Nitrogen Removal in Ponds is not well understood.

“Various investigators have suggested: algal uptake, sludge deposition, adsorption by bottom soils, nitrification/denitrification, and loss of ammonia as a gas to the atmosphere (volatilization). ...a combination of factors may be responsible, with the dominant mechanism under favorable conditions being losses to the atmosphere.” (WEF 2010, pg. 278)
A Wide Range of WW Treatment Solutions

Activated Sludge (0.15 days)
Oxidation Ditch (0.75 days)
Extended Aeration (1 day)
Aerated Ponds (7 days)
Mixed Ponds (3 days)
Passive Ponds (40+ days)

KEY ISSUES AFFECTING COMMUNITY RESOURCES

- Sludge Production: Large, Small
- Effluent Quality: Consistent, Variable
- Power Required: Large, Small
- Land Area Required: Small, Large
- O & M Effort Needed: Large, Small

Range of Technology Considered Today

Hydraulic Retention Time
Low
High

Good Nitrogen Removal

What do you do with the solids?
Huge Cost!
Volatilization

Ammonia Equilibrium

according to pH in Water

Distribution of ammonia (NH₃) & ammonium ion (NH₄⁺) as a function of pH

Percent NH₄⁺

Percent NH₃

pK = 9.25
Volatilization

Ammonia Fraction Varies
Depending on pH and Temperature

- Ammonia (NH₃) is gaseous and will volatize
- Ammonium (NH₄⁺) is ionically held in solution
- High rate ammonia air strippers are usually designed for use on water with a pH > 10.
- In a pond volatilization is slow. 80% nitrogen removal requires over 200 days hydraulic retention time (HRT) [Reed 2003, Table A.49]

Fraction of Ammonia in NH₃ Form
as a function of temperature and pH (Tchobanoglous 1987, Figure 12.40)
When it comes to the volatilization of ammonia, algae are our friends.

Carbon dioxide consumed by actively photosynthesizing algae exceed that produced by organic degradation, resulting in an increase in pH.

Alkaline pH shifts ammonia/ammonium equilibrium towards ammonia.

The volatilization of ammonia to the atmosphere depends on the aeration, mixing and temperature, in addition to pH.
Volatilization

Proposed Empirical Relationships

to Predict Ammonia Concentrations

Model 1: \(N_e := N_o \cdot \exp(-k) \cdot T^{[t+60.6 \cdot (pH-6.6)]} \)

Model 2: \(N_e := N_o \cdot \left[\frac{1}{1 + t \cdot (0.000576T - 0.0002\cdot \exp(1.080 - 0.042T) \cdot (pH - 6.6))} \right] \)

- \(N_e \) = effluent total nitrogen (mg/L)
- \(N_o \) = influent total nitrogen (mg/L)
- \(k_1 \) = temperature-dependent rate constant (day\(^{-1}\), pH\(^{-1}\) = \(k_{20}(\theta)T^{-20} \)
- \(\theta = 1.039 \)
- \(T \) = water temperature
- \(k_{20} = 0.0064 \)
- \(t \) = time (days)

Predicted versus actual effluent nitrogen, Peterborough, NH

From EPA Study (Reed 1985)
Biological Nitrogen Removal
3 Steps
Only one step readily occurs in ponds.

- Normally only the first step in this process "hydrolysis" occurs in ponds.
- A Pond’s primary means of removing nitrogen is through volatilization of ammonia.
- Therefore, in most cases, lagoons are poor at removing nitrogen.
- However, lagoons can be a part of a good biological nitrogen removal system.
Nitrifiers are autotrophs, deriving their energy from ammonia and nitrites, and their carbon from carbon dioxide.

- They do not compete well with organic degrading bacteria (heterotrophs) for things like nutrients and oxygen.
- They have relatively low energy, slow metabolisms and are more affected by adverse conditions/environments than organic degrading bacteria.

Competition from heterotrophs is not unique to pond systems.

But some of the adverse conditions/environments found in ponds are.

