Revision History

Documentation Revisions

The following table displays the revision history for this document. Revisions to the documentation are based on patches and new versions released to the field.

Table i. Documentation revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Description</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/22/10</td>
<td>5.3</td>
<td>Updates:
• Added Section 24.3, "Edit Install Status Option released with Kernel Patch XU8.0539.
• Added Figure 24-4 Edit Install Status option—Sample user dialogue.</td>
<td>Oakland, CA Office of Information Field Office (OIFO):
• Maintenance Development Manager—Jack Schram
• Developers—Gary Beuschel, Alan Chan, Ron DiMiceli, Wally Fort, Jose Garcia, Joel Ivey, Raul Mendoza, Roger Metcalf, and Ba Tran
• Technical Writers—Thom Blom and Susan Strack</td>
</tr>
<tr>
<td>11/16/09</td>
<td>5.2</td>
<td>Updates:
• Updated references to the CHCKSUM*XTSUMBLD direct mode utility throughout.
• Updated the "Orientation" section.
• Updated organizational references.
• Minor format updates (e.g., reordered document revision history table to display latest to earliest, added outline numbering).
• Other minor format updates to correspond with the latest standards and style guides.
• Updated the "Automatically Deactivating Users" topic in</td>
<td>Oakland, CA OIFO:
• Maintenance Development Manager—Jack Schram
• Developers—Gary Beuschel, Alan Chan, Ron DiMiceli, Wally Fort, Jose Garcia, Joel Ivey, Raul Mendoza, Roger Metcalf, and Ba Tran
• Technical Writers—Thom Blom and Susan Strack</td>
</tr>
<tr>
<td>Date</td>
<td>Version</td>
<td>Description</td>
<td>Authors</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>---</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| 06/10/08 | 5.1 | **Chapter 3, "Signon/Security: System Management" for Kernel Patch XU*8.0*514.**
- Re-ordered and edited all topics in Chapter 15, "Device Handler: System Management." Also, added updates to the Device handler based on Kernel Patch XU*8.0*440.
- Moved the following chapter content from the *Kernel Systems Management Guide* to the *Kernel Developer's Guide*, because the functions documented are more developer-related than system management-related:
 - Miscellaneous Programmer Tools: Programmer Options Menu and %Z Editor; see the "Miscellaneous Developer Tools" chapter in the *Kernel Developer's Guide*.
 - Routine Tools; see the "Routine Tools" topic in the "Toolkit: Developer Tools" chapter in the *Kernel Developer's Guide*.
 - Verification Tools; see the "Verification Tools" topic in the "Toolkit: Developer Tools" chapter in the *Kernel Developer's Guide*.
 - XGF Function Library; see the " XGF Function Library" topic chapter in the *Kernel Developer's Guide*.
- Updated Section 9.1.3 and 9.1.6.2 for Kernel Patch XU*8.0*482.
- Reviewed and updated all chapters for minor format changes (e.g., bulleted lists and tables), style updates, spelling, and grammar fixes. | Oakland, CA OIFO: |

Software Version: 8.0
<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Description</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1995</td>
<td></td>
<td>• Updated the "Defining a Strong Verify Code" topic.</td>
<td>Maintenance Development Manager—Jack Schram</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated Chapter 5, "File Access Security," based on the newly created VA FileMan (Version 22) and Kernel (Version 8.0) File Access Security supplemental document on the VDL.</td>
<td>Developers—Gary Beuschel, Alan Chan, Ron DiMiceli, Wally Fort, Jose Garcia, Joel Ivey, Raul Mendoza, Roger Metcalf, Skip Ormsby, and Ba Tran</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Deleted "Default Task Priority" topic from this manual.</td>
<td>Technical Writer—Thom Blom and Susan Strack</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Moved the "Error Screens" topic from Chapter 22, "TaskMan: System Management—Operation" to Chapter 13, "Error Processing."</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated the "Alpha/Beta Tracking" topic in Chapter 23. Merged information from the Kernel Systems Management Guide (this manual) into the Kernel Developer’s Guide in order to avoid duplication and confusion with instructions/procedures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated VA OI&T organization changes and the document properties (e.g., Title, Author, Creation Dates, Keywords, etc.).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated references to the VDL.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Removed all references to HSD&D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated Alert options in Figure 10-3 and added the missing descriptions for those Alert-related options.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Completed updates to remove obsolete references to MSM, PDP, 486, VAX Alpha, etc. and updated references to DSM for OpenVMS to Caché where appropriate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated content references to checksum compares based on Kernel Patch XU8.0393.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Changed references from "%INDEX" to "XINDEX" where appropriate.</td>
<td></td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Description</th>
<th>Authors</th>
</tr>
</thead>
</table>
| | | **Updated Section III, Device Handler chapters.**
Deleted "Kermit" section.
Updated "Special Queueing" topic in Chapter 22. Added Table 22-1.
Updated "Security Forms" section in Chapter 3, "Signon/Security: System Management." | **Oakland, CA OIFO:**
Maintenance Development Manager—Jack Schram
Developers—Alan Chan, Wally Fort, Jose Garcia, Joel Ivey, Mike Meighan, Raul Mendoza, Roger Metcalf, Skip Ormsby and Ba Tran
Technical Writer—Thom Blom and Susan Strack |
| 02/08/07 | 5.0 | The Kernel Toolkit documentation set is being combined with the Kernel documentation set. All Kernel Toolkit content will be moved to the appropriate Kernel manual, section, and chapter.
In the *Kernel Systems Management Guide*, the following Kernel Toolkit chapters have been added to the new "Toolkit" Section VI:
Multi-Term Look-Up (MTLU)
Routine Tools
Verification Tools
Also Changed Kernel document title references to:
Kernel Systems Management Guide (previously known as the Kernel Systems Manual). | **Software Version: 8.0** |
| 07/13/06 | 4.0 | Updates:
Made minor formatting updates throughout.
Changed the original "Other Tools" section to become the new "Toolkit" section, see note below.
Added "Multi-Term Look-Up (MTLU)" and "Tools" chapters from the original *Toolkit User Manual* (7.3), see note below.
Removed the "Response Time | **Oakland, CA OIFO:**
Maintenance Development Manager—Jack Schram
Developers—Alan Chan, Wally Fort, and Joel Ivey
Technical Writer—Thom Blom and Susan Strack |
<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Description</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Measures" topic from the original "Capacity Management" chapter in the Toolkit User Manual (7.3), see note below. Kernel Toolkit Patch XT7.3102 removed all Response Time Log Option menu options [XURT]*.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• All Kernel Toolkit content currently in the Kernel Toolkit User Manual and Kernel Toolkit Technical Manual is being absorbed by the Kernel Systems Management Guide, Kernel Developer's Guide, and Kernel Technical Manual. Other Toolkit content has been replaced by other manual sets, including:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Duplicate Record Merge: Patient Merge</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Resource Usage Monitor (RUM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Statistical Analysis of Global Growth (SAGG)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Capacity Management (CM) Tools</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Version: 8.0</td>
<td></td>
</tr>
<tr>
<td>02/03/06</td>
<td>3.0</td>
<td>Updates:</td>
<td>Oakland, CA OIFO Legacy VistA Maintenance Team</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reformatted document to the latest SOP and Style Guidelines.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated files, routines, options, APIs, security keys, etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Version: 8.0</td>
<td></td>
</tr>
<tr>
<td>12/20/04</td>
<td>2.1</td>
<td>Reviewed document and edited for the "Data Scrubbing" and the "PDF 508 Compliance" projects.</td>
<td>Technical Writer—Thom Blom, Oakland OIFO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data Scrubbing—Changed all patient/user TEST data to conform to OI&T standards and conventions as indicated below:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The first three digits (prefix) of any Social Security Numbers (SSN) start with "000" or "666."</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Patient or user names are formatted as follows: XUPATIENT,[N] or XUUSER,[N] respectively, where the N is a number written out and incremented with each</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Version</td>
<td>Description</td>
<td>Authors</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>new entry (e.g., XUPATIENT, ONE, XUPATIENT, TWO, etc.).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other personal demographic-related data (e.g., addresses, phones, IP addresses, etc.) were also changed to be generic.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDF 508 Compliance—The final PDF document was recreated and now supports the minimum requirements to be 508 compliant (i.e., accessibility tags, language selection, alternate text for all images/icons, fully functional Web links, successfully passed Adobe Acrobat Quick Check).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Version: 8.0</td>
<td></td>
</tr>
<tr>
<td>12/09/04</td>
<td>2.0</td>
<td>Kernel 8.0 documentation reformatting/revision.</td>
<td>Technical Writer—Thom Blom, Oakland OIFO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This is the initial complete reformatting of the Kernel Systems Management Guide since its original release in July 1995.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The largest change with the Kernel Systems Management Guide is that all developer-specific content has been extracted and placed into a new Kernel Developer's Guide.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Also, at this point in time, only minimal content updates have been made based on select released Kernel patches. Due to time constraints, not all released Kernel patches with content changes have been added at this time. We wanted to get a new baseline document published so that in the future we can more easily update the Kernel Systems Management Guide.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>As time allows, we will be updating this reformatted manual with all released patch information that affects its content. Because of the chapter-numbering scheme, future additions can be made with minimal disruption to the entire manual page flow.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thanks for your patience!</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Version: 8.0</td>
<td></td>
</tr>
<tr>
<td>07/95</td>
<td>1.0</td>
<td>Initial Kernel 8.0 software and documentation release</td>
<td>San Francisco, CA Office of Information Field Office (OIFO):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Version: 8.0</td>
<td>• Project Manager—</td>
</tr>
</tbody>
</table>
Patch Revisions

For the current patch history related to this software, see the Patch Module on FORUM.
Contents

Revision History ... iii
Figures and Tables .. xxvii
Orientation .. xxxix

1. Introduction ... 1-1
 1.1 Users ... 1-1
 1.2 System Managers ... 1-2

I. Signon/Security .. I-1

2. Signon/Security: User Interface ... 2-1
 2.1 Signing On ... 2-1
 2.1.1 Defining a Strong Verify Code .. 2-3
 2.1.1.1 Why Longer Passwords? ... 2-4
 2.1.2 LOGIN Menu Template .. 2-4
 2.1.3 Signon Shortcuts ... 2-5
 2.1.4 Normal Signoff ... 2-5
 2.1.5 Abnormal Signoff and Error Handling ... 2-6
 2.1.6 Terminal Type Prompt .. 2-6
 2.2 Escaping from a Jumbled Screen ... 2-6
 2.3 Alerts .. 2-7
 2.4 User's Toolbox Menu .. 2-7
 2.5 Change my Division Option .. 2-8
 2.6 Edit User Characteristics Option .. 2-9
 2.7 Display User Characteristics Option ... 2-12
 2.8 Switch UCI Option ... 2-13
 2.9 Summary ... 2-13

3. Signon/Security: System Management .. 3-1
 3.1 Signon Process ... 3-1
 3.1.1 Introductory Text .. 3-1
 3.1.2 Parameters Checked during Signon ... 3-2
 3.1.2.1 Signon Attempts and Device Lock-out Times .. 3-2
 3.1.2.2 MAX SIGNON ALLOWED ... 3-3
 3.1.2.3 PROHIBITED TIMES FOR SIGN-ON ... 3-4
 3.1.2.4 Multiple Sign-On Restriction .. 3-5
3.1.2.5 INTERACTIVE USER’S PRIORITY ... 3-5
3.1.2.6 ASK DEVICE TYPE AT SIGN-ON ... 3-5
3.1.2.7 Display Attributes (DA) Return Codes 3-6
3.1.2.8 SELECTABLE AT SIGNON .. 3-6
3.1.2.9 LIFETIME OF VERIFY CODE ... 3-6
3.1.2.10 AUTO-GENERATE ACCESS CODES 3-6
3.1.2.11 DEFAULT INSTITUTION and AGENCY 3-7
3.1.2.12 AUTO MENU ... 3-7
3.1.2.13 TYPE-AHEAD ... 3-7
3.1.2.14 TIMED READ ... 3-7
3.1.2.15 POST SIGN-IN MESSAGE .. 3-8
3.1.3 XU USER SIGN-ON Option ... 3-8
3.1.4 Clear all users at startup Option .. 3-8
3.1.5 Enabling and Disabling Logons .. 3-9

3.2 Adding New Users .. 3-9
3.2.1 Add a New User to the System Option ... 3-9
3.2.1.1 NEW PERSON File (#200) Required Fields 3-10
3.2.2 Grant Access by Profile Option .. 3-10
3.2.3 Security Forms ... 3-11

3.3 Edit an Existing User Option .. 3-18
3.3.1 Additional Attributes Editable by Users 3-26
3.3.2 Edit User Characteristics Form and Template 3-26

3.4 Deactivating and Reactivating Users .. 3-26
3.4.1 Deactivating Users .. 3-27
3.4.2 Automatically Deactivating Users ... 3-28
3.4.2.1 Termination Process .. 3-29
3.4.2.2 Academic Affiliation Waiver ... 3-29
3.4.3 Purging Mail and Security Keys for Inactive Users 3-29
3.4.4 Reactivating Users ... 3-30

3.5 User Management Options on the Operations Menu 3-30
3.5.1 Find a User Option ... 3-30
3.5.2 List Users Option ... 3-31
3.5.3 Print Sign-on Log Option ... 3-31
3.5.4 Release user Option ... 3-31
3.5.5 User Inquiry Option .. 3-31
3.5.6 User Status Report Option .. 3-31
3.6 Signon Audits .. 3-32
 3.6.1 Signon Statistics ... 3-32
 3.6.2 Failed Access Attempts Audit ... 3-32
 3.6.3 Purge Old Access and Verify Codes ... 3-33

4. Electronic Signatures .. 4-1
 4.1 User Interface .. 4-1
 4.1.1 Electronic Signature code Edit Option ... 4-1
 4.2 System Management .. 4-1
 4.2.1 Electronic Signature Block Edit Option .. 4-2
 4.2.2 Clear Electronic signature code Option ... 4-2

5. File Access Security ... 5-1
 5.1 User Interface .. 5-1
 5.2 System Management ... 5-3
 5.2.1 When is File Access Security Checked? .. 5-3
 5.2.2 What in VA FileMan is Still Protected by the File Manager Access Code? 5-4
 5.2.3 Purpose for Granting File Access .. 5-4
 5.2.4 Who Needs File Access? ... 5-5
 5.2.5 Levels of File Access Security ... 5-5
 5.2.6 Audit Access to Files ... 5-8
 5.2.7 How to Grant File Access .. 5-9
 5.2.8 Using the File Access Options .. 5-9
 5.2.8.1 Understanding DUZ (the User Number) ... 5-10
 5.2.8.2 Using Ranges of File Numbers ... 5-10
 5.2.8.3 Queuing File Access Specifications ... 5-10
 5.3 Running the File Access Security Conversion .. 5-11
 5.3.1 Advantages .. 5-11
 5.3.2 Advance Preparation for the Conversion ... 5-11
 5.3.2.1 ^DISV Global ... 5-11
 5.3.2.2 Adding Explicit File Access for IRM ... 5-12
 5.3.3 Summary of the File Access Security Conversion .. 5-13
 5.3.4 File Access Security Conversion Instructions .. 5-14
 5.3.5 After the File Access Security Conversion ... 5-15
II. Menu Manager .. II-1

6. Menu Manager: User Interface ... 6-1

6.1 Navigating Kernel's Menus .. 6-1
 6.1.1 Choosing Options .. 6-1
 6.1.2 Listing Options ... 6-2
 6.1.3 Displaying Option Help .. 6-2
 6.1.4 Listing Secondary and Common Options .. 6-3
 6.1.5 Displaying Option Descriptions .. 6-5
 6.1.6 Jumping to Options—"Up-arrow Jump") ... 6-6
 6.1.7 Jumping to Options—"Rubber-band Jump" .. 6-7
 6.1.8 Common Menu .. 6-7
 6.1.8.1 Selecting Common Options with the Double Quote .. 6-8

6.2 Menu Templates Option .. 6-8
 6.2.1 LOGIN Menu Template ... 6-9

6.3 Summary .. 6-9

7. Menu Manager: System Management ... 7-1

7.1 Kernel Menus .. 7-1

7.2 Creating Menus and Options ... 7-1
 7.2.1 Option Name and Menu Text ... 7-2
 7.2.2 Synonyms and Display Order ... 7-3
 7.2.3 PRIORITY ... 7-3
 7.2.4 HELP FRAME ... 7-3
 7.2.5 DISPLAY OPTION ... 7-3
 7.2.6 If the Option Invokes Non-VistA Applications ... 7-3
 7.2.7 If the Option Should Be Regularly Scheduled .. 7-4
 7.2.8 Auditing Option Use .. 7-4

7.3 Display Menus and Options Menu .. 7-5
 7.3.1 Diagramming Options ... 7-5
 7.3.2 Option Descriptions .. 7-5
 7.3.3 Displaying Options ... 7-6
 7.3.4 Option Access by User Option .. 7-6

7.4 Managing Menus and Options ... 7-7
 7.4.1 Managing Primary Menus .. 7-7
 7.4.2 Assigning Secondary Menus .. 7-7
 7.4.3 ALWAYS SHOW SECONDARIES Field ... 7-7
 7.4.4 Redefining the Common Menu ... 7-8
Contents

7.4.5 Altering Exported Menus ... 7-8
7.4.6 Delete Unreferenced Options Option ... 7-8
7.4.7 Fix Option File Pointers Option ... 7-9
7.4.8 Testing a User's Menus ... 7-9
7.4.9 Managing Out-Of-Order Option Sets ... 7-10
7.5 Restricting Option Usage .. 7-11
7.5.1 Setting Options Out of Order .. 7-11
7.5.2 Locks ... 7-11
7.5.3 Prohibited Times ... 7-11
7.5.4 Permitted Devices .. 7-12
7.5.5 QUEUING REQUIRED Flag ... 7-12
7.6 Menu Manager Options that Should Be Scheduled 7-12
7.6.1 Clean Old Job Nodes in XUTL Option ... 7-12
7.6.2 Rebuilding Primary Menu Trees ... 7-13
7.7 Error Messages During Menu Jumping ... 7-14
7.8 ^XUTL Global: Structure and Function ... 7-17
7.8.1 User Stacks .. 7-17
7.8.2 XQT Nodes (MENU Templates) ... 7-18
7.8.3 Display Nodes ... 7-18
7.8.4 Jump Nodes ... 7-20
7.9 Menu Manager Variables (Troubleshooting) 7-21
8. Security Keys .. 8-1
8.1 User Interface .. 8-1
8.2 System Management ... 8-2
8.2.1 Identifying Locked Options .. 8-2
8.2.2 Key Management ... 8-2
8.2.3 Allocating and De-allocating Security Keys 8-3
8.2.4 Delegating Security Keys ... 8-3
8.2.5 Creating and Editing Security Keys .. 8-4
8.2.5.1 PERSON LOOKUP ... 8-4
8.2.5.2 KEEP AT TERMINATE .. 8-4
8.2.5.3 SUBORDINATE KEY (Exploding Keys) 8-5
8.2.6 Deleting Security Keys .. 8-5
8.2.7 Reindexing All Users' Security Keys Option 8-5
8.2.8 Using Security Keys with Reverse Locks 8-6
8.2.9 Security Key Delegation Levels ... 8-6
9. Secure Menu Delegation .. 9-1
 9.1 User Interface: Acting as a Delegate ... 9-2
 9.1.1 Delegate's Menu .. 9-2
 9.1.2 Edit a User's Options Option .. 9-2
 9.1.3 Build a New Menu Option .. 9-3
 9.1.4 Copy Everything About an Option to a New Option Option 9-4
 9.1.5 Copy One Users Menus and Keys to others Option 9-4
 9.1.6 Limited File Manager Options (Build) Option ... 9-5
 9.1.6.1 Characteristics of Intended Users ... 9-5
 9.1.6.2 IRM Setup to Enable Building Options from Templates 9-5
 9.1.6.3 Building Options .. 9-5
 9.2 System Management: Managing Delegates .. 9-7
 9.2.1 Delegating Options: Select Options to be Delegated Option 9-7
 9.2.1.1 Delegating Security Keys .. 9-8
 9.2.1.2 Delegation Level (Options and Keys) .. 9-9
 9.2.2 Further Delegation ... 9-9
 9.2.3 Options too Sensitive to Delegate ... 9-10
 9.2.4 Replicate or Replace a Delegate Option ... 9-10
 9.2.5 Remove Options Previously Delegated Option .. 9-10
 9.2.6 Specify Allowable New Menu Prefix Option ... 9-11
 9.2.7 Reports ... 9-11
10. Alerts .. 10-1
 10.1 User Interface ... 10-1
 10.1.1 Processing Alerts .. 10-1
 10.1.2 Deleting Alerts .. 10-3
 10.1.3 Forwarding Alerts ... 10-4
 10.1.4 Surrogates and Alerts ... 10-4
 10.2 System Management ... 10-5
 10.2.1 Alert Management Menu .. 10-6
 10.2.1.1 Alerts - Set/Remove Surrogate for Users Option 10-6
 10.2.1.2 Delete Old (>14 d) Alerts Option ... 10-6
 10.2.1.3 Make an Alert on the Fly Option .. 10-7
 10.2.1.4 Purge Alerts for a User Option ... 10-7
 10.2.1.5 Report Menu for Alerts Menu ... 10-8
 10.2.1.6 Set Backup Reviewer for Alerts Option 10-10
 10.2.1.7 Surrogate for which Users? Option 10-10
11. Server Options .. 11-1

11.1 System Management ... 11-1

11.1.1 What is a Server Option? .. 11-1
11.1.2 What Can Server Options Do? .. 11-1
11.1.3 Can Server Requests Be Denied? ... 11-1
11.1.4 How Can the Number of Instances of a Server Option Be Controlled? 11-2
11.1.5 Setting Up a Server Option .. 11-3
11.1.6 Testing if a Site is Reachable: XQSPING Server Option 11-5
11.1.7 Testing a Server Option: XQSCHK ... 11-6
11.1.8 Errors and Warnings from the XQSCHK Server Option 11-8

12. Help Processor .. 12-1

12.1 User Interface ... 12-1

12.2 System Management .. 12-2

12.2.1 Display/Edit Help Frames Option ... 12-4
12.2.2 List Help Frames Option .. 12-4
12.2.3 New/Revised Help Frames Option .. 12-5
12.2.4 Cross Reference Help Frames Option .. 12-5
12.2.5 Fix Help Frame File Pointers Option (Deleting Help Frames) 12-5
12.2.6 Assigning/De-assigning Help Frame Editors ... 12-5
12.2.7 Disk Space Concerns .. 12-6
12.2.8 Creating and Editing Help Frames ... 12-6

13. Error Processing ... 13-1

13.1 User Interface .. 13-1

13.2 System Management ... 13-2

13.2.1 Error Screens ... 13-2

13.2.2 Enhanced Error Processing .. 13-4

13.2.3 Print 1 Occurrence of Each Error for T-1 (QUEUE) Option 13-4
13.2.4 Print 2 Occurrences of Errors on T-1 (QUEUED) Option 13-5
13.2.5 Clean Error Trap Option .. 13-5
13.2.6 Error Trap Display Option .. 13-6
13.2.7 Interactive Print of Error Messages Option 13-7

III. Device Handler .. III-1

14. Device Handler: User Interface .. 14-1
 14.1 Printing to Devices ... 14-1
 14.1.1 Specifying Right Margin and Page Length 14-2
 14.2 Queuing ... 14-3
 14.3 Specifying a Special Subtype ... 14-4
 14.3.1 Spool Document Names—An Exception 14-6
 14.4 Alternate Syntax for Device Specification 14-6
 14.5 Summary ... 14-7

15. Device Handler: System Management .. 15-1
 15.1 DEVICE File (#3.5) .. 15-1
 15.1.1 DEVICE File Fields .. 15-2
 15.1.1.1 OpenVMS-Specific DEVICE Fields 15-5
 15.1.2 Device Edit Menu .. 15-6
 15.1.3 Sample Device File Entries ... 15-7
 15.1.3.1 HFS Devices ... 15-7
 15.1.3.2 NULL Devices ... 15-9
 15.1.3.3 BROWSER Devices ... 15-10
 15.1.3.4 P-MESSAGE Devices ... 15-10
 15.1.3.5 TELNET Devices .. 15-10
 15.2 Mixed OS Environment Fields ... 15-11
 15.2.1 Edit Logical/Physical Mapping Option 15-12
 15.2.2 Enter/Edit Kernel Site Parameters option 15-12
 15.3 Device Security .. 15-12
 15.4 TERMINAL TYPE File (#3.2) ... 15-13
 15.4.1 Terminal Type Naming Conventions 15-14
 15.4.2 How Shared Device and Terminal Type Attributes are Used 15-14
 15.4.3 Terminal Type Information Retained by User 15-15
 15.5 Devices and Signon ... 15-15
 15.5.1 Device Selection at Signon and Virtual Terminal Devices 15-15
 15.5.2 Terminal Type Selection at Signon 15-16
 15.5.2.1 Managing Display Attributes (DA) Return Codes 15-16
15.6 Troubleshooting ... 15-17
 15.6.1 Loopback Test of Device Port Option 15-17
 15.6.2 Send Test Pattern to Terminal Option 15-17
 15.6.3 Out of Service Set/Clear Option 15-17
15.7 Device Identification and Cross-references 15-18

16. Host Files .. 16-1
 16.1 Host Files: User Interface .. 16-1
 16.2 Host Files: System Management 16-2
 16.2.1 Host File Server Device Edit Option 16-2
 16.2.2 Caché and GT.M HFS Device Setup 16-3

17. Spooling .. 17-1
 17.1 Spooling: User Interface .. 17-1
 17.1.1 Sending Output to the Spooler 17-1
 17.1.2 Retrieving Spooled Documents 17-3
 17.1.2.1 List Spool Documents Option 17-3
 17.1.2.2 Delete A Spool Document option 17-4
 17.1.3 Browsing a Spool Document 17-4
 17.1.3.1 Browse a Spool Document Option 17-4
 17.1.4 Printing Spool Documents ... 17-4
 17.1.4.1 Print A Spool Document Option 17-4
 17.1.5 Making Spool Documents into Mail Messages 17-5
 17.1.5.1 Make spool document into a mail message Option 17-5
 17.2 Spooling: System Management 17-6
 17.2.1 Spool Document Storage .. 17-6
 17.2.2 Overflowing Spool Document Storage 17-6
 17.2.3 Granting Spooling Privileges 17-7
 17.2.4 Managing Spool Documents 17-7
 17.2.5 Spooler Site Parameters Edit Option 17-8
 17.2.6 Purge old Spool documents Option 17-9
 17.2.7 Defining Spool Device Types 17-9
 17.2.7.1 Caché and GT.M .. 17-9
 17.2.8 Spool Device Edit Option ... 17-9
 17.2.9 Auto-despooling ... 17-10
 17.2.10 Generating Spool Document Names 17-10

18. Special Devices ... 18-1
 18.1 Browser Device .. 18-1
18.1.1 User Interface ... 18-1
18.1.2 System Management .. 18-3
 18.1.2.1 Storing Host Files in a Specific Directory 18-4
18.2 Form Feeds .. 18-5
 18.2.1 User Interface .. 18-5
 18.2.2 System Management .. 18-5
18.3 Hunt Groups .. 18-6
 18.3.1 User Interface .. 18-6
 18.3.2 System Management .. 18-6
 18.3.2.1 Hunt Group Device on Another CPU 18-7
 18.3.2.2 Queuing to a Hunt Group Device 18-7
 18.3.2.3 Using a Hunt Group Device Without Using the Hunt Group 18-7
18.4 Magtape ... 18-8
 18.4.1 System Management .. 18-8
18.5 Network Channel Devices .. 18-10
 18.5.1 System Management .. 18-10
 18.5.1.1 Network Channel Device Edit 18-10
18.6 Resources ... 18-12
 18.6.1 System Management .. 18-12
 18.6.1.1 Limiting Simultaneous Running of a Particular Task 18-12
 18.6.1.2 Running Sequences of Tasks 18-12
 18.6.1.3 Creating Resource Devices 18-13
18.7 Sequential Disk Processors (Obsolete) 18-14
18.8 Slaved Printers .. 18-14
 18.8.1 User Interface .. 18-14
 18.8.2 System Management .. 18-14
 18.8.2.1 Device and Terminal Type File Entries 18-15
 18.8.2.2 Use of Slaved Printer: Processing Steps 18-16
 18.8.2.3 Queuing to Slaved Printers 18-17

IV. TaskMan .. IV-1
19. TaskMan: User Interface .. 19-1
 19.1 Creating Tasks .. 19-1
 19.1.1 Background Jobs ... 19-1
 19.1.2 Queuing Output .. 19-1
 19.1.3 Other Sources of Tasks .. 19-2
19.2 Working with Tasks ... 19-2
 19.2.1 Selecting Tasks ... 19-3
 19.2.2 Tasks in the Task List .. 19-3
 19.2.3 Display Status of Tasks .. 19-4
 19.2.4 Stopping Tasks ... 19-4
 19.2.5 Editing Tasks ... 19-5
 19.2.6 Listing and Printing Tasks .. 19-5
 19.2.7 Selecting Another Task .. 19-6

19.3 Summary .. 19-6

20. TaskMan: System Management—Overview .. 20-1
 20.1 TaskMan's Division of Labor .. 20-1
 20.1.1 Queuers ... 20-1
 20.1.1.1 Programs that Use the TaskMan API 20-2
 20.1.1.2 Option Scheduling through the OPTION SCHEDULING
 File (#19.2) .. 20-2
 20.1.2 Manager ... 20-2
 20.1.3 Submanagers ... 20-3

 20.2 TaskMan's Files .. 20-5
 20.2.1 TaskMan Globals: ^%ZTSCH and ^%ZTSK 20-5
 20.2.2 SCHEDULE File .. 20-6
 20.2.3 TASKS File (#14.4) ... 20-7
 20.2.4 Other Files .. 20-7

 20.3 System Configuration Terminology ... 20-8

 20.4 TaskMan Security Key .. 20-8

 21.1 Defining TaskMan Environments ... 21-9
 21.2 Configuring TaskMan .. 21-9
 21.2.1 TaskMan's Reach ... 21-10
 21.2.2 TASKMAN SITE PARAMETERS File (#14.7) 21-10
 21.2.3 VOLUME SET File (#14.5) .. 21-14
 21.2.4 UCI ASSOCIATION File (#14.6) .. 21-17
 21.2.4.1 Partial File Entries .. 21-17
 21.2.4.2 Complete File Entries .. 21-17
 21.2.5 Sample Configuration: Standardized VA Caché and GT.M
 Configuration .. 21-18

 21.3 Manager Startup .. 21-19

 21.4 Multiple TaskMan Managers and Load Balancing 21-20
21.4.1 Configuration for Multiple Managers ... 21-20
21.4.2 Starting Up, Pausing, and Stopping Multiple Managers 21-20
21.4.3 Load Balancing ... 21-20
21.4.4 Monitor Taskman Option .. 21-21
21.5 Device Handler's Influence on TaskMan .. 21-21
21.6 Running TaskMan with a DCL Context .. 21-24
21.6.1 Setup for Running TaskMan in a DCL Context in a Cache/VMS Environment ... 21-24
21.6.2 How to Restart TaskMan when Running in a DCL Context 21-27
22. TaskMan: System Management—Operation .. 22-1
22.1 TaskMan Management Menu .. 22-1
22.1.1 List Tasks Option .. 22-2
22.1.1.1 All your tasks Option .. 22-3
22.1.1.2 Your future tasks Option .. 22-3
22.1.1.3 List of tasks Option ... 22-3
22.1.1.4 Unsuccessful tasks Option .. 22-4
22.1.1.5 Future tasks Option ... 22-4
22.1.1.6 Tasks waiting for a device Option .. 22-4
22.1.1.7 Running tasks Option .. 22-4
22.1.2 Dequeue Tasks Option ... 22-4
22.1.3 Requeue Tasks Option ... 22-5
22.1.4 Delete Tasks Option .. 22-6
22.1.5 Cleanup Task List Option ... 22-6
22.2 TaskMan Management Utilities ... 22-7
22.2.1 Monitor Taskman Option .. 22-7
22.2.1.1 RUN Node .. 22-8
22.2.1.2 Status List .. 22-9
22.2.1.3 Schedule List .. 22-9
22.2.1.4 IO List .. 22-10
22.2.1.5 Job List ... 22-10
22.2.1.6 Task List .. 22-10
22.2.1.7 Monitor Action Prompt .. 22-11
22.2.1.8 Inspecting the Tasks in the Monitor's Lists 22-11
22.2.2 Check Taskman's Environment Option ... 22-13
22.2.3 Restart Task Manager Option ... 22-14
22.2.4 Place Taskman in a WAIT State Option ... 22-15
22.2.5 Remove Taskman from WAIT State Option .. 22-15
22.2.6 Stop Task Manager Option ... 22-16
22.2.7 SYNC flag file control Option .. 22-16
22.2.8 Clean Task File Option ... 22-17
22.2.9 Queuable Task Log Clean Up Option .. 22-17
22.3 Scheduling Options .. 22-18
22.3.1 Which Options to Queue.. 22-18
22.3.1.1 PARENT OF QUEUABLE OPTIONS Menu 22-18
22.3.1.2 Printing Options Recommended to Run and Scheduled to Run........ 22-18
22.3.1.3 Schedule/Unschedule Options ... 22-19
22.3.1.4 Queued to Run At What Time ... 22-19
22.3.1.5 How to Delete a Regularly Scheduled Task 22-19
22.3.1.6 How to Requeue a Regularly Scheduled Task 22-20
22.3.1.7 Device For Queued Job Output .. 22-20
22.3.1.8 Queued To Run On Volume Set .. 22-20
22.3.1.9 Reschedule Frequency .. 22-21
22.3.1.10 Task Parameters ... 22-21
22.3.1.11 Special Queueing .. 22-22
22.3.1.12 Problems With Scheduled Options .. 22-23
22.3.1.13 One-time Option Queue Option ... 22-24
22.4 Taskman Error Log Menu .. 22-24
22.4.1 Show Error Log Option .. 22-25
22.4.2 Clean Error Log Over Range Of Dates Option 22-25
22.4.3 Purge Error Log Of Type Of Error Option 22-26
22.4.4 Delete Error Log Option .. 22-26
22.5 Troubleshooting .. 22-27
22.5.1 SCHEDULE File ... 22-27
22.5.2 TASKS File (#14.4) ... 22-30
22.5.3 Task Status Codes ... 22-32
22.5.4 Task Rejection Messages ... 22-34
22.5.5 TaskMan State Messages ... 22-35
22.5.5.1 BALANCE State ... 22-36
22.5.5.2 ERROR State .. 22-36
22.5.5.3 PAUSE State ... 22-37
22.5.5.4 RUN State .. 22-37
22.5.5.5 WAIT State ... 22-38

V. Kernel Installation and Distribution System ... V-1

23. KIDS: System Management—Installations ... 23-1

23.1 KIDS Options ... 23-2

23.1.1 Distributions .. 23-2

23.1.2 Installations ... 23-3

23.2 Build Entries and the BUILD File (#9.6) .. 23-4

23.3 INSTALL File (#9.7) ... 23-5

23.4 Changes in the Role of the PACKAGE File (#9.4) ... 23-5

23.5 Transport Mechanism: Distributions ... 23-5

23.5.1 Two Kinds of Distributions ... 23-5

23.6 What Happens to DIFROM? .. 23-6

23.7 Installing Standard Distributions .. 23-6

23.7.1 Installation Sequence ... 23-7

23.7.1.1 Phase 1: Loading Transport Globals from a Distribution or PackMan Message ... 23-7

23.7.1.2 Phase 2: Answering Installation Questions for Transport Globals in a Distribution .. 23-7

23.7.1.3 Phase 3: KIDS Installation of Software ... 23-8

23.7.2 Installation Menu ... 23-8

23.7.3 Loading a Standard Distribution ... 23-9

23.7.3.1 When the Distribution is Split Across Diskettes .. 23-10

23.7.4 Loading Transport Globals from a Distribution .. 23-11

23.7.5 Verifying Checksums in a Transport Global ... 23-12

23.7.6 Printing Loaded Transport Globals .. 23-12

23.7.7 Comparing Loaded Transport Globals to the Current System 23-13

23.7.8 Backing Up Transport Globals ... 23-15

23.7.9 Running Installations .. 23-16

23.7.9.1 Processing Each Transport Global .. 23-16

23.7.9.2 Scheduling Installations ... 23-16

23.7.10 When the Installation is Queued ... 23-17

23.7.11 Re-answering Installation Questions .. 23-17

23.7.12 Information Stored in the INSTALL File (#9.7) .. 23-17

23.7.13 Answering Installation Questions for a Distribution 23-18

23.7.14 Installation Progress ... 23-19

23.7.15 Once the Installation Finishes .. 23-19
23.7.16 Restarting Aborted Installations .. 23-20
23.7.17 Recovering from an Aborted Distribution Load 23-20
23.8 Installing Global Distributions ... 23-21
23.9 Purging the BUILD and INSTALL Files .. 23-21
23.10 Alpha/Beta Tracking .. 23-23

24. KIDS: System Management—Utilities .. 24-1
 24.1 Build File Print Option ... 24-2
 24.2 Install File Print Option ... 24-3
 24.3 Edit Install Status Option ... 24-4
 24.4 Convert Loaded Package for Redistribution Option 24-4
 24.5 Display Patches for a Package Option .. 24-7
 24.6 Purge Build or Install Files Option .. 24-7
 24.6.1 Versions to Retain ... 24-8
 24.6.2 Selecting Software Names for Purging .. 24-8
 24.6.3 Purging Selected Entries .. 24-9
 24.6.4 Reasons to Retain BUILD and INSTALL File Entries 24-9
 24.7 Rollup Patches into a Build Option .. 24-10
 24.8 Update Routine File Option ... 24-10
 24.9 Verify a Build Option .. 24-11
 24.10 Verify Package Integrity Option ... 24-12

VI. Toolkit .. VI-1
 25. Multi-Term Look-Up (MTLU) .. 25-1
 25.1 Overview ... 25-1
 25.2 Introduction to Multi-Term Look-Up (MTLU) .. 25-1
 25.3 Functional Description .. 25-1
 25.4 Usage Considerations .. 25-2
 25.5 User Interface .. 25-4
 25.5.1 Multi-Term Look-Up Menu Options .. 25-4
 25.5.1.1 Standard Device Chart .. 25-5
 25.5.2 Using the Multi-Term Lookup (MTLU) Option 25-6
 25.5.3 Using the Print Utility Option .. 25-7
 25.5.4 Using the Utilities for MTLU Option .. 25-9
 25.5.4.1 Delete Entries from Look-Up Option 25-10
 25.5.4.2 Add Entries To Look-Up File Option 25-10
 25.5.4.3 Add/Modify Utility Option ... 25-13
Contents

25.6 Systems Management .. 25-21
 25.6.1 Implementation of Multi-Term Look-Up (MTLU) .. 25-21

Glossary ... Glossary-1

Index .. Index-1
Figures and Tables

Figures

Figure 2-1. Signing on to VistA—Sample roll-and-scroll user authentication dialogue .. 2-2
Figure 2-2. Access denied due to no primary menu or menu "out of order" message .. 2-3
Figure 2-3. Entering the Access and Verify codes at the same time .. 2-5
Figure 2-4. Entering the Access and Verify codes at the same time and jumping directly to a specified option .. 2-5
Figure 2-5. System commands: Menu options for signoff .. 2-5
Figure 2-6. System commands: View Alerts "VA" option .. 2-7
Figure 2-7. User's Toolbox menu options .. 2-7
Figure 2-8. Edit User Characteristics option—ScreenMan form .. 2-9
Figure 2-9. Display User Characteristics option—Sample output and user dialogue 2-12
Figure 3-1. Introductory text edit option .. 3-1
Figure 3-2. Enter/Edit Kernel Site Parameters option .. 3-2
Figure 3-3. Enter/Edit Kernel Site Parameters option—ScreenMan form .. 3-2
Figure 3-4. Signon flow chart .. 3-4
Figure 3-5. Post sign-in Text Edit option .. 3-8
Figure 3-6. Clear all users at startup option .. 3-8
Figure 3-7. User Management menu options: Associated menu options when adding a new user 3-9
Figure 3-8. Reprint Access agreement letter option ... 3-11
Figure 3-9. Security Forms—Sample user entries (1 of 4) ... 3-12
Figure 3-10. Security Forms—Sample user entries (2 of 4) ... 3-14
Figure 3-11. Security Forms—Sample User Account Notification form (3 of 4) .. 3-16
Figure 3-12. Security Forms—Sample Computer Account Access Policy form (4 of 4) 3-17
Figure 3-13. Edit an Existing User option—Menu ... 3-18
Figure 3-14. VA FileMan Line Editor—Sample user dialogue ... 3-21
Figure 3-15. Edit an Existing User option—Screen 1 .. 3-23
Figure 3-16. Edit an Existing User option—Screen 2 .. 3-24
Figure 3-17. Edit an Existing User option—Screen 3 .. 3-24
Figure 3-18. Edit an Existing User option—Screen 4 .. 3-25
Figure 3-19. Edit an Existing User option—Screen 5 .. 3-25
Figure 3-20. User Management menu options ... 3-26
Figure 7-11. Switch Identities option ... 7-9
Figure 7-12. Out-Of-Order Set Management menu options 7-10
Figure 7-13. Restrict Availability of Options option ... 7-11
Figure 7-14. Clean old Job Nodes in XUTL ... 7-13
Figure 7-15. Building primary menu trees options ... 7-13
Figure 7-16. Menu jump error message (1 of 6) .. 7-14
Figure 7-17. Menu jump error message (2 of 6) .. 7-14
Figure 7-18. Menu jump error message (3 of 6) .. 7-15
Figure 7-19. Menu jump error message (4 of 6) .. 7-15
Figure 7-20. Menu jump error message (5 of 6) .. 7-15
Figure 7-21. Menu jump error message (6 of 6) .. 7-15
Figure 7-22. User Stack example .. 7-18
Figure 7-23. Display Nodes for EVE example .. 7-19
Figure 7-24. Display Nodes for a secondary menu ... 7-20
Figure 7-25. Jump Nodes example—Lookup nodes .. 7-20
Figure 7-26. Jump Nodes example—Menu Pathways .. 7-21
Figure 8-1. Sample locked menu options showing required security key—Entering two question marks (??) ... 8-1
Figure 8-2. Display User Characteristics option—Sample output 8-1
Figure 8-3. Diagram Menus option—Sample user dialogue 8-2
Figure 8-4. Key Management menu options .. 8-2
Figure 8-5. Attributes for the Provider security key—Sample user dialogue 8-4
Figure 8-6. Reindex the users key's option .. 8-5
Figure 9-1. Delegate's Menu Management options ... 9-2
Figure 9-2. Edit a User's Options—Sample user dialogue 9-3
Figure 9-3. Limited File Manager Options (Build)—Sample user dialogue 9-6
Figure 9-4. Delegating Options: Select Options to be Delegated option—Sample user dialogue 9-8
Figure 10-1. Alert—Sample user message .. 10-1
Figure 10-2. View Alerts "VA" option—Sample user dialogue 10-3
Figure 10-3. Alert Management menu options ... 10-6
Figure 10-4. Report Menu for Alerts menu options .. 10-8
Figure 11-1. Sample message received when "pinging" a domain address 11-6
Figure 11-2. XQSCHK server option—Sample MailMan return message 11-7
Figure 12-1. Help frame example ... 12-1
Figure 12-2. Display a help frame for an option—Entering one question mark (?) and option name..... 12-2
Figures and Tables

Figure 12-3. Display a help frame for an option—Entering three question marks (???) 12-2
Figure 12-4. Display a help frame for an option—Entering four question marks (????) 12-3
Figure 12-5. Help Processor menu options ... 12-4
Figure 12-6. Display/Edit Help Frames option—Displaying help using the ?option syntax 12-4
Figure 12-7. List Help Frames option—Sample user dialogue .. 12-4
Figure 12-8. Estimating the size of the HELP FRAME file (#9.2) using Kernel's Block Count utility 12-6
Figure 12-9. Linking help frames to an option—Sample user dialogue .. 12-7
Figure 13-1. List Error Screens option .. 13-3
Figure 13-2. Add Error Screens option .. 13-3
Figure 13-3. Edit Error Screens option ... 13-3
Figure 13-4. Remove Error Screens option ... 13-4
Figure 13-5. Error processing options ... 13-4
Figure 13-6. Choosing the number of days to leave errors in the error trap 13-5
Figure 13-7. Choosing a start and end date range to delete errors from the error trap 13-5
Figure 13-8. Error trap display option—Sample user dialogue .. 13-6
Figure 13-9. Local symbol table help .. 13-7
Figure 13-10. Choosing to examine the operating system's error log—Sample user dialogue 13-7
Figure 14-1. Choosing the home device ... 14-1
Figure 14-2. Choosing a printer device ... 14-1
Figure 14-3. Choosing the closest printer device .. 14-1
Figure 14-4. Device syntax help—One question mark (?) ... 14-2
Figure 14-5. Displaying devices help—Two question marks (??) .. 14-2
Figure 14-6. Sample printer listing ... 14-2
Figure 14-7. Specifying a device and queuing a print job—Sample user dialogue (1 of 2) 14-3
Figure 14-8. Specifying a device and queuing a print job—Sample user dialogue (2 of 2) 14-4
Figure 14-9. Queuing a print job—Sample user dialogue ... 14-4
Figure 14-10. Terminal-type device entry—Without pauses ... 14-4
Figure 14-11. Terminal-type device entry—With pauses ... 14-5
Figure 14-12. Partial Device specification—Unknown subtype ... 14-5
Figure 14-13. Device specification—Four semicolon piece: Sample .. 14-5
Figure 14-14. Device specification—Four semicolon piece: Syntax ... 14-5
Figure 14-15. Device syntax—Specifying a spool document name: Sample formats (1 of 2) 14-6
Figure 14-16. Device syntax—Specifying a spool document name: Sample formats (2 of 2) 14-6
Figure 14-17. Specifying a device—Using alternate syntax ... 14-7
Figure 15-1. Device Edit options .. 15-6
Figure 15-2. HFS device—Sample data entry screen ... 15-7
Figure 15-3. HFS device—Sample DEVICE file entries ... 15-7
Figure 15-4. HFS device—Sample data entry screen with the Terminal Type CLOSE EXECUTE... 15-8
Figure 15-5. NULL device—Sample data entry screen ... 15-9
Figure 15-6. NULL device—Sample DEVICE file entries ... 15-9
Figure 15-7. BROWSER device—Sample DEVICE file entries .. 15-10
Figure 15-8. P-MESSAGE device—Sample DEVICE file entries ... 15-10
Figure 15-9. TELNET device—Sample DEVICE file entries (1 of 2) .. 15-10
Figure 15-10. TELNET device—Sample DEVICE file entries (2 of 2) ... 15-11
Figure 15-11. Enter/Edit Kernel Site Parameters option—ScreenMan form 3: MIXED OS (#.05) and SECONDARY HFS DIRECTORY (#320.2) fields .. 15-12
Figure 15-12. Terminal type edit options ... 15-14
Figure 15-13. DA Return Code Edit option .. 15-16
Figure 15-14. Device management—Troubleshooting options ... 15-17
Figure 15-15. Displaying signon devices on a specific CPU—Sample user dialogue 15-18
Figure 15-16. Displaying signon devices with a specific $I—Sample user dialogue 15-18
Figure 15-17. Global listing for device cross-references—$I value = 99 and IEN = 251 15-19
Figure 15-18. Global listing for virtual terminal device cross-references—$I value = _TNA and IEN = 251 ... 15-19
Figure 16-1. Choosing a Host File Server (HFS) device—Sample user dialogue 16-1
Figure 16-2. Host File Server Device Edit option ... 16-2
Figure 16-3. Host File Server device for Caché and GT.M—Sample settings 16-3
Figure 17-1. Unable to send output to a spool device—Sample message 17-1
Figure 17-2. Specifying spooled output margin and length .. 17-1
Figure 17-3. Spool document name prompt .. 17-2
Figure 17-4. Specifying the spool device and document name .. 17-2
Figure 17-5. Spooling output to a spool device on the same CPU ... 17-2
Figure 17-6. Queuing output to a spool device ... 17-2
Figure 17-7. Spooler Parameters at the Device prompt (summary) .. 17-3
Figure 17-8. Spooler Menu options ... 17-3
Figure 17-9. Formatting/Sending a document to a spool device to print as a MailMan message—Sample user dialogue .. 17-5
Figure 17-10. Make spool document into a mail message option .. 17-5
Figure 17-11. Edit User's Spooler Access option ... 17-7
Figure 17-12. Edit User's Spooler Access—Sample user dialogue ... 17-7
Figure 17-13. Spool Management menu options .. 17-8
Figure 21-3. Sample Volume Set setup on FORUM ... 21-14
Figure 21-4. UCI Association Table Edit option ... 21-17
Figure 21-5. VOLUME SET file (#14.5) standardized VA Caché and GT.M configuration 21-18
Figure 21-6. UCI ASSOCIATION file (#14.6)—Standardized VA Caché and GT.M configuration ... 21-19
Figure 21-7. TASKMAN SITE PARAMETERS file (#14.7) standardized VA Caché and GT.M configuration ... 21-19
Figure 21-8. Customized Header Page routine ... 21-23
Figure 21-9. Customized Header Page ... 21-23
Figure 21-10. Create TASKMAN ... 21-24
Figure 21-11. Create the TASKMAN directory .. 21-25
Figure 21-12. Create system logical name for the directory with the COM files 21-25
Figure 21-13. Create system logical name for the directory with the COM files 21-25
Figure 21-14. Sample user dialogue to retrieve DCL command files 21-26
Figure 21-15. Sample user dialogue to edit TaskMan parameters ... 21-26
Figure 21-16. ZTM2WDCL.COM Command File ... 21-27
Figure 21-17. ZTM2WDCL.COM Command File ... 21-28
Figure 21-18. Example of OpenVMS User TASKMAN on ALPHA AXP Systems 21-29
Figure 21-19. Example of OpenVMS TASKMAN Queue ... 21-29
Figure 22-1. List Tasks Option .. 22-2
Figure 22-2. List Tasks option submenu options .. 22-2
Figure 22-3. All your tasks suboption—Sample of TaskMan tasks running 22-3
Figure 22-4. Dequeue Tasks option .. 22-4
Figure 22-5. Requeue Tasks option ... 22-5
Figure 22-6. Delete Tasks option .. 22-6
Figure 22-7. Cleanup Task List option ... 22-6
Figure 22-8. Monitor Taskman option ... 22-7
Figure 22-9. Sample Monitor TaskMan screen .. 22-8
Figure 22-10. TaskMan monitor actions ... 22-11
Figure 22-11. Options for inspecting tasks in the TaskMan Monitor's Lists 22-11
Figure 22-12. Check Taskman's Environment option ... 22-13
Figure 22-13. Check TaskMan's Environment option—First screen 22-13
Figure 22-14. Check TaskMan's Environment option—Second screen 22-14
Figure 22-15. Restart Task Manager option ... 22-14
Figure 22-16. Place Taskman in a WAIT State option .. 22-15
Figure 22-17. Remove Taskman from WAIT State option .. 22-15
Figures and Tables

Figure 22-18. Stop Task Manager option ... 22-16
Figure 22-19. SYNC flag file control option .. 22-16
Figure 22-20. Clean Task File option ... 22-17
Figure 22-21. Print Options Recommended for Queueing and Print Options that are Scheduled to run options ... 22-18
Figure 22-22. Schedule/Unschedule Options option ... 22-19
Figure 22-23. One-time Option Queue option .. 22-24
Figure 22-24. Show Error Log option ... 22-25
Figure 22-25. Clean Error Log Over Range Of Dates 22-25
Figure 22-26. Purge Error Log Of Type Of Error option 22-26
Figure 22-27. Delete Error Log option .. 22-26
Figure 22-28. ^%ZTSCH Global Structure ... 22-30
Figure 22-29. TASKS File (#14.4) nodes (1 of 2) ... 22-31
Figure 22-30. TASKS File (#14.4) nodes (2 of 2) ... 22-31
Figure 23-1. KIDS menu options ... 23-2
Figure 23-2. Edits and Distribution menu options ... 23-3
Figure 23-3. Installation menu options .. 23-3
Figure 23-4. KIDS file diagram .. 23-4
Figure 23-5. KIDS Installation menu options ... 23-8
Figure 23-6. Load a Distribution option—Sample user dialogue 23-9
Figure 23-7. Loading transport globals from a distribution—Flowchart 23-11
Figure 23-8. Print Transport Global option—Sample printed transport global ... 23-13
Figure 23-9. Compare Transport Global to Current System option—Sample comparison output ... 23-14
Figure 23-10. Compare Transport Global to Current System option—Sample comparison output in columnar format ... 23-15
Figure 23-11. Queued KIDS installation—Sample installation task 23-17
Figure 23-12. Answering installation questions for a distribution—Flowchart 23-18
Figure 23-13. Installation progress—Sample output .. 23-19
Figure 23-14. KIDS Global distribution—Sample message 23-21
Figure 23-15. Installation of a global distribution—Load a Distribution option ... 23-22
Figure 24-1. KIDS Utilities menu options ... 24-1
Figure 24-2. Build File Print option—Sample output .. 24-2
Figure 24-3. Install File Print option—Sample output 24-3
Figure 24-4 Edit Install Status option—Sample user dialogue 24-4
Figure 24-5. Convert Loaded Package for Redistribution—Sample user dialogue (1 of 2) ... 24-5
Figure 24-6. Convert Loaded Package for Redistribution—Sample user dialogue (2 of 2) 24-5
Figure 24-7. Transport a Distribution—Sample user dialogue ... 24-6
Figure 24-8. Display Patches for a Package option—Sample user dialogue ... 24-7
Figure 24-9. Purge or Install Files option—Sample user dialogue ... 24-8
Figure 24-10. Rollup Patches into a Build option—Sample user dialogue ... 24-10
Figure 24-11. Update Routine File option—Sample user dialogue ... 24-11
Figure 24-12. Verify a Build option—Sample user dialogue ... 24-11
Figure 25-1. Multi-Term Lookup Main Menu options ... 25-4
Figure 25-2. Standard Device Chart ... 25-5
Figure 25-3. Multi-Term Lookup (MTLU) option process chart .. 25-6
Figure 25-4. Multi-Term Lookup (MTLU) option—Sample user entries .. 25-7
Figure 25-5. Print Utility option process chart ... 25-8
Figure 25-6. Print Utility option—Sample user entries and sample output .. 25-9
Figure 25-7. Delete Entries From Look-Up option—Sample user entries .. 25-10
Figure 25-8. Add Entries To Look-Up File option process chart (1 of 2) .. 25-11
Figure 25-9. Add Entries To Look-Up File option process chart (2 of 2) .. 25-12
Figure 25-10. Add Entries To Look-Up File option—Sample user entries .. 25-13
Figure 25-11. Add/Modify Utility menu options ... 25-14
Figure 25-12. Add/Modify Utility option—Shortcuts process chart (1 of 2) ... 25-15
Figure 25-13. Add/Modify Utility option—Shortcuts process chart (2 of 2) ... 25-16
Figure 25-14. Add/Modify Utility option—Keywords process chart .. 25-17
Figure 25-15. Add/Modify Utility option—Adding or editing a synonym process chart (1 of 2) 25-18
Figure 25-16. Add/Modify Utility option—Adding or editing a synonym process chart (2 of 2) 25-19
Figure 25-17. Shortcut option—Sample user entries ... 25-19
Figure 25-18. Keyword option—Sample user entries ... 25-20
Figure 25-19. Synonym option—Sample user entries ... 25-20
Figure 25-20. VA FileMan Utility Functions option—Sample user entries .. 25-21
Figure 25-21. Add Entries To Look-Up File—Sample user entries ... 25-22
Figure 25-22. VA FileMan Edit File option—Sample user entries ... 25-23
Tables

Table 2-1. User's Toolbox menu options and documentation references .. 2-8
Table 2-2. Edit User Characteristics option—Editable fields ... 2-9
Table 3-1. Edit an Existing User option—Editable fields/attributes ... 3-18
Table 3-2. Deactivate a User option—Editable fields/attributes ... 3-27
Table 3-3. Kernel Signon Auditing Files ... 3-32
Table 5-1. File Access—Security level properties ... 5-5
Table 7-1. Menu diagramming options to discover tree roots and relationships between options/suboptions ... 7-5
Table 7-2. Menu Manager variables (always defined) .. 7-21
Table 9-1. Secure Menu Delegation menu options .. 9-7
Table 10-1. Alert processing codes .. 10-2
Table 11-1. SERVER ACTION field (#221) security values for server requests 11-2
Table 11-2. OPTION file (#19) field values when setting up a server option ... 11-3
Table 11-3. XQSCHK server option—Error/Warning messages ... 11-8
Table 12-1. Help system command actions ... 12-2
Table 14-1. Sample semicolon-delimited pieces at the "DEVICE: " prompt ... 14-3
Table 14-2. Alternate device attribute codes ... 14-7
Table 15-1. Device-related files global locations .. 15-1
Table 15-2. DEVICE file fields .. 15-2
Table 15-3. Device types in the TYPE Field in the DEVICE file (#3.5) .. 15-4
Table 15-4. Queuing settings .. 15-5
Table 15-5. Mixed OS Environment fields in the DEVICE file (#3.5) ... 15-5
Table 15-6. Mixed OS Environment fields in the KERNEL SYSTEM PARAMETERS file (#8989.3) 15-11
Table 15-7. Common fields in the TERMINAL TYPE file (#3.2) ... 15-13
Table 15-8. Terminal type naming conventions ... 15-14
Table 15-9. Sample period-delimited pieces used for device lookup ... 15-18
Table 16-1. HFS input/output modes of operation .. 16-1
Table 16-2. HFS-related fields in the DEVICE file (#3.5) .. 16-2
Table 16-3. HFS I/O operation modes for Caché and GT.M ... 16-3
Table 17-1. User spooler-related fields in the NEW PERSON file (#200) ... 17-7
Table 17-2. Spooler site parameter fields in the KERNEL SYSTEM PARAMETERS file (#8989.3) 17-8
Table 18-1. Fields in the DEVICE (#3.5) and TERMINAL TYPE (#3.2) files that may not be relevant for certain devices ... 18-8
Table 18-2. Escape sequences used to toggle the slaved printing modes for DEC VT220/VT320 terminals

Table 20-1. TaskMan system configuration terminology

Table 21-1. TASKMAN SITE PARAMETERS File (#14.7)—Field entries

Table 21-2. VOLUME SET File (#14.5)—Field entries

Table 21-3. UCI ASSOCIATION file (#14.6)—Partial and complete field entries

Table 21-4. DEVICE file (#3.5)—TaskMan-related field entries

Table 22-1. Special Queueing field settings

Table 22-2. Option Scheduling frequency code formats

Table 22-3. Day codes used in Option Scheduling frequency code formats

Table 22-4. Examples of Option Scheduling frequency code formats

Table 22-5. ^%ZTSCH (SCHEDULE File) nodes

Table 22-6. TaskMan task status codes

Table 22-7. TaskMan rejection messages

Table 22-8. TaskMan PAUSE states

Table 22-9. TaskMan RUN states

Table 23-1. KIDS-related terms and definitions
Orientation

How to Use this Manual

Throughout this manual, advice and instruction are offered about the numerous Kernel 8.0 tools and functionality provided for the Veterans Health Information Systems and Technology Architecture (VistA) system management and end-users. For example, site parameters are discussed in various topics throughout this manual.

The Kernel Systems Management Guide is divided into six major sections, based on the following functional divisions within Kernel:

I. Signon/Security (e.g., techniques for granting user access and monitoring computing activity)
II. Menu Manager (e.g., techniques for managing menus)
III. Device Handler
IV. TaskMan
V. Kernel Installation and Distribution System
VI. Toolkit

REF: For information on developer tools (e.g., Direct Mode Utilities and Application Program Interfaces [APIs]), see the *Kernel Developer's Guide*. Kernel and Kernel Toolkit APIs are also available in HTML format at the following VA Intranet Website:

Information on recommended system configuration and setting Kernel's site parameters, as well as lists of files, routines, options, and other components are documented in the *Kernel Technical Manual*.

Information about managing computer security, which includes a detailed description of techniques that can be used to monitor and audit computing activity, is presented in the *Kernel Security Tools Manual*.

Instructions for installing Kernel are provided in the *Kernel Installation Guide*. This guide also includes information about software application management (e.g., recommended settings for site parameters and scheduling time frames for tasked options).

This manual is further organized within each section of Kernel in the following order:

1. User Interface—Information of relevance to the general end-user.
2. System Management—Information of relevance to system managers.

When a subject is large enough (e.g., Signon/Security), separate chapters are devoted to the "User Interface" and "System Management" topics. In other cases, where the subject matter is smaller (e.g., the discussion of the Browser device), the two divisions of audience are contained entirely within a chapter or sub-chapter.
Intended Audience

The intended audience of this manual is all key stakeholders. The stakeholders include the following:

- Information Resource Management (IRM)—System administrators at Department of Veterans Affairs (VA) sites who are responsible for computer management and system security on the VistA M Servers.
- Office of Enterprises Development (OED)—VistA legacy development teams.
- Information Security Officers (ISOs)—Personnel at VA sites responsible for system security.
- Product Support (PS).

Legal Requirements

CAUTION: To protect the security of VistA systems, distribution of this software for use on any other computer system by VistA sites is prohibited. All requests for copies of Kernel for non-VistA use should be referred to the VistA site’s local Office of Information Field Office (OIFO).

Otherwise, there are no special legal requirements involved in the use of Kernel.

Disclaimers

This manual provides an overall explanation of the Kernel software; however, no attempt is made to explain how the overall VistA programming system is integrated and maintained. Such methods and procedures are documented elsewhere. We suggest you look at the various VA home pages on the Internet and VA Intranet for a general orientation to VistA. For example, go to the Office of Information and Technology (OI&T) VistA Development Intranet Website:

http://vista.med.va.gov

DISCLAIMER: The appearance of any external hyperlink references in this manual does not constitute endorsement by the Department of Veterans Affairs (VA) of this Website or the information, products, or services contained therein. The VA does not exercise any editorial control over the information you may find at these locations. Such links are provided and are consistent with the stated purpose of this VA Intranet Service.

Documentation Conventions

This manual uses several methods to highlight different aspects of the material:

- Various symbols are used throughout the documentation to alert the reader to special information. The following table gives a description of each of these symbols:
Table ii. Documentation symbol descriptions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>NOTE/REF: Used to inform the reader of general information including references to additional reading material.</td>
</tr>
<tr>
<td>☢</td>
<td>CAUTION/DISCLAIMER: Used to caution the reader to take special notice of critical information.</td>
</tr>
</tbody>
</table>

- Descriptive text is presented in a proportional font (as represented by this font).
- Conventions for displaying TEST data in this document are as follows:
 - The first three digits (prefix) of any Social Security Numbers (SSN) will begin with either "000" or "666".
 - Patient and user names will be formatted as follows: [Application Name]PATIENT,[N] and [Application Name]USER,[N] respectively, where "Application Name" is defined in the Approved Application Abbreviations document and "N" represents the first name as a number spelled out and incremented with each new entry. For example, in Kernel (KRN) test patient and user names would be documented as follows: KRNPATIENT,ONE; KRNPATIENT,TWO; KRNPATIENT,THREE; etc.
- Sample HL7 messages, "snapshots" of computer online displays (i.e., character-based screen captures/dialogues) and computer source code are shown in a non-proportional font and enclosed within a box. Also included are Graphical User Interface (GUI) Microsoft Windows images (i.e., dialogues or forms).
 - User's responses to online prompts will be boldface.
 - References to "<Enter>" within these snapshots indicate that the user should press the <Enter> key on the keyboard. Other special keys are represented within < > angle brackets. For example, pressing the PF1 key can be represented as pressing <PF1>.
 - Author's comments are displayed in italics or as "callout" boxes.
- This manual refers to the M programming language. Under the 1995 American National Standards Institute (ANSI) standard, M is the primary name of the MUMPS programming language, and MUMPS will be considered an alternate name. This manual uses the name M.
- Descriptions of direct mode utilities are prefaced with the standard M ">" prompt to emphasize that the call is to be used only in direct mode. They also include the M command used to invoke the utility. The following is an example:
 >D ^XUP
- All uppercase is reserved for the representation of M code, variable names, or the formal name of options, field/file names, and security keys (e.g., the XUPROGMODE security key).
How to Obtain Technical Information Online

Exported VistA M Server-based software file, routine, and global documentation can be generated through the use of Kernel, MailMan, and VA FileMan utilities.

NOTE: Methods of obtaining specific technical information online will be indicated where applicable under the appropriate topic.

REF: See the Kernel Technical Manual for further information.

Help at Prompts

VistA M Server-based software provides online help and commonly used system default prompts. Users are encouraged to enter question marks at any response prompt. At the end of the help display, you are immediately returned to the point from which you started. This is an easy way to learn about any aspect of VistA M Server-based software.

Obtaining Data Dictionary Listings

Technical information about VistA M Server-based files and the fields in files is stored in data dictionaries (DD). You can use the List File Attributes option on the Data Dictionary Utilities submenu in VA FileMan to print formatted data dictionaries.

REF: For details about obtaining data dictionaries and about the formats available, see the "List File Attributes" chapter in the "File Management" section of the VA FileMan Advanced User Manual.

Assumptions about the Reader

This manual is written with the assumption that the reader is familiar with the following:

- VistA computing environment:
 - Kernel—VistA M Server software
 - VA FileMan data structures and terminology—VistA M Server software
- Microsoft Windows environment
- M programming language
Reference Materials

Readers who wish to learn more about Kernel should consult the following:

- *Kernel Release Notes*
- *Kernel Installation Guide*
- *Kernel Systems Management Guide* (this manual)
- *Kernel Developer's Guide*
- *Kernel Technical Manual*
- *Kernel Security Tools Manual*
- Kernel VA Intranet Website:

 http://vista.med.va.gov/kernel/index.asp

 This site contains other information and provides links to additional documentation.

VistA documentation is made available online in Microsoft Word format and in Adobe Acrobat Portable Document Format (PDF). The PDF documents *must* be read using the Adobe Acrobat Reader, which is freely distributed by Adobe Systems Incorporated at the following Website:

 http://www.adobe.com/

VistA documentation can be downloaded from the VHA Software Document Library (VDL) Website:

 http://www.va.gov/vdl/

VistA documentation and software can also be downloaded from the Enterprise Support (ES) anonymous directories:

- Preferred Method download.vista.med.va.gov

 NOTE: This method transmits the files from the first available FTP server.

- Albany OIFO ftp.fo-albany.med.va.gov
- Hines OIFO ftp.fo-hines.med.va.gov
- Salt Lake City OIFO ftp.fo-slc.med.va.gov
Orientation
1. Introduction

This manual provides descriptive information about Kernel for use by Information Resource Management (IRM) staff, end users, Automated Data Processing Application Coordinators (ADPACs), and application developers.

This manual assumes that the reader is familiar with the computing environment of the VA's Veterans Health Information Systems and Technology Architecture (VistA), and understands VA FileMan data structures and terminology. Some understanding of the M programming language is helpful for some parts of the manual. No attempt is made to explain how the overall VistA programming system is integrated and maintained; such methods and procedures are documented elsewhere. This manual does, however, provide an explanation of Kernel utilities, describing how they can be used to establish a standard user interface, monitor and manage the computer system, customize the environment according to local site needs, and define new areas of computing activities for users.

Kernel is a vendor-independent applications development environment, as well as a run-time environment providing standard vendor-independent services to applications software. It is not an operating system, but a set of utilities and associated files that are executed in an M environment. Kernel is central to VA VistA software strategy, in that it permits any VistA software application to run without modification on any hardware/software platform that supports American National Standards Institute (ANSI) Standard M. All operating system-specific, M implementation-specific, or hardware-specific code is isolated to Kernel. Therefore, porting VistA to a new environment requires modification only to a handful of Kernel routines.

As a whole, Kernel provides a computing environment that permits controlled user access, presents menus for choosing from various computing activities, allows device selection for output, enables the tasking of background processes, and offers numerous tools for system management and application programming. Kernel also provides tools for software distribution and installation.

VistA users see the same user interface, regardless of the underlying system architecture, because VistA applications are built using Kernel facilities for signon, database access, option selection, and device selection. As a result, user interaction with the system is constant across VistA applications.

1.1 Users

Kernel provides the doorway into the VistA computer system, the menus that tie together the options and utilities to enhance those options.

For the doorway, Kernel provides the Access and Verify code system that you use to establish your identity to the VistA computer system.

Once you have signed on, Kernel provides your menus. Each user on the computer system, as identified by their Access code, has their own individual set of menus and options.

The person or department managing the computer system organizes each user's menus. From your menu, you can run any application the computer system managers have made available to you. Kernel's menu system is what is used to make VistA applications (e.g., Scheduling, Nursing, and Personnel) available to users.
To produce output from VistA applications (e.g., to printers or to the terminal screen), Kernel provides a common device interface called the Device Handler. To queue a job rather than run it directly, the Device Handler links to a common queuing system called TaskMan.

This manual contains information about these and other parts of Kernel. The intent of this manual is to help you learn to use Kernel and take fullest advantage of the facilities it provides. This manual also includes information for system managers and developers; to find the information of interest to you, the general user, look for chapters and sub-chapters containing the phrase "User Interface" in their titles.

ADP Application Coordinators (ADPACs) may want to skim through the *Kernel Systems Management Guide* and concentrate on the user interface chapters and sub-chapters, particularly issues concerning every Kernel user (e.g., signon process and menu navigation).

1.2 System Managers

Kernel provides the backbone of an M computing platform, providing a mechanism to organize M programs as options, and a way to organize those options into a menu system for users. Kernel provides the following major system management components:

- Alerts provide an integrated notification system.
- Device Handler provides a common device interface.
- Electronic Signature Codes provide a secure electronic approval system.
- File Access Security system manages access to VA FileMan files.
- Kernel Installation and Distribution System (KIDS) provides an application distribution and installation system.
- Menu Manager provides a common menu management system.
- Signon/Security organizes users and allows secure logons.
- TaskMan provides a common job queuing system.

Kernel provides the system manager the means to manage a secure, multi-user M-based computer system. Some typical daily tasks performed by system managers using Kernel system management tools include:

- Setting up accounts for new users and terminating accounts for expired users.
- Adding and subtracting options from users' menus.
- Controlling file access for users.
- Monitoring TaskMan task queues.
- Terminating unwanted tasks.
- Monitoring devices.
- Creating and modifying links to output devices in the DEVICE file (#3.5).
- Installing software applications.
Within chapters and sub-chapters of this manual you can find general user information in the "User Interface" topic and system manager information in the "System Management" topic.

REF: For information on developer tools (e.g., Direct Mode Utilities and Application Program Interfaces [APIs]), see the *Kernel Developer's Guide*. Kernel and Kernel Toolkit APIs are also available in HTML format at the following VA Intranet Website:

Information on recommended system configuration and setting Kernel's site parameters, as well as lists of files, routines, options, and other components are documented in the *Kernel Technical Manual*.

Information about managing computer security, which includes a detailed description of techniques that can be used to monitor and audit computing activity, is presented in the *Kernel Security Tools Manual*.

Instructions for installing Kernel are provided in the *Kernel Installation Guide*. This guide also includes information about software application management (e.g., recommended settings for site parameters and scheduling time frames for tasked options).
I. Signon/Security
2. **Signon/Security: User Interface**

The first step you take each time you access the computer system is called signing on. When you sign on to the VistA computer system, you are required to enter an Access and Verify code. These codes identify you to the computer system, and, as these codes are private to you, serve to prevent unauthorized access to your account.

You are shielded from most steps in the signon process. In the background, Kernel's Signon/Security establishes the proper environment, records and monitors the signon event, and takes you to Menu Manager. Menu Manager presents a list of menu options that let you interact with other parts of Kernel and software applications. When you complete a session on the computer system, you sign out to exit.

2.1 Signing On

To authenticate yourself to VistA (Kernel's "front door"), you need to sign onto the system by entering your Access and Verify codes. The user signon (authentication) interface varies based on the type of Vista application software being run:

- **Character User Interface (CHUI)-based applications**—This includes M-based roll-and-scroll applications used to access Kernel on the VistA M Server (e.g., Laboratory, Pharmacy). With this type of authentication interface, users are first prompted with an "ACCESS CODE:" prompt. Entering an Access code and pressing the `<Enter>` key brings up the "VERIFY CODE:" prompt.

 REF: For a sample of the roll-and-scroll signon prompts, please see Figure 2-1.

- **Graphical User GUI client/server applications**—This includes rich client or client/server applications used to access Kernel on the VistA M Server via RPC Broker (Delphi/Pascal)- or VistALink (Java)-based components (e.g., Computerized Patient Record System [CPRS] or Care Management). With this type of authentication interface, users are presented with a GUI signon dialogue box. Users can click in or tab to the Access and Verify code entry fields and press the **OK** button.

 REF: For a sample of the RPC Broker signon dialogue box and more information on RPC Broker, see the RPC Broker documentation located on the VHA Software Document Library (VDL) Website:

Signon/Security: User Interface

- Web-based applications—This includes Web-based applications that use a client Web browser and Kernel Authentication and Authorization Java (2) Enterprise Edition (KAAJEE) to access Kernel on the VistA M Server (e.g., Blind Rehab). With this type of authentication interface, users are presented with a GUI signon dialogue Web page. Users can click in or tab to the Access and Verify code entry fields and press the Login button.

REF: For a sample of the KAAJEE signon dialogue Web page and more information on KAAJEE, see the KAAJEE documentation located on the VHA Software Document Library (VDL) Website:

http://www.va.gov/vdl/application.asp?appid=151

Your Access code establishes your unique identity to Kernel. Your matching Verify code corroborates your identity completing the VistA Kernel authentication process. Asterisks only are displayed when you enter your Access and Verify codes so that the actual characters are not displayed (echoed back) on the screen. Codes are encrypted after they are entered and compared with the encrypted stored values for a match.

REF: For a description of valid and strong Access and Verify codes, see the "Defining a Strong Verify Code" topic that follows in this chapter.

Figure 2-1. Signing on to VistA—Sample roll-and-scroll user authentication dialogue

| ACCESS CODE: ******** <Enter> |
| VERIFY CODE: ******** <Enter> |
| Device: _TNA8628: |
| Not a valid ACCESS CODE/VERIFY CODE pair. |
| ACCESS CODES: ******** <Enter> |
| VERIFY CODES: ******** <Enter> |
| Good evening FRIEND You last signed on Apr 21,1992 at 07:57 |
| There was 1 unsuccessful attempt since you last signed on: |
| You were last executing the 'MailMan Menu' menu option. |
| Do you wish to resume? YES// |

Entering a valid Access and Verify code combination completes the signon authentication process and takes you beyond Signon/Security into Kernel's Menu Manager (or other security role-based access keys) used to authorize your appropriate level of access to data or application functionality.

If you have not been assigned a primary menu, Kernel displays a message indicating that access is not allowed, and signs you out from the computer system. Similarly, if your primary menu has been marked as "out-of-order" (an option attribute), Kernel also denies you access (see Figure 2-2).

REF: For more information on primary menus, see the "Menu Manager" section in this manual.
2.1.1 Defining a Strong Verify Code

While Access codes are a unique identifier (i.e., username) for your user record in Kernel's NEW PERSON file (#200), Verify codes are secret passwords assuring that the person signing on is the one for whom the user record was established. You rarely need to be issued a new Access code, but you must change your Verify code (i.e., password) if you suspect that someone else has used it to gain access to the system or when your Verify code has expired (i.e., every 90 days or less). You can change your Verify code with the Edit User Characteristics option, which is available from the Common menu User's Toolbox menu.

As of Kernel Patch XU*8.0*180, strong Access and Verify codes must adhere to the following criteria:

- Access and Verify codes cannot be identical.
- Verify codes (i.e., passwords) must be at least 8 characters in length.
- Strong passwords in general contain at least three of the following four character types:
 - Uppercase letters
 - Lowercase letters
 - Numbers
 - Special characters/symbols that are neither letters nor numbers (e.g., -, _, #, &,
 $, *

NOTE: Some non-VistA-based systems restrict certain special characters/symbols used as part of a username or password.

Because VistA is case-insensitive, VistA only has three sets of characters from which to build a strong Verify code (i.e., password):

- Letters (of any case)
- Numbers
- Special characters/symbols that are neither letters nor numbers (e.g., -, _, #, &,

NOTE: Some non-VistA-based systems restrict certain special characters/symbols used as part of a username or password.

- Verify codes must be changed at least every 90 days (or less). You must change your Verify code at periodic intervals as specified by IRM. Information systems shall not permit re-assignment of the last three passwords used. When required, you will be prompted during signon to pick a new Verify code.
- Accounts that have been inactive for 90 days shall be disabled.
To preclude password guessing, an intruder lockout feature shall suspend accounts after five invalid attempts to log on. Where around-the-clock system administration service is available, system administrator intervention shall be required to clear a locked account. Where around-the-clock system administration service is not available, accounts shall remained locked out for at least ten minutes.

NOTE: These rules are taken from the *VA Account and Password Management Interim Policy* document.

All of these restrictions are enforced whenever Access or Verify codes are created or changed. These changes were made to meet VHA DIRECTIVE 6210 available at the following VA Intranet Website:

http://vaww1.va.gov/vhapublications/ViewPublication.asp?pub_ID=54

REF: For more tips and general advice regarding Access and Verify codes and security in general, see the *Kernel Security Tools Manual*.

2.1.1.1 Why Longer Passwords?

Passwords used to access VA systems must be at least 8 characters long because longer passwords are stronger, and thus, harder to guess than shorter ones.

The more tries it takes a hacker or a program to guess a password, the more secure the system is. Adding just one character to the length of a password greatly increases the difficulty of guessing the password.

For an 8-character password made up of letters and numbers (assuming you can repeat characters and that there are no restrictions, such as requiring the first character to be a letter), there are 36 possibilities for the first position, 36 possibilities for the second position, 36 possibilities for the third position, and so on. Thus, there are $36 \times 36 = 2,821,109,907,456$ possibilities for an 8-character password.

If you have forgotten your Verify code (password), the site's Information Security Officer (ISO) should delete the existing code, and then instruct you to sign on again. At the "Verify code" prompt simply press the <Enter> key without making any other entries. You will be prompted to enter a new Verify code and then re-prompted to enter the same Verify code again as confirmation. If you do not want to bother inventing a Verify code, entering a question mark ("?") at the Verify code prompt displays a possible although cryptic choice (e.g., DKMl&493). Entering a question mark a second time displays another choice. When you log off, you're reminded to remember the new Verify code for use at your next signon.

2.1.2 LOGIN Menu Template

You can execute a script of options on your first signon of the day by having a MENU template called LOGIN.

REF: For more information, see the "Menu Manager: User Interface" chapter in this manual.
2.1.3 Signon Shortcuts

In roll-and-scroll VistA, to reach the primary menu in one step at the "ACCESS CODES:" prompt, you can enter the Access and Verify code as one string separated by a semicolon:

![Figure 2-3. Entering the Access and Verify codes at the same time](accesscode;verifycode)

Good afternoon. You last signed on today at 12:00

To "jump start" directly to a particular option, you can specify the name of an option after another semicolon:

![Figure 2-4. Entering the Access and Verify codes at the same time and jumping directly to a specified option](accesscode;verifycode;Intro)

Good afternoon. You last signed on today at 12:00

INTROductory text edit

To force the Kernel query of the terminal type identity, you can include a colon anywhere in the string.

REF: If you want to avoid the terminal type query, see "Terminal Type Prompt" topic that follows.

2.1.4 Normal Signoff

When you complete a session on the computer system, you should sign off the system so that no one can come along and use the computer system under your identity. There are several ways you can sign off of the system.

![Figure 2-5. System commands: Menu options for signoff](SYSTEM COMMAND OPTIONS)

<table>
<thead>
<tr>
<th>SYSTEM COMMAND OPTIONS</th>
<th>[XUCOMMAND]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halt</td>
<td>[XUHALT]</td>
</tr>
<tr>
<td>Continue</td>
<td>[XUCONTINUE]</td>
</tr>
<tr>
<td>Restart Session</td>
<td>[XURELOG]</td>
</tr>
</tbody>
</table>

One way to sign off is to enter "halt" at any menu prompt. When you sign off using "halt," at next signon, after entering Access and Verify codes, your normal primary menu will be your first menu.

Or, to sign off, you can enter "continue." At your next signon, after entering Access and Verify codes, your last-used menu when you signed off will be your first menu for that session.
If remotely connected via modem or other network device, you can enter "restart" to sign out of Kernel without dropping the communication line.

Finally, you can sign off without using any of these shortcuts simply by pressing <Enter> at each menu prompt to step back up the menu pathway and finally exit.

REF: For more information on menus and menu prompts, see the "Menu Management" section in this manual.

2.1.5 Abnormal Signoff and Error Handling

If you encounter an error while using the VistA computer system, Kernel will trap it, issue the message "Sorry 'bout that", and attempt to return you to your primary menu. Kernel can recover from most error conditions and, given a suitable environment, will permit you to continue. Some error conditions, however, cause an abnormal exit such that you are immediately logged off the computer system. When this happens, you can sign on again if you still need to use the computer system.

2.1.6 Terminal Type Prompt

When signing on, you may be prompted to enter a terminal type. You should not see this prompt very often, however, since Kernel usually can identify your terminal type without needing to prompt you to enter one. If you are prompted, you should enter the name of the actual terminal type to use (e.g., C-VT220). The entered terminal type tells Kernel how to support screen-oriented and other enhanced displays. If unusual circumstances arise and the wrong terminal type is in effect, you can redefine it by using the Edit User Characteristics option (available through the User's Toolbox menu, discussed below).

The Edit User Characteristics option lets you edit a setting (ASK DEVICE TYPE AT SIGN-ON) that allows you to decide whether to bypass the usual terminal type query. If you always work at the same terminal and want to save a small amount of time during the signon process, you can set ASK DEVICE TYPE AT SIGN-ON to DON'T ASK. Kernel then assumes that your last terminal type should be used as the default.

If you have ASK DEVICE TYPE AT SIGN-ON set to DON'T ASK, and sign on using a terminal whose terminal type is different from the one normally used, you should signon by including a colon (":") after your Access code. This forces Kernel to query the terminal for its identity. Alternatively, once signed on, you could invoke the Edit User Characteristics option to change your terminal type to the one currently in use. Or, you could use this option to reset the ASK DEVICE TYPE AT SIGN-ON question to ASK, log off and sign back on (whereby Signon/Security will obtain the correct terminal type identification).

2.2 Escaping from a Jumbled Screen

One consequence of your signon terminal type not matching the actual one being used is that full-screen display could appear jumbled. To escape from a ScreenMan form (e.g., Edit User Characteristics), all you need to do is enter two carets ("^"), each followed by the <Enter> key. To escape from VA FileMan's Screen Editor, you should press <PF1>-E to exit.
2.3 Alerts

After signing on, you could be presented with an alert notice just before the menu prompt. If so, you need to pick the View Alerts "VA" option [XQALERT] for viewing alerts to take care of urgent, pending matters.

REF: For more information about alerts, see the "Alerts" chapter, in the "Menu Manager" section in this manual.

![Figure 2-6. System commands: View Alerts "VA" option](image)

2.4 User's Toolbox Menu

The User's Toolbox menu [XUSERTOOLS] is available from any menu prompt, by entering the toolbox synonym (e.g., "TBOX") or "User's Toolbox." It makes available, from one menu, some of the most frequently used Kernel options.

![Figure 2-7. User's Toolbox menu options](image)
The following table lists the options contained in the User's Toolbox menu and the chapters in this manual where each option is described:

<table>
<thead>
<tr>
<th>Option Text</th>
<th>Chapter Described</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change my Division [XUSER DIV CHG]</td>
<td>Signon/Security: User Interface</td>
</tr>
<tr>
<td>Electronic Signature code Edit [XUSESIG]</td>
<td>Electronic Signatures</td>
</tr>
<tr>
<td>Menu Templates [XU-SPL-MENU]</td>
<td>Menu Manager: User Interface</td>
</tr>
<tr>
<td>Spooler Menu [XU-SPL-MENU] (locked with XUMGR security key)</td>
<td>Spooling</td>
</tr>
<tr>
<td>Switch UCI [XU SWITCH UCI]</td>
<td>Signon/Security: User Interface</td>
</tr>
<tr>
<td>TaskMan User [XUTM USER]</td>
<td>TaskMan: User Interface</td>
</tr>
<tr>
<td>User Help [XUUSERHELP]</td>
<td>(accesses online help)</td>
</tr>
</tbody>
</table>

2.5 Change my Division Option

The Change my Division option [XUSER DIV CHG] allows users to select from a list of divisions, if any, stored for that user in the NEW PERSON file (#200).
2.6 Edit User Characteristics Option

The Edit User Characteristics option [XUSEREDITSELF] is one of the options available from the User's Toolbox menu. It allows you define some characteristics of your online environment via ScreenMan, as shown below:

![Figure 2-8. Edit User Characteristics option—ScreenMan form](image)

There are a number of NEW PERSON file (#200) field values that you can edit with the Edit User Characteristics option:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL (#1)</td>
<td>Enter your initials, which can serve as an alternate way for users to specify your account (e.g., when sending mail to you).</td>
</tr>
<tr>
<td>NICK NAME (#13)</td>
<td>Enter a nick name, which can serve as an alternate way for users to specify your account (e.g., when sending mail to you).</td>
</tr>
<tr>
<td>Telephone Contact Information:</td>
<td>Enter the appropriate phone numbers in the fields indicated.</td>
</tr>
<tr>
<td>• PHONE (HOME) (#.131)</td>
<td></td>
</tr>
<tr>
<td>• OFFICE PHONE (#.132)</td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>• VOICE PAGER (###137)</td>
<td></td>
</tr>
<tr>
<td>• DIGITAL PAGER (###138)</td>
<td></td>
</tr>
<tr>
<td>ASK DEVICE TYPE AT SIGN-ON (#200.05)</td>
<td>This field controls whether Kernel should determine what kind of terminal you are using when you sign on. If this is set to DON'T ASK, Kernel assumes you are using the same kind of terminal you used the last time you signed on. This can cause problems if you are using a different kind of terminal (screen displays may not work properly), so this should normally be set to ASK.</td>
</tr>
<tr>
<td>AUTO MENU (#200.06)</td>
<td>This field determines whether, in the menu system, a list of items on the current menu is displayed with the menu prompt. Beginning users should usually set AUTO MENU to YES so that they can see menu items for each menu. Experienced users who are familiar with their menus may prefer to set this field to NO, which makes menu displays speedier, since individual items on each menu are not displayed.</td>
</tr>
<tr>
<td>TYPE-AHEAD (#200.09)</td>
<td>This field controls whether characters you type faster than the system can process end up being processed or not. Normally you should set TYPE-AHEAD to YES, so that keystrokes you enter are not lost due to system slowness.</td>
</tr>
<tr>
<td>TEXT TERMINATOR (#31.2)</td>
<td>The TEXT TERMINATOR is a setting used by VA FileMan's Line Editor. When you are using the Line Editor and are importing text from an external source, you may not want a blank line to indicate the end-of-file, which could prematurely terminate the text transfer. By default, the TEXT TERMINATOR in VA FileMan's Line Editor is the carriage return character (<Enter>). Setting this to another character string, like ZZ (something that will not be encountered in the target text) can permit downloading without interruption. If you change the setting of the TEXT TERMINATOR from the default of the carriage return character, you will need to remember your TEXT TERMINATOR when using the Line Editor; otherwise, you will be unable to exit the Line Editor.</td>
</tr>
<tr>
<td>REF: For more information on the TEXT TERMINATOR, see the VA FileMan Getting Started Manual.</td>
<td></td>
</tr>
<tr>
<td>PREFERRED EDITOR (#31.3)</td>
<td>Users can choose which text editor Kernel uses when you edit word-processing fields on the system. You can choose any editor defined on your system.</td>
</tr>
<tr>
<td>NETWORK USERNAME (#501.1)</td>
<td>Enter your network user name. This is the username that is used by the Windows Active Directory (AD). It allows VISN data extracts to link the VistA user with their network user name. Format: "VHA" + 3 character station ID + first 5 characters of last name + first character of first name For example, for user One Xuuser at Station ID 999, the network user name would be: VHA999XUUSEO</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Holders of the XUMGR security key can override this field.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>This field was added to the NEW PERSON file (#200) with Kernel Patch XU8.0514.</td>
</tr>
<tr>
<td>VERIFY CODE (#7.2)</td>
<td>Users can change their VERIFY CODE by answering YES to this field.</td>
</tr>
<tr>
<td></td>
<td>First enter your current VERIFY CODE; then, enter a new VERIFY CODE.</td>
</tr>
<tr>
<td></td>
<td>You will be asked to confirm the new VERIFY CODE by entering it a second</td>
</tr>
<tr>
<td></td>
<td>time; if you confirm it, the new VERIFY CODE will take effect immediately.</td>
</tr>
</tbody>
</table>
2.7 Display User Characteristics Option

The Display User Characteristics option [XUUSERDISP], like Edit User Characteristics, is an option in the User’s Toolbox menu. It prints out a description of many of the characteristics of your current computing environment, including some of the characteristics that can be set through the Edit User Characteristics option.

![Sample output and user dialogue]

XUSER,TWO (#9999) DEVICE: DEVICE: TELNET ($I: TNA730:) JOB: 541754169

ENVIRONMENT

Site OAKLAND
UCI KRN,KDE
Signed on .. 08:48
Terminal type C-VT100

Person Class: Physicians (M.D. and D.O.)
Physician/Osteopath
Pathology, Anatomic

KEYS HELD

XMMGR XUPROG XUPROGMODE

MENU PATH

SYSTEM COMMAND OPTIONS (XUCOMMAND)

User’s Toolbox (XUSERTOOLS)
Display User Characteristics (XUUSERDISP)

'^' to escape, <CR> to view Mailman user info: <Enter>

Current Banner: Technical Writer
Last used MailMan: 07/12/06@15:09
NEW messages: 274 (274 in the IN basket)

Office phone: (555) 555-5555
Fax: (555) 555-5555
Add’l phone: (555) 555-5555
Add’l phone: (555) 555-5555

Introduction:
My name is One Xmuser and I am one of the Technical Writers for the Common Services (CS) products/projects (e.g., Broker, Components, Kernel, VA FileMan, MailMan, Toolkit).

Mail Groups:
ISC STAFF (Public)
KERNEL PROGRAMMERS (Public)
2.8 Switch UCI Option

The Switch UCI option [XU SWITCH UCI] allows users to select from a list of UCIs, if any, stored for that user in the NEW PERSON file (#200).

2.9 Summary

VistA's Kernel's Signon/System Security module provides the means for signing into Kernel with a unique identity. Once you complete the signon process, you are sent to Kernel's menu system, where you can run any option your system manager has placed in your menus. When you finish a computer session, always be sure to sign off; this protects your account from misuse by someone else.

This chapter describes the system management tools for Kernel's Signon/Security module.

3.1 Signon Process

If signons are enabled, as shown in the Signon Flow Chart that follows, the signon process begins with a gathering of information from the KERNEL SYSTEM PARAMETERS file (#8989.3) and then from the DEVICE file (#3.5) to determine whether to allow signon for this session and, if so, how to create an appropriate environment. If, for example, the MAX SIGNON ALLOWED limit has been reached, the signon attempt will fail. If the current device is tied to a routine (as specified in the TIED ROUTINE field of the DEVICE file [#3.5]), that routine is executed and the session is halted. If not, the user is prompted for Access and Verify codes. After a successful signon, attributes for that user are then retrieved from the NEW PERSON file (#200). Signon/Security then sends the user to Menu Manager. If a primary menu is associated with the device (PRIMARY MENU OPTION field in the DEVICE file [#3.5]), that menu is presented. Otherwise, the user's primary menu is presented. If the user does not have a primary menu (the PRIMARY MENU OPTION field in the NEW PERSON file [#200] is NULL), the session is halted.

The signon flow chart in this topic (see Figure 3-4) illustrates the procedural steps taken by Kernel's Signon/Security system to determine whether to permit signons and, if so, how to create an appropriate computing environment. Typically, after site parameters and device characteristics are checked, the user is prompted for Access and Verify codes, user attributes are collected, and a primary menu prompt is presented.

3.1.1 Introductory Text

Before gathering system parameters or prompting for Access and Verify codes, Signon/Security displays contents of the INTRO TEXT field in the KERNEL SYSTEM PARAMETERS file (#8989.3). The text can be edited with the Enter/Edit Kernel Site Parameters option or with the Introductory text edit option [XUSERINT], an option specially designed for this purpose.)
3.1.2 Parameters Checked during Signon

Various parameters are checked as an initial step in the signon process. The KERNEL SYSTEM PARAMETERS file (#8989.3) stores the default values for most of the parameters. Values for critical fields should be defined by IRM when Kernel is installed. The values in the KERNEL SYSTEM PARAMETERS file (#8989.3) can be edited any time, though, with the Enter/Edit Kernel Site Parameters option [XUSITEPARM].

3.1.2.1 Signon Attempts and Device Lock-out Times

The DEFAULT # OF ATTEMPTS field in the KERNEL SYSTEM PARAMETERS file (#8989.3) holds the default limit of the number of times a user can try to enter a valid Access and Verify code pair. When the limit is reached, Signon/Security is unresponsive for the duration specified by the DEFAULT LOCK-OUT TIME field. The values for number of attempts and lock-out time are overridden by any values for the current device specified by comparable fields in the DEVICE file (#3.5). Device values are ignored, however, if the BYPASS DEVICE LOCK-OUT site parameter in the KERNEL SYSTEM PARAMETERS file (#8989.3) is set to YES. In particular, the fields that are bypassed are OUT-OF-SERVICE DATE, SECURITY, and PROHIBITED TIMES FOR SIGN-ON. Device values are put back
into effect for the current device if the DEVICE file's PERFORM DEVICE CHECKING field is set to YES.

3.1.2.2 MAX SIGNON ALLOWED

One Kernel site parameter used in the initial signon screening is MAX SIGNON ALLOWED. It is a field within the VOLUME SET field (Multiple) in the KERNEL SYSTEM PARAMETERS file (#8989.3). Its value sets an upper limit for number of M processes (interactive, background, and system) that can run concurrently on the specified Volume Set or CPU. The TASKMAN JOB LIMIT, a field in the TASKMAN SITE PARAMETERS file (#14.7), should be set to a number slightly lower than MAX SIGNON ALLOWED to leave room for a few interactive logons when TaskMan is busiest.

NOTE: OpenVMS Sites: The OpenVMS interactive logins parameter (set by the DCL command SET LOGINS/INTERACTIVE) should be set to a number less than the Kernel MAX SIGNON ALLOWED to conserve system resources. If the OpenVMS limit is set too high in relation to the Kernel limit, users will try to access Kernel only to be rejected when reaching Signon/Security. That means that they would waste system resources by creating a new OpenVMS process and activating a Caché image, all to no avail.

REF: For more information about alerts, see Chapter 10, "Alerts," in this manual.
3.1.2.3 PROHIBITED TIMES FOR SIGN-ON

Time periods can be specified, during which interval signons can be barred by device or by user. This is controlled by the PROHIBITED TIMES FOR SIGN-ON field in the DEVICE file (#3.5) and a comparable field in the NEW PERSON file (#200).

Figure 3-4. Signon flow chart

3-4
Kernel
Systems Management Guide
Version 8.0
July 1995
Revised March 2010
3.1.2.4 Multiple Sign-On Restriction

The DEFAULT MULTIPLE SIGN-ON field in the KERNEL SYSTEM PARAMETERS file (#8989.3) controls whether users can create two or more simultaneous sessions by signing on to more than one device. The setting is overridden by comparable fields in the DEVICE (#3.5) and NEW PERSON (#200) files, respectively. The value is checked at signon to prevent unauthorized multiple sessions.

If multiple signons are prohibited, problems can occur if users experience an abnormal exit such that the signon record cannot be cleared. To clear an individual user, the Release User option can be used (described later in this chapter). To make sure all users are clear when the system is brought up after a crash, IRM can use the Clear all users at startup option.

3.1.2.5 INTERACTIVE USER'S PRIORITY

The INTERACTIVE USER'S PRIORITY parameter in the KERNEL SYSTEM PARAMETERS file (#8989.3) should usually be left NULL. A setting here affects the job priority of interactive users and could result in poor response time.

3.1.2.6 ASK DEVICE TYPE AT SIGN-ON

The ASK DEVICE TYPE AT SIGN-ON parameter controls whether the user's current device at signon is queried for its display attributes (DA). Thus, the correct terminal type can be identified without prompting the user.

It is recommended that ASK DEVICE TYPE AT SIGN-ON be set to ASK so that Signon/Security performs the DA query and allows the Device Handler to set up the correct terminal type attributes. This has become more important with the advent of screen control. VA FileMan's Screen Editor and Screen Manager, for example, will not function properly if the terminal type recorded by Kernel fails to match the actual terminal type being used.

As with other parameters, the site default (ASK DEVICE TYPE AT SIGN-ON field in the KERNEL SYSTEM PARAMETERS file [#8989.3]) is overridden by a DON'T ASK setting for the device (like-named field in the DEVICE file [#3.5]), which would similarly be overridden by a DON'T ASK setting for the user (like-named field in the NEW PERSON file [#200]). A NULL value functions as ASK. The user override can be set by any user via the Edit User Characteristics option.

If the parameter is set to DON'T ASK, Signon/Security does not perform the DA query and assumes the user's last terminal type is still appropriate. Although the difference in resource consumption is negligible, the user can appreciate a split second's savings in time. Thus, bypassing the DA query can be acceptable, if the same terminal type is always being used. But if the user should sign onto another terminal type, problems can occur with the presentation of screen-oriented displays unless the user knows how to change the terminal type to match the actual current one.

If the device is non-ANSI-standard, Signon/Security may not find a DA but will continue to determine the terminal's identity by querying its answerback message. All known non-ANSI devices (e.g., Qume 102 terminal) should have their answerback messages programmed. This is accomplished by using the terminal type setup mechanism and entering C-QUME as the Qume 102's answerback message. The name must match an entry in Kernel's TERMINAL TYPE file (#3.2) to take effect. If the answerback message
contains additional characters (e.g., a serial number), the message will not match an entry in the TERMINAL TYPE file (#3.2) and will be useless for signon purposes.

If the terminal's DA return code does not match an entry in the DA RETURN CODES file (#3.22), or if the terminal is non-ANSI and cannot be programmed with an appropriate answerback message, Signon/Security prompts the user to identify the terminal type if the user's ASK DEVICE TYPE AT SIGN-ON setting is set to ASK. This is the only case in which the terminal type prompt is asked during signon. The last terminal type used will be presented as the default (it is stored in the NEW PERSON file [#200]). If ASK DEVICE TYPE AT SIGN-ON is set to DON'T ASK, Signon/Security assumes that the last terminal type is appropriate and does not prompt the user for validation.

3.1.2.7 Display Attributes (DA) Return Codes

The DA RETURN CODES file (#3.22) is used to equate DA return codes to entries in the TERMINAL TYPE file (#3.2). You can use the DA Return Code Edit option to automate the population of the DA RETURN CODES file (#3.22).

REF: For more information, see the "Display Attributes (DA) Return Codes" topic in the "Device Handler: System Management" chapter in this manual.

3.1.2.8 SELECTABLE AT SIGNON

IRM can also control which devices can be selected at signon with a field in the TERMINAL TYPE file (#3.2). The SELECTABLE AT SIGN-ON flag should be set to YES for all devices commonly used for sign on. Ordinarily, it should not be set for printers (e.g., P-terminal types P-DEC or P-OTHER). To allow the loading of ScreenMan forms and proper functioning of other screen-oriented displays, the flag should also not be set for PK-types, that is, printers with keyboards. This is not an actual restriction, however, but a recommendation.

3.1.2.9 LIFETIME OF VERIFY CODE

To insure that users change their Verify codes at periodic intervals, IRM should set the LIFETIME OF VERIFY CODE parameter in the KERNEL SYSTEM PARAMETERS file (#8989.3) to a certain number of days. The maximum number is 90 days and the minimum number is 1 day. Thus, sites can choose any number from 1-90 days before requiring users to change their Verify code. At the end of that period (e.g., every 90 days), users must then change their Verify codes. Signon/Security checks whether the Verify code needs to be changed, and if so, prompts the user at signon to enter a new Verify code.

3.1.2.10 AUTO-GENERATE ACCESS CODES

When assigning Access codes, the security officer or IRM staff can invent an alphanumeric string or can ask Kernel to generate one. If the AUTO-GENERATE ACCESS CODES site parameter in the KERNEL SYSTEM PARAMETERS file (#8989.3) is set to YES, only generated, cryptic codes can be assigned. It is not necessary to pick the first one presented; others can be generated for selection.
3.1.2.11 DEFAULT INSTITUTION and AGENCY

The institution running Kernel software is defined during the Kernel installation when prompted for the DEFAULT INSTITUTION in the KERNEL SYSTEM PARAMETERS file (#8989.3). This field is a pointer to the INSTITUTION file (#4). One or more institutional affiliations can also be associated with a user (e.g., a VA Outpatient Clinic and an Army Medical Center). This data is stored in the DIVISION field (Multiple) in the NEW PERSON file (#200). If a user is associated with more than one Institution, the user will be prompted at signon to select a division. In this way, the local variable DUZ(2) can be set to the appropriate value. If the user's DIVISION field (Multiple) is blank, the DEFAULT INSTITUTION field (File #8989.3) is used to define DUZ(2). Since the INSTITUTION file (#4) contains a pointer to the AGENCY file (#4.11), the signed-on user's agency affiliation can also be determined.

The KERNEL SYSTEM PARAMETERS file (#8989.3) also contains a field named AGENCY. This field is not a pointer but is instead a SET OF CODES (e.g., "N" for Navy). This field is presented for editing during Kernel installation. Its value is used at signon to set the DUZ("AG") local variable. Thus, the agency associated with the overall Kernel system can be determined.

3.1.2.12 AUTO MENU

The AUTO MENU flag, stored in the local variable DUZ("AUTO"), is used by Menu Manager to control whether all items on a menu are presented automatically after each cycle through the menu system. If the items are not displayed, the user can always invoke the display by entering a question mark ("?"). New users often like to see all the menu choices. Experienced users probably do not need to see the choices and the display can be suppressed to save system resources. The user setting for AUTO MENU (in the NEW PERSON file [#200]) will override any comparable device setting (File #3.5), which will, in turn, override the site parameter default (File #8989.3). Users can edit the setting with the Edit User Characteristics option.

3.1.2.13 TYPE-AHEAD

If TYPE-AHEAD is disabled, any keystrokes that the user enters while computer system processes previously issued instructions will not register. If TYPE-AHEAD is enabled, keystrokes entered in advance of processing will be stored in the TYPE-AHEAD buffer and will be interpreted when the earlier process is finished. New users may experience unwanted results if TYPE-AHEAD is enabled and they had not anticipated the effect. Experienced users may prefer TYPE-AHEAD for efficiency. The user setting overrides the device setting, which, in turn, overrides the site parameter setting. Users can edit the setting with the Edit User Characteristics option.

3.1.2.14 TIMED READ

The value for the TIMED READ parameter is stored in the local variable DTIME and is used to calculate how long Kernel should wait before terminating a READ. If, for example, a user does not respond to a menu prompt in the number of seconds defined by the TIMED READ, Kernel will take steps towards signoff and, without subsequent user response, will halt the user session. The user setting overrides the device setting, which, as usual, will override the site default.
3.1.2.15 POST SIGN-IN MESSAGE

The POST SIGN-IN MESSAGE is similar to introductory text (i.e., INTRO TEXT field in File #8989.3), except that Kernel displays it only after a successful signon. Like the introductory text, you can edit the message text using the Enter/Edit Kernel Site Parameters option; alternately, you can use the Post sign-in Text Edit option [XUSERPOST], which is specially designed for this purpose:

![Figure 3-5. Post sign-in Text Edit option](image)

Applications can append information to the POST SIGN-IN MESSAGE (on a per-user, per signon basis only) by attaching to the new XU USER SIGN-ON option.

REF: For more information on the XU USER SIGN-ON option, see the "Signon/Security: Developer Tools" chapter in the *Kernel Developer's Guide*.

3.1.3 XU USER SIGN-ON Option

The XU USER SIGN-ON option can attach action-type options to this extended-action-type option, so that software-specific actions can be performed at signon.

REF: For more information, see the "Signon/Security: Developer Tools" chapter in the *Kernel Developer's Guide*.

3.1.4 Clear all users at startup Option

![Figure 3-6. Clear all users at startup option](image)

If multiple signons are prohibited, users may be prevented from signing on to the system when it is brought up after a crash (which can cause numerous abnormal exits). To prevent this problem from occurring, IRM can use the Clear all users at startup option [XUSER-CLEAR-ALL]. Kernel recommends this option be scheduled to run at system startup. Although this option can be invoked interactively without ill effects, it was designed as a background process, thus, it is placed along with other tasked options on the PARENT OF QUEUABLE OPTIONS menu.

REF: For information on how to release a single user, see the "Release User option" in the "User Management Options" in the "Operations Menu" topic in this chapter.
3.1.5 Enabling and Disabling Logons

IRM has full control over whether logons are enabled. Access to a particular Volume Set can be disabled by setting the INHIBIT LOGONS? flag in the VOLUME SET file (#14.5). Setting the flag to YES sets the ^%ZIS("14.5","LOGON","volume set") node, whose presence disallows user logons. That is, logons through Signon/Security, invoking the ^ZU routine, will fail (terminals for user access are usually linked to ZU within the operating system setup. Some special terminals, like the console, are untied.) The ^%ZIS("14.5","LOGON","volume set") node is also checked after each cycle through the menu system; signed-on users will be logged off as soon as they return to a menu prompt.

3.2 Adding New Users

Creating a new user account involves adding a record to the NEW PERSON file (#200), assigning an Access code, and assigning a primary menu. You need the XUMGR security key to assign primary menu options. Even the at-sign ("@"; programmer access) is insufficient, as checked by the PRIMARY MENU OPTION field's input transform.

![User Management menu options](image)

Figure 3-7. User Management menu options: Associated menu options when adding a new user

3.2.1 Add a New User to the System Option

You can use the Add a New User to the System option [XUSERNEW] to set up user accounts one-by-one. The option presents a standard scrolling-mode editing sequence for user attributes.

When using this option, entry of a social security number in the SSN field (#9) is usually required. While SSN is not required in the NEW PERSON file (#200) data dictionary, it is a required field when using this option. If the option is used by someone who holds the XUSPF200 security key, however, entry of an SSN is not required.

You can also print security forms for the new user with this option.

When signing on for the first time, the new user should simply press <Enter> at the "Verify code" prompt, which then lets them enter their own secret Verify code.
3.2.1.1 NEW PERSON File (#200) Required Fields

When adding new users, a default set of fields is required, at a minimum. This set is defined by the NEW PERSON IDENTIFIERS field in the KERNEL SYSTEM PARAMETERS file (#8989.3). If it is NULL, the default set of required fields for the NEW PERSON file (#200) entries is:

- INITIAL (#1)
- SEX (#4)
- SSN (#9)

If, given local site policy, a different set should be used, IRM can use this field to specify other identifiers.

NOTE: SSN is not required if the person entering accounts holds the XUSPF200 security key.

3.2.2 Grant Access by Profile Option

The Grant Access by Profile option [XUSERBLK] includes features unavailable in the Add a New User to the System option [XUSERNEW]. With the Grant Access by Profile option you can grant access to one or more people based on a typical user profile. All characteristics of the typical user, including menus, keys, and service/section, are copied to the new user or replace the characteristics of an existing user. For new users, access security forms are generated as part of the process. These forms can be delivered to the service/section coordinator by inter-office mail and can be distributed to the new users.

The Grant Access by Profile option is locked with the XUMGR security key and is strictly limited for use by IRM. It must be restricted, because any user profile, even that of a developer, can be copied to another user. As with the Add a New User option, the SSN field (#9) is required when adding new records except by holders of the XUSPF200 security key or if another default set of New Person Identifiers has been defined.

Access is assigned according to an existing user profile. Characteristics of the new user are cloned from the existing one. Rather than copying the characteristics from an actual user, creating several dummy users with profiles of typical positions can be worthwhile. A user (e.g., PHARMACY,TECH or RESIDENT,SURGERY) could be created with the appropriate user attributes, including menu options, keys, and service/section codes.

Several steps are involved in copying access to new or existing users. First you enter the name of the user account to clone from. Then, optionally, you can specify a TERMINATION DATE. Next, you enter the names of the new users to create. The system will pause for each new user as it verifies identifiers, checks for duplicates, and updates the NEW PERSON file (#200). You must enter a device upon which to print the computer account notification letters. You can either run the access assignment immediately or queue it for a later time.
3.2.3 Security Forms

Two security forms are printed for each new user:

- **The Computer Account Notification**—Includes the user's auto-generated Access code and the name of the service/section coordinator who can answer questions.

- **The Computer Access Policy**—A contract to which users must adhere. It states the terms of granting access to sensitive information; the user must accept these terms as a condition of being given system access.

These security forms are stored in the XUSER COMPUTER ACCOUNT help frame and should be edited for local use as follows:

1. Copy the XUSER COMPUTER ACCOUNT help frame into a new site help frame (e.g., SFO COMPUTER ACCOUNT).

2. Edit the security forms for local use. Replace the "placeholder" text with the actual name and address of the facility.

3. Repoint the Kernel Parameter to the new site XUSER COMPUTER ACCOUNT help frame using VA FileMan.
For example:

Figure 3-9. Security Forms—Sample user entries (1 of 4)

```
>D ^XUP

Setting up programmer environment
This is a TEST account.

Terminal Type set to: C-VT320

You have 13 new messages.
Select OPTION NAME: **SYSTEMS MANAGER MENU**

  Device Management ...
  Programmer Options ...
  Operations Management ...
  Spool Management ...
  Information Security Officer Menu ...
  Taskman Management ...
  User Management ...
  Application Utilities ...
  Capacity Management ...
  Manage Mailman ...
  Menu Management ...
  VA FileMan ...
  Verifier Tools Menu ...

Select Systems Manager Menu Option: **VA FileMan**

  VA FileMan Version 22.0

  Enter or Edit File Entries
  Print File Entries
  Search File Entries
  Modify File Attributes
  Inquire to File Entries
  Utility Functions ...
  Data Dictionary Utilities ...
  Transfer Entries
  Other Options ...

Select VA FileMan Option: **TRANSFER ENTRIES**

Select TRANSFER OPTION: **TRANSFER FILE ENTRIES**

INPUT TO WHAT FILE: HELP FRAME// HELP FRAME <Enter> (562 entries)
TRANSFER FROM FILE: HELP FRAME// <Enter>
TRANSFER DATA INTO WHICH HELP FRAME: **ISC COMPUTE ACCESS**
Not a known package or a local namespace.
Are you adding 'ISC COMPUTE ACCESS' as a new HELP FRAME (the 563RD)?
No// Y (Yes)
HELP FRAME NUMBER: 742// <Enter>
HELP FRAME HEADER: **Computer Access**
```
TRANSFER FROM HELP FRAME: XUSER COMPUTER ACCOUNT <Enter> Batch user access document

WANT TO DELETE THIS ENTRY AFTER IT'S TRANSFERRED? No// <Enter> (No)
...SORRY, LET ME THINK ABOUT THAT A MOMENT...
SINCE THE TRANSFERRED ENTRY MAY HAVE BEEN 'POINTED TO'
BY ENTRIES IN THE 'HELP FRAME' FILE, ETC.,
DO YOU WANT THOSE POINTERS UPDATED (WHICH COULD TAKE QUITE A WHILE)? No//
<Enter> (No)

Enter or Edit File Entries
Print File Entries
Search File Entries
Modify File Attributes
Inquire to File Entries
Utility Functions ...
Data Dictionary Utilities ...
Transfer Entries
Other Options ...

Select VA FileMan Option: ENTER OR EDIT FILE ENTRIES

INPUT TO WHAT FILE: HELP FRAME// <Enter>
EDIT WHICH FIELD: ALL// TEXT <Enter> (word-processing)

Select HELP FRAME NAME: ISC COMPUTER ACCESS <Enter> Computer Access NAME: ISC COMPUTER ACCESS// <Enter>
HEADER: Computer Access// <Enter>
TEXT: . . .
... suspension/termination of access privileges.

I affirm with my signature that I have read, understand, and agree to fulfill the provisions of this User Access notice.

|INDENT(5)||WIDTH(75)||NOWRAP|
Signature: __________________________

RETURN THIS FORM TO: IRMS - NEW ACCTS (xxx/xxx)

Edit? NO// YES
A user account has been created in your name to enable you to access on-line clinical and/or administrative data required to perform your duties as an employee of the Department of Veterans Affairs. Please read and edit entries specific to your site information and save your changes.

Select RELATED FRAME KEYWORD: <Enter>
Want to LOAD KEYWORDS (Y/N)?: N
Select INVOKED BY ROUTINE: <Enter>
Select EDITOR: <Enter>
Select OBJECT: <Enter>
ENTRY EXECUTE STATEMENT: <Enter>
EXIT EXECUTE STATEMENT: <Enter>
Select HELP FRAME NAME: <Enter>

Enter or Edit File Entries
Print File Entries
Search File Entries
Modify File Attributes
Inquire to File Entries
Utility Functions ...
Data Dictionary Utilities ...
Transfer Entries
Other Options ...

Select VA FileMan Option: ENTER OR EDIT FILE ENTRIES

INPUT TO WHAT FILE: HELP FRAME// 8989.2 <Enter> KERNEL PARAMETERS (6 entries)
EDIT WHICH FIELD: ALL// <Enter>

Select KERNEL PARAMETERS NAME: XUSER COMPUTER ACCOUNT
NAME: XUSER COMPUTER ACCOUNT Replace <Enter>
TYPE: <Enter>
DEFAULT: <Enter>
REPLACEMENT: ISC COMPUTER ACCESS
Select KERNEL PARAMETERS NAME: <Enter>

Enter or Edit File Entries
Print File Entries
Search File Entries
Modify File Attributes
Inquire to File Entries
Utility Functions ...
Data Dictionary Utilities ...
Transfer Entries
Other Options ...

Select VA FileMan Option: <Enter>

FM VA FileMan ...
Core Applications ...
Device Management ...
Information Security Officer Menu ...
Manage Mailman ...
Menu Management ...
Operations Management ...
Programmer Options ...
Spool Management ...
Taskman Management ...
User Management ...

Select Systems Manager Menu Option: USER MANAGEMENT

Add a New User to the System
Grant Access by Profile
Edit an Existing User
Deactivate a User
Reactivate a User
List users
User Inquiry
Switch Identities
File Access Security ...
Clear Electronic signature code
Electronic Signature Block Edit
Manage User File ...
OAA Trainee Registration Menu ...
Person Class Edit
Reprint Access agreement letter

Select User Management Option: REPRINT ACCESS AGREEMENT LETTER
Select NEW PERSON NAME: REQUEST,ACCESS <Enter> AR COMPUTER SPECIALIST

Is REQUEST,ACCESS the one you want? YES// <Enter>
DEVICE: 0;80;60 <Enter> Telnet Terminal
A user account has been created in your name to enable you to access on-line clinical and/or administrative data required to perform your duties as an employee of the Department of Veterans Affairs. Please read the enclosed NEW USER INFORMATION before you attempt your first log-on to the system. Questions about access should be referred to the AIS Application Coordinator in your service, your facility Information Security Officer (ISO), or your IRM Service.

Your Computer Access Coordinator is:
XUUSER,ONE
123X
510-555-9999

Your Facility Information Security Officer:
Two Xuser

Your Alternate Information Security Officer:
Three Xuser

NT Domain: __________
NT Username: VHA__________
NT Password: __________

VistA Access Code: ________
VistA Verify Code: ________
Figure 3-12. Security Forms—Sample Computer Account Access Policy form (4 of 4)

COMPUTER ACCOUNT ACCESS POLICY

Department of Veterans Affairs
SuperStar VAMC

ACCESS REQUEST
SuperStar VAMC

As an authorized user of VHA automated information systems (AISs) and having access to data stored in them, I will be given sufficient access to perform my assigned duties. I will use this access ONLY for its intended purpose and understand the following policies that apply to VA data and computer systems:

I agree to safeguard all passwords (e.g., Access/Verify codes, electronic signature codes) assigned to me and am strictly prohibited from disclosing these codes to anyone including family, friends, fellow workers, supervisor(s), and subordinates for ANY reason.

I understand that I may be held accountable for all entries/changes made to any government AIS using my passwords.

I am aware of the regulations and facility AIS security policies designed to ensure the confidentiality of all sensitive information. I am aware that information about patients or employees is confidential and protected from unauthorized disclosure by law. I understand that my obligation to protect VA information does not end with either the termination of my access to this facility's systems or with the termination of my government employment.

I will exercise common sense and good judgment in the use of electronic mail. I understand that electronic mail is not inherently confidential and I have no expectation of privacy in using it. I understand that technical or administrative problems may create situations which requires viewing of my messages. I also understand that facility management officials may authorize access to my electronic mail messages whenever there is a legitimate purpose for such access.

I understand that a violation of this notice constitutes disregard of a local and/or VHA policy and will result in appropriate disciplinary action as defined in VA employee conduct Regulations (VAR 820(b)) as well as suspension/termination of access privileges.

I affirm with my signature that I have read, understand, and agree to fulfill the provisions of this User Access notice.

Signature: __________________________

ACCESS REQUEST SuperStar VAMC
RETURN THIS FORM TO: IRMS - NEW ACCTS (xxx/xxx)
VA FileMan word-processing "windows" are used to retrieve the user's name, service/section, and service/section coordinator's name. To be effective, the SERVICE/SECTION field in the NEW PERSON file (#200) must be filled in for the new user. The COORDINATOR (IRM) field, a field in the SERVICE/SECTION file (#49), must also be filled in and updated when necessary. Word-processing "windows" are also used for formatting, like [TOP], to separate the two forms. When using the File Access Security system, READ access to the SERVICE/SECTION file (#49) is needed to retrieve the Coordinator's name within the window command.

REF: For more information on using word-processing "windows," the File Access Security system, and navigation, see the *VA FileMan Getting Started Manual*.

The Reprint Access Agreement Letter option allows you to reprint the computer access agreement letter in case there was a problem printing the first form (e.g., the first form is jammed in the printer). It does not reprint the Access code on the letter, however.

3.3 Edit an Existing User Option

Figure 3-13. Edit an Existing User option—Menu

<table>
<thead>
<tr>
<th>SYSTEMS MANAGER MENU ...</th>
<th>[EVE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Management ...</td>
<td>[XUSER]</td>
</tr>
<tr>
<td>Edit an Existing User</td>
<td>[XUSEREDIT]</td>
</tr>
</tbody>
</table>

The attributes of an existing user can be edited with the Edit an Existing User option [XUSEREDIT]. This option invokes a screen-oriented display using ScreenMan.

It is impossible to exit the form and save changes unless all required fields (e.g., the SERVICE/SECTION field in the NEW PERSON file [#200]) are filled in.

Table 3-1 describes each of the user field attributes you can edit with the Edit an Existing User option.

<table>
<thead>
<tr>
<th>Field/Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME (#.01)</td>
<td>The user's name should be entered in capital letters. The syntax should be "LAST,FIRST MI." with only a comma (no spaces) between the last and first name. A middle initial can follow, separated with a space and followed with a period. It is not appropriate to add credentials (e.g., M.D.), since there are other ways to specify such additional information (by the Title and the Signature Block Printed Name). Furthermore, the parsing algorithms commonly used in software applications only recognize two pieces, before and after the comma, rearranging them and using uppercase/lowercase to generate "First MI. Last".</td>
</tr>
<tr>
<td>INITIAL (#1)</td>
<td>The user's initials can be entered, usually two or three capital letters with no spaces. The NEW PERSON file (#200) contains a lookup-type cross-reference by INITIAL (C), so if the INITIAL field is filled in, the user can be found in the NEW PERSON file (#200) by entering the initials. For example, just the initials can be used at the "Select NEW PERSON Name:" prompt, or when addressing</td>
</tr>
<tr>
<td>Field/Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>mail messages, or for other lookup purposes. Users can edit their initials at any time since this field is included in the common option Edit User Characteristics.</td>
<td></td>
</tr>
<tr>
<td>TITLE (#8)</td>
<td>This field points to the TITLE file (#3.1), a file exported with Kernel but without data (records). The User Management options to add or edit a user’s record allow LAYGO into the TITLE file (#3.1), so titles can be added via the NEW PERSON file (#200). Although not required, it may be wise to assign appropriate titles to users, so this field can be referenced by other software applications. MailMan, for example, displays titles in message headers if the user who is reading mail has so indicated with a flag in MailMan’s Edit User Options called Show Titles.</td>
</tr>
<tr>
<td>Like INITIAL, NICK NAME has a lookup type cross-reference (D) in the NEW PERSON file (#200) so that lookups will succeed simply by using the NICK NAME. This field is also included in Edit User Characteristics.</td>
<td></td>
</tr>
<tr>
<td>NICK NAME (#13)</td>
<td>The SSN field (#9) is not a required field in the data dictionary for the NEW PERSON file (#200). SSN is required when using the User Management options to add a new user unless the XUSPF200 security key is held by the person using the option. It is highly recommended that each new user have the SSN field (#9) filled in to minimize the problem of subsequent duplicate entries. Since many existing users do not have an SSN entered, however, the Edit an Existing User option does not require that one be entered.</td>
</tr>
<tr>
<td>MAIL CODE (#28)</td>
<td>The user’s MAIL CODE can be entered for purposes of interoffice routing of manually delivered mail.</td>
</tr>
<tr>
<td>PRIMARY MENU OPTION (#201) (Required for functional access)</td>
<td>Users must be assigned a PRIMARY MENU OPTION in order to reach Menu Manager after successfully entering Access and Verify codes. The PRIMARY MENU OPTION should provide a route to all the computing functions the user can be expected to need. The XUMGR security key must be held by the person assigning the menu (unless delegated options are available for use with the Secure Menu Delegation system).</td>
</tr>
<tr>
<td>REF: Building and rearranging menus is discussed in the "Menu Manager: System Management" chapter in this manual.</td>
<td></td>
</tr>
<tr>
<td>SECONDARY MENU OPTIONS (#203)</td>
<td>The SECONDARY MENU OPTIONS can be used to assign particular options to individual users to customize their menu choices. While a user may have a standard primary menu to carry out the usual functions of a department or service, additional special functions just for this user can be assigned as secondary options. This is a multiple field, unlike the PRIMARY MENU OPTION, so additional items can easily be added.</td>
</tr>
</tbody>
</table>
| ACCESS CODE (#2) VERIFY CODE (#7.2) | These fields can be used to edit a user’s Access or Verify Code as needed. If a user has forgotten the Verify code, or needs a new one, IRM/ISO should delete the existing code so that when the user logs on and presses the <Enter> key at the "VERIFY CODE" prompt, a new (secret) password (VERIFY CODE) can be entered. To accomplish this, "Y" should be entered at the "Want to edit VERIFY CODE (Y/N) :" prompt. An at-sign (@) should then be entered to delete the existing code. The change will be filed immediately, unlike other changes that will be processed as part of the overall transaction when leaving the ScreenMan form. Users can edit their Verify code at any time via the Edit User Characteristics.
<table>
<thead>
<tr>
<th>Field/Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>option on the Common menu. If this option uses a local template, the ability to edit the VERIFY CODE field should probably remain, as a security measure. IRM can choose to add the ability to edit the ACCESS CODE field as well.</td>
<td></td>
</tr>
<tr>
<td>FILE MANAGER ACCESS CODE (#3)</td>
<td>The FILE MANAGER ACCESS CODE (i.e., FILE MANAGER ACCESS CODE field [#3] in the NEW PERSON file [#200]) is stored in the local variable DUZ(0). If DUZ(0)=@, the user is a developer with the highest level of programmer access authority. Other non-reserved symbols can be assigned for File Access Security, depending on the user's needs. Software applications will indicate which symbols are needed for site-specific File Access Security.</td>
</tr>
<tr>
<td>NOTE: In previous documentation and data dictionaries, it has been implied that the pound sign ("#") symbol/character was reserved for File Access Security for IRM, however, this is not true. It has merely been used as a convention.</td>
<td></td>
</tr>
<tr>
<td>If the File Access Security conversion has been run, the FILE MANAGER ACCESS CODE is not used to control file-level access security as it was before the conversion. The File Access Security system (formerly known as Part 3 of the Kernel installation) permits the association of a user with a file whereby explicit access can be granted. While the conversion process is somewhat involved, the benefits resulting from implementing the File Access Security system are worthwhile.</td>
<td></td>
</tr>
<tr>
<td>Even after running the file access conversion, the FILE MANAGER ACCESS CODE field continues to serve several functions:</td>
<td></td>
</tr>
<tr>
<td>If a user has been granted full file access privileges for a particular file, a further restriction can be placed at the file or field level to prohibit modification of the definition or entry of data. Files have top-level restrictions of READ, WRITE, or DELETE access as do fields and templates.</td>
<td></td>
</tr>
<tr>
<td>If the file, field, or template is protected with the at-sign (@; programmer access), the user must also have the at-sign in the FILE MANAGER ACCESS CODE field (#3) in the NEW PERSON file (#200).</td>
<td></td>
</tr>
<tr>
<td>The Device Handler also checks the FILE MANAGER ACCESS CODE of the user if the SECURITY field in the DEVICE file (#3.5) has been defined with a character string. The user would not be able to select the device unless at least one of the characters in the user’s code matched at least one character in the device code.</td>
<td></td>
</tr>
<tr>
<td>The most important FILE MANAGER ACCESS CODE field (#3) character is the at-sign (@; programmer access). It has special meaning and overrides other file access restrictions or other FILE MANAGER ACCESS CODE field (#3) characters. It is not recommended that the at-sign be allocated unless absolutely needed. Allocation is, in part, restricted by the fact that only those few users who have developer access to the system can give other users the at-sign.</td>
<td></td>
</tr>
<tr>
<td>NOTE: A SET statement from programmer mode can be used to temporarily assign DUZ(0)="@" without storing the code in the NEW PERSON file (#200), which would give permanent programmer access. Use of the at-sign (@; programmer access) is less common now than in the past since alternative security measures have been developed. It is still required.</td>
<td></td>
</tr>
<tr>
<td>Field/Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>for several critically sensitive checks, however, such as entering M code into VA FileMan files (e.g., OPTION [#19] and FUNCTION [#.5] files).</td>
<td></td>
</tr>
<tr>
<td>REF: For more information on File Access Security, see Chapter 5, "File Access Security," in this manual and the VA FileMan (Version 22.0) and Kernel (Version 8.0) File Access Security supplemental documentation located on the VHA Software Document Library (VDL) at the following Website:</td>
<td>http://www.va.gov/vdl/application.asp?appid=5</td>
</tr>
<tr>
<td>PREFERRED EDITOR (#31.3)</td>
<td>If a user's PREFERRED EDITOR field is NULL, Kernel uses VA FileMan's Line Editor to edit word-processing fields. If the PREFERRED EDITOR is set to another entry in the ALTERNATE EDITOR file (#1.2), like VA FileMan's Screen Editor, Kernel uses that editor when the user edits word-processing fields. As described in VA FileMan's documentation, users can switch from the Line Editor to another editor by using the Utility sub-option on the Edit option menu.</td>
</tr>
<tr>
<td>DIVISION (#16)</td>
<td>The DIVISION field (Multiple) has a corresponding site parameter, the Default Institution, that sets users' DUZ(2) if this field is not filled in. A user setting, however, takes precedence over the site parameter. This is a multiple field and if the user is associated with more than one institution, the user is prompted at signon to pick the one corresponding to the computing activities to be carried out in that session.</td>
</tr>
<tr>
<td>SERVICE/SECTION (#29) (Required)</td>
<td>This field points to the SERVICE/SECTION file (#49) distributed with Kernel's virgin installation. No data is included. It is a required field since applications have begun to use it in various utilities. Kernel's CPU/Service/User/Device Stats option [XUSTAT], for example, can summarize signon information for all users in the same Service/Section. The Grant Access by Profile option also makes use of this field to specify the Service/Section Coordinator to whom the access forms of the new users should be delivered.</td>
</tr>
<tr>
<td>Field/Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>TIMED READ (#200.1)</td>
<td>As discussed with other site parameters earlier in this chapter, TIMED READ defines the length of time Kernel should wait for a user response to a READ. A setting for the user attribute overrides the site default. It is used to define the local variable DTIME.</td>
</tr>
<tr>
<td>MULTIPLE SIGN-ON (#200.04)</td>
<td>As discussed with other site parameters, this field controls whether the user will be permitted to have two or more concurrent signon sessions. The user setting takes precedence.</td>
</tr>
<tr>
<td>AUTO MENU (#200.06)</td>
<td>As discussed with other site parameters, this field controls whether the entire list of menu options is automatically presented or whether the user needs to enter a question mark ("?") to invoke the display. The user setting takes precedence.</td>
</tr>
<tr>
<td>ASK DEVICE TYPE AT SIGN-ON</td>
<td>As discussed with other site parameters, this field controls whether the device being used at signon will be queried for its terminal type. The user setting takes precedence.</td>
</tr>
<tr>
<td>(#200.05)</td>
<td></td>
</tr>
<tr>
<td>TYPE-AHEAD (#200.09)</td>
<td>This field controls whether the user can enter text faster than the computer can read it. If set to YES, the computer buffers input from the user. If set to NO, keystrokes from the user are lost if they are typed faster than the computer can process them.</td>
</tr>
<tr>
<td>ALLOWED TO USE SPOOLER (#41)</td>
<td>This field controls whether a user can pick the spool device at the device prompt to send output to the spooler.</td>
</tr>
<tr>
<td>PAC (#14, Programmer Access Code)</td>
<td>For users who have been granted the Programmer Mode option along with the XUPROG and XUPROGMODE security keys, a Programmer Access Code can be assigned as additional security. If a PAC is defined, Kernel prompts for the PAC just before allowing a user to enter programmer mode. If this field is NULL, a PAC is not asked.</td>
</tr>
<tr>
<td>CAN MAKE INTO A MAIL MESSAGE</td>
<td>This field controls whether a spooled document can be transformed into a regular mail message for use within MailMan.</td>
</tr>
<tr>
<td>(#41.2)</td>
<td></td>
</tr>
<tr>
<td>DISUSER (#7)</td>
<td>If set to YES, disables access to the system for this user (without terminating the user's account).</td>
</tr>
<tr>
<td>FILE RANGE (#31.1)</td>
<td>Users who have VA FileMan privileges to create files can be given a numeric range of numbers to use as file numbers. Assigning number ranges acts as a safeguard to keep users from picking a number within a range that is nationally reserved for VistA software applications. It can also serve local database administration needs of segmenting local development by number ranges.</td>
</tr>
<tr>
<td>TERMINATION DATE (#9.2)</td>
<td>As mentioned in the topic about terminating users, this field indicates when a user's access privileges should be revoked.</td>
</tr>
<tr>
<td>ALWAYS SHOW SECONDARIES (#200.11)</td>
<td>If set to YES, contents of a user's SECONDARY MENU OPTIONS are shown when the user enters one question mark ("?") at a menu prompt. Otherwise, the user must enter two question marks ("??") to see their secondary menu.</td>
</tr>
<tr>
<td>PROHIBITED TIMES FOR SIGN-ON</td>
<td>As discussed with other signon parameters, this field can be used to regulate when the user can sign on to the system. The user setting takes precedence over any corresponding device setting.</td>
</tr>
<tr>
<td>(#15)</td>
<td></td>
</tr>
<tr>
<td>PHONE (HOME) (#.131)</td>
<td>Set up phone numbers for the user in these fields.</td>
</tr>
<tr>
<td>OFFICE PHONE</td>
<td></td>
</tr>
<tr>
<td>Field/Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>(#.132)</td>
<td></td>
</tr>
<tr>
<td>PHONE #3 (#.133)</td>
<td></td>
</tr>
<tr>
<td>PHONE #4 (#.134)</td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL PHONE (#.135)</td>
<td></td>
</tr>
<tr>
<td>FAX NUