
	B.14.1 Creating the ActiveX Control Project
	B.14.2 Designing the Form
	B.14.3 Accessing the Session Object
	B.14.4 Accessing the Patient Context Object
	B.14.5 Calling a Remote Procedure in Synchronous Mode
	B.14.6 Testing the Component
	B.14.7 Subscribing to Patient Context Changes
	B.14.8 Calling a Remote Procedure in Asynchronous Mode
	B.14.9 Firing an Event
	B.14.10 Subscribing and Responding to an Event
	B.14.11 Summary

	B.15 Creating Visual Components with C#
	B.15.1 Creating the Windows Control Project
	B.15.2 Accessing the Session Object
	B.15.3 Accessing the Patient Context Object
	B.15.4 Calling a Remote Procedure in Synchronous Mode
	B.15.5 Testing the Component
	B.15.6 Subscribing to Patient Context Changes
	B.15.7 Calling a Remote Procedure in Asynchronous Mode
	B.15.8 Firing an Event
	B.15.9 Subscribing and Responding to an Event
	B.15.10 Summary

	B.16 Creating Services
	B.17 Creating Services with Delphi
	B.17.1 Creating the Project
	B.17.2 Creating the Service Object
	B.17.3 Accessing the Session Object
	B.17.4 Modifying the Interface
	B.17.5 Providing the Implementation
	B.17.6 Registering the Service
	B.17.7 Accessing the Service
	B.17.8 Summary
	B.17.9 Creating Services with Visual Basic
	B.17.10 Creating the Project
	B.17.11 Accessing the Session Object
	B.17.12 Modifying the Interface
	B.17.13 Registering the Service
	B.17.14 Accessing the Service
	B.17.15 Summary

	B.18 Creating Services with C#
	B.18.1 Creating the Project
	B.18.2 Accessing the Session Object
	B.18.3 Modifying the Interface
	B.18.4 Registering the Service
	B.18.5 Accessing the Service
	B.18.6 Summary

	B.19 Deploying Components
	B.20 Version Control
	B.20.1 Version Numbers
	B.20.2 Which Version
	B.20.3 Registering Version Information
	B.20.4 Side-by-Side Versioning
	B.20.5 Imbedding Version Information

	B.21 Handling Dependencies
	B.22 Generating KIDS Builds
	B.23 Pitfalls and Special Techniques
	B.23.1 Component Initialization
	B.23.2 Component Destruction
	B.23.3 Other Containers
	B.23.4 Focus Issues
	B.23.5 Deferring Data Fetches
	B.23.6 Intercomponent Communication
	B.23.7 Creating Trace Log Entries
	B.23.8 Embedding Licensed Controls
	B.23.9 Forced Context Changes
	B.23.10 Integrating Help Content

	B.24 Delphi Helper Functions
	B.25 Visual Basic Helper Functions

	Glossary
	Acronym List
	Contact Information