Consequently, specific attention must be paid to the factors that influence the behavior of nitrifiers if nitrification is to be achieved in lagoons.
Biological Nitrification
Adverse Environments
Conditions in Pond that Limit Nitrification

- Food/Microorganism Contact – Ponds provide insufficient opportunities for food and microorganisms to come into contact.
 - Ponds have low MLSS (often between 250 and 500 mg/L).
 - Ponds have poorly mixed water columns.

- Dissolved Oxygen – Ponds have uneven aeration throughout their water columns, including areas with very low dissolved oxygen.

- pH and Alkalinity – Ponds, usually due to local environmental influences, can have acidic pH and low alkalinity.

- Temperature – Ponds are uncovered and exposed to the elements, subjecting them to cold temperatures. Ponds can ice over in winter.

- Limit Toxic Materials – As with any wastewater management system ponds can be subjected to toxic discharges. (Toxic discharges into wastewater systems is not discussed here. See other sources for a discussion e.g. Mectalf and Eddy.)
Biological Nitrification
pH, Alkalinity, & Temperature
Favorable Ranges

- **pH & Alkalinity; Biological Nitrification**
 - Is enhanced at higher pH’s; 7.5 to 8.5 is ideal
 - Is drastically reduced when pH < 7.2
 - Produces acids and consumes about 7 lbs. of alkalinity for each 1 lb. of ammonia converted
 - Requires sufficient alkalinity to buffer the acids produced
 - Algae trend ponds alkaline

- **Temperature**
 - Optimal when between 20°C and 35°C
 - Little occurs below 7°C
Biological Nitrification Temperature Affects

Deming, NM - WWTP

TKN varies with season. Nitrate peaks alternate or lag with TKN.
Biological Nitrification
Dissolved Oxygen
Stoichiometric Requirements

- Whereas only 1 lb. of O_2 is required to remove the organics that cause 1 lb. of CBOD (design for about 1.5 lb. O_2 per lb. of CBOD),
- Over 4 lbs. of O_2 are required to convert 1 lb. of ammonia to nitrate (design for about 4.6 lbs. O_2 per lb. of TKN),
- The concentration of O_2 in water should be above 2 mg/L.
- About 7 lbs of alkalinity are consumed.

Normally, unless you’re using very long HRTs, this requires mechanical aeration.

$$\text{NH}_4^+ + O_2 + CO_2 \rightarrow \text{New Cells} + NO_3^- + H_2O + H^+$$

4.25 lbs.

1 lbs. 0.08 lbs. 0.16 lbs.

Consumes 7.07 lbs. of Alkalinity

Metcalf & Eddy, 2003 – Eq. 7-91
Biological Nitrification

Aeration/Mixing Power

Floating Surface Aerators

To determine the amount of mechanical aeration required:

1. Determine the rate at which oxygen will be required to convert the incoming organics to biomass – 1.5 lbs. O_2 per lb. incoming CBOD$_5$

2. Determine the rate at which oxygen will be required to convert the ammonia produced to nitrates (nitrification). - Use 4.6 lbs. O_2 per lb. ammonia that will be generated

3. Add the organic conversion and the nitrification oxygen requirements together to determine the total lbs. oxygen required per hour.

4. Divide the total oxygen required by the applied aeration rate of a selected aerator to determine the horsepower needed.

5. Select individual aerators that can be spaced on the pond for good mixing-aeration throughout and provide the total horsepower needed.

<table>
<thead>
<tr>
<th>Applied Mixing (Power required for complete solids suspension)</th>
<th>Applied Aeration*</th>
<th>Aerator Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>135 hp/Mgal</td>
<td>2.5 to 3.5 lbs O_2/hr</td>
<td>Slow Speed</td>
</tr>
<tr>
<td></td>
<td>Use 3.0 for preliminary sizing.</td>
<td></td>
</tr>
<tr>
<td>30 hp/Mgal</td>
<td>1.5 to 2.5 lbs O_2/hr</td>
<td>High Speed</td>
</tr>
<tr>
<td></td>
<td>Use 2.0 for preliminary sizing.</td>
<td></td>
</tr>
<tr>
<td>10 hp/Mgal</td>
<td>1.0 to 2.0 lbs O_2/hr</td>
<td>Aspirating</td>
</tr>
<tr>
<td></td>
<td>Use 1.5 for preliminary sizing.</td>
<td></td>
</tr>
</tbody>
</table>

*Varies – Check with the manufacturer
Aeration & Mixing
Floating Surface Aerators
3 Main Types

High Speed

Low Speed

Aspirating
Biological Nitrification
Food & Microorganism Contact
Using the Right Tools

Provide more opportunity for food & microorganisms to come into contact.

- Use very long HRTs (> 40 days).
- Prevent short-circuiting.
 - Use strategic pond configurations (e.g. series instead of parallel), including careful placement of inlets and outlets.
 - Use baffles.
- Increase mixing with mechanical aerators.

This is costly and allows algae to propagate. Algae are counter productive to meeting TSS requirements.
Biological Nitrification Mixing Power

High Speed Surface Aerators

<table>
<thead>
<tr>
<th>Applied Mixing/Aeration Power*</th>
<th>Solids Suspension Regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 7.5 hp/Mgal (1.5 kW/1000m³)</td>
<td>Minimal Suspension: Particulate organics settles out of solution and are stabilized on pond bottom. Only soluble organics in the water column.</td>
</tr>
<tr>
<td>Between 7.5-15 hp/Mgal (1.5-3 kW/1000m³)</td>
<td>Partial Suspension: Most particles settle to pond bottom. Concentration of particles varies throughout pond. Soluble, together with some particulate organics, are treated in water column.</td>
</tr>
<tr>
<td>Between 15-30 hp/Mgal (3-6 kW/1000m³)</td>
<td>Substantial Suspension: Large solids settle and are not resuspended. Uniform concentration of other particles is maintained throughout pond. Both soluble and particulate organics are treated in the water column.</td>
</tr>
<tr>
<td>Greater than 30 hp/Mgal (6 kW/1000m³)</td>
<td>Complete Suspension: All solids are suspended uniformly throughout pond. Both solid and soluble BOD is treatment in water column.</td>
</tr>
</tbody>
</table>

*Varies – check with the manufacturer
Classification of Wastewater Ponds

Treatment Regimes

Based on Energy Applied
Classification of Wastewater Ponds
HRT & Mixing Power
Solids-suspended Pond for a Small Community

High-speed Floating Aerators
(1,000 people generating ≈80 gpcd of wastewater)

100 hp Required for Complete Solids Suspension
40 days HRT

Days
0 50 100 150 200 250 300
Horsepower
0 100 200 300 400 500 600 700

Smith Engineering Company

100 days HRT
When large amounts of organics (food) are present, large numbers of heterotrophs (organic degrading microorganisms) exist and out-compete Nitrifiers for nutrients and oxygen. Therefore you must reduce the number of heterotrophs in solution to allow nitrifies to prosper. You can do this by:

- **Use long hydraulic retention times (HRTs).** After 36 hours most of the readily available organics will have been depleted.
 - Solids-suspended Pond - 5 to 7 days HRT
 - Aerated Pond - 10 - days HRT
 - Passive Pond - 240+ days HRT

- **Prevent short-circuiting.** Short HRTs caused by short-circuiting allow heterotrophs to exist through to pond outlets.
 - Strategically locate inlets/outlets.
 - Install baffles.
 - Use ponds in series.

- **Use separate reactors.** Deplete readily available organics in a primary pond and nitrify in a subsequent reactor or pond where organics and heterotroph concentrations are smaller. Attached growth reactors (biotowers, MBBRs, and sand filters etc.) are particularly effective.
Nitrification Problems

Facultative and Aerated Ponds

Pond Effluents are High in Ammonia

- Influent organic nitrogen gets converted to ammonia via hydrolysis
- But... nitrification (conversion of ammonia to nitrates does) does not occur
- Reasons why nitrification does not occur:
 - Too many organics remain in suspension
 - Inadequate oxygen in the water column
 - Inadequate contact between nitrifying organisms and ammonia in solution
 - Low MLSS
 - Poor mixing and/or short-circuiting
 - Winter temperatures cause poor seasonal performance
 - Biomass assimilated nitrogen is re-released from sludge
Facultative ponds can be either mechanically assisted or passive. The particular pond shown is passive; there is no mechanical aeration/mixing.
Aerated Pond Schematic

- Sun
- Wastewater
- New Cells
- Settled Solids
- Dead Cells
- Algae
- New Cells
- Bacteria
- CO₂
- NH₃
- PO₄⁻³
- Aerated Water Column
- Organics
- acids & alcohols
- sludge
- Anaerobic Layer
- Aerobic Layer
- Bottom Liner
- H₂S + 2O₂
- H₂SO₄ (No odor)
- CH₄ · H₂S
Nitrification Problems

Solids-suspended Ponds

Pond Effluents are High in Ammonia

- Influent organic nitrogen gets converted to ammonia via hydrolysis
- Large amounts of ammonia is converted to nitrate ions.
- Reasons why nitrification might not be as robust as you’d like:
 - Too many organics remain in suspension
 - Inadequate oxygen in the water column
 - Inadequate contact between nitrifying organisms and ammonia in solution
 - Biomass assimilated nitrogen is re-released from sludge
 - Winter temperatures cause poor seasonal performance
Nitrification Problems

Dual-Powered Multi-Cellular (DPMC) Ponds*

Pond Effluents are High in Ammonia

* As proposed by Rich (1999)

Plan

Section

<table>
<thead>
<tr>
<th>Element</th>
<th>Variations in Composition of Microbial Cells, dry weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>45 – 55</td>
</tr>
<tr>
<td>Oxygen</td>
<td>16 – 22</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>12 – 16</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>7 – 10</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>2 – 5</td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.8 – 1.5</td>
</tr>
<tr>
<td>Potassium</td>
<td>0.8 – 1.5</td>
</tr>
<tr>
<td>Sodium</td>
<td>0.5 – 2.0</td>
</tr>
<tr>
<td>Calcium</td>
<td>0.4 – 0.7</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.4 – 0.7</td>
</tr>
<tr>
<td>Chlorine</td>
<td>0.4 – 0.7</td>
</tr>
<tr>
<td>Iron</td>
<td>0.1 – 0.4</td>
</tr>
<tr>
<td>All others**</td>
<td>0.2 – 0.5</td>
</tr>
</tbody>
</table>

** Includes trace elements
Separating Solids
Pond Sludge Pump
Remove Sludge & Remove Nitrogen

Portales, NM
Separating Solids
Pond Sludge Pump
Remove Sludge & Remove Nitrogen
Biological Nitrification
Attached Growth Reactor

High Performance Separate Reactors

- Remember why Ponds Don’t Work?
 - Nitrifiers don’t compete well with heterotrophs
 - Food & Microorganisms Don’t Get Together

- Attached Growth Nitrification Characteristics.
 - Food is brought into contact with a dense culture of Nitrifiers
 - High Hydraulic Loading Rates (HLRs)
 - Passive Venting is Usually Not Adequate
 - Sensitive to Cold
 - High Performance (Really Converts Ammonia!)
Biological Nitrification
Small System Biotower
Capitan, NM
Biological Nitrification Biotowers
Design (simplified)

If
1. CBOD₅:TKN \leq 1.0
2. SCBOD₅ \leq 12 \text{ mg/L}
3. \(q \geq 47 \left[\text{m}^3/\text{m}^2 \text{ d} \right] \)
4. CBOD₅ & TSS \leq 30 \text{ mg/L}
5. Forced Ventilation \geq 50 \text{ kg O}_2/\text{kg O}_2 \text{ required}

Then you can reliably design a biotower using
- \(K_n = 1.2(1.045)^{10} \), Nitrification rate constant [g N/m² d]
- \(A_s = Q(N_0/k_n) \), Surface Area of the media [m²]
- \(V_m = A_s/a_s \), Volume of the media [m³]
- \(A_x = Q/q \), Cross-sectional area of the biotower [m²]
- \(D_{min} = V_m/A_x \), Depth of the biotower [m]
- \(R_v = 50 Q(1.5 \text{ CBOD}_5 + 4.6 \text{TKN})/1000 \), Ventilation rate of the biotower [kg O₂/hr]

Where
- \(T \) = water temperature [°C]
- \(Q \) = flow [m³/d]
- \(N_0 \) = effluent ammonia concentration [mg/L]
- \(A \) = media specific surface area, from the manufacturer [m²/m³]
- \(q \) = limiting hydraulic loading intensity [m³/m² d]
Biological Nitrification

Biotower Venting

Deming, NM
Biological Denitrification
Subsurface Constructed Wetlands
Anoxic Polishing Process

- Items required for denitrification
 - Organics
 - Absence of oxygen
- Plants contribute
 - Some organics shed from roots
 - A small amount of oxygen to help mitigate odors
- Organics
 - At startup may need to be supplemented
 - During maturity will be supplied by sludge deposits
Biological Nitrogen Removal

High Performance Pond

Biotower Nitrification & SFCW Denitrification

Description

- **A** Organics converted to biomass. Ammonia released.
- **B** Organics depleted. Biomass settled out and removed to sludge pond.
- **C** Nitrifiers established. Conversion of ammonia to nitrates.
- **D** Nitrifiers settled out. Sludge removed to sludge pond.
- **E** Heterotrophs re-establish with organics from plants and sludge. Convert nitrates to nitrogen gas.
- **F** Sludge is digested and stabilized.
Because of size and rigorous O & M, sand filters are most applicable to very small communities (<500 capita).

Biological Nitrogen Removal

High Performance Pond

Sand Filter Nitrification & SFCW Denitrification

[A] Reactor Pond (Organics Conversion)

[B] Settling Pond (Clarification)

[D] Dosing Sand Filter (Nitrification)

[E] Constructed Wetlands (Denitrification)

[F] Sludge Pond (Digestion/Stabilization)

Volatilized Ammonia

Ammonia

Nitrates

Nitrogen Gas

Sludge

Organic Feed

Volatilized Ammonia

NOTE: Unit reactor “C” purposely not included.
Nitrogen Removal

- Pond
- Biotower, MBBR, or Sand Filter
- Wetlands

Oxygen
- Absent
- Present

Organic
Ammonia
Nitrate
Gas
Nitrogen is Released from Wastewater

Nitrogen is Bound-Up in Wastewater

Ponds (Hydrolysis)
Biotower (Nitrification)
Constructed Wetlands (Denitrification)
Provides aerated and anoxic zones, plus settling, in one reactor.
CFID Pond
Stage 1 – Turbulent Filling
Filling - with Aeration & Mixing

\(\Theta = 4 \) hours (6-hour cycle)

No Outflow

Floating Aerator (typ.)

Mixer

Inflow

Pond

Wet-well

Opening

Sludge Pump OFF

Effluent Pump OFF

Aerator ON

Aerator ON
CFID Pond
Stage 2 – Quiescent Filling
Filling - without Aeration or Mixing

\(\Theta = 1 \text{ hour (6-hour cycle)} \)

No Outflow

- Reactor Basin
 - Floating Aerator (typ.)
 - Water Level
 - Mixing

- Sequencing Basin
 - Fills to Top
 - Mixer

- Pond
- Inflow

- Freeboard

- Opening
- Sludge Pump OFF
- Effluent Pump OFF

Sequencing Basin Logic

Top Water Level
Middle Water Level
Bottom Water Level
CFID Pond
Stage 3 – Decant
Draw-off of Upper Clarified Levels

\[\Theta = 1 \text{ hour (6-hour cycle)} \]

- Reactor Basin
- Sequencing Basin
- Floating Aerator (typ.)
- Mixer
- Opening
- Sludge Pump
- Effluent Pump
- Inflow
- Outflow
- Return Sludge
- Pond
- Decants to Bottom
- Water Level
- Decant & Mixing Off
- Top Water Level
- Middle Water Level
- Bottom Water Level
- Sequencing Basin Logic
- SMITH ENGINEERING COMPANY
Biological Nitrogen Removal

CFID Pond

Nitrification & Denitrification

Process Description

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Organics converted to biomass. Ammonia released. Incoming organics depleted.</td>
</tr>
<tr>
<td>B.1</td>
<td>Nitrifiers established. Ammonia converted to nitrates.</td>
</tr>
<tr>
<td>B.2</td>
<td>Incoming organics continue to be depleted; resulting in nitrates converted to nitrogen gas.</td>
</tr>
<tr>
<td>B.3</td>
<td>Biomass settled-out and recalculated to reactor pond or removed to sludge pond.</td>
</tr>
<tr>
<td>C</td>
<td>Sludge is digested and stabilized.</td>
</tr>
</tbody>
</table>
Biological Nutrient Removal
CFID Pond
Nitrogen & Phosphorus

Selector Design Criteria
- $\theta_{amc} = 1$ to 2 hours
- MLSS > 1000 mg/L
- $Q_{\text{recycle}} = 1$ to 2 Q_{design}

B.1: Nitrifiers established. Ammonia converted to nitrates.

B.2: Incoming organics continue to be depleted; resulting in nitrates converted to nitrogen gas.

B.3: Biomass settled-out and recalculated to reactor pond or removed to sludge pond.

C: Sludge is digested and stabilized.

D: Poly-P bacteria starve and shed phosphates.
Overcoming Obstacles to Nitrification

<table>
<thead>
<tr>
<th>Factors</th>
<th>Suspended Growth (CFID Pond)</th>
<th>Attached Growth</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove Organics</td>
<td>Increase mixing and aeration in pond where organics are removed and then settle-out bacterial flocculent.</td>
<td></td>
<td>It only takes 1.5 days for organics to be converted to biomass in most ponds. Therefore, longer HRT are usually not required for converting organics.</td>
</tr>
<tr>
<td>Increase Nitrifying Biomass</td>
<td>Use different areas (reactors) for organics and ammonia removal. Afford nitrifiers a long time to convert ammonia.</td>
<td>Provide surfaces on which nitrifiers can attach and grow.</td>
<td>Large HRT’s require huge amounts of mixing and aeration. Uncoupling SRT from HRT can be a key to better exposure of nitrifiers to ammonia.</td>
</tr>
<tr>
<td>Increase contact between Nitrifiers and Ammonia.</td>
<td>Increase mixing in area where ammonia is removed.</td>
<td>Use high specific areas and high hydraulic loading rates (HLR).</td>
<td>Synthetic particle or crossflow matrix media are acceptable.</td>
</tr>
<tr>
<td>Supply Large Amounts of Oxygen</td>
<td>Increase aeration in area where ammonia is removed.</td>
<td>Forced ventilation will likely be required.</td>
<td>If annual averaging is allowed by NM Discharge Plan then ventilation may not be required.</td>
</tr>
<tr>
<td>Temperature</td>
<td>Minimize heat lost to evaporation. Use aspirating or slow speed aerators (in that order) if possible.</td>
<td>Heat may be required.</td>
<td>If annual averaging is allowed by NM Discharge Plan then winter temperatures may not be required.</td>
</tr>
<tr>
<td>pH & Alkalinity</td>
<td>Add lime, soda ash, or caustic soda.</td>
<td>Add lime, soda ash, or caustic soda.</td>
<td>Insufficient alkalinity is rare in NM.</td>
</tr>
<tr>
<td>Toxicity</td>
<td>Create industrial wastewater ordinance. Educate the public on proper materials for sewer disposal.</td>
<td></td>
<td>Ponds are the best possible reactor for industrial shock loads, but nitrifiers can still be impacted.</td>
</tr>
</tbody>
</table>

- HRT: Hydraulic Retention Time
- SRT: Sことも元に戻できない
- NM: New Mexico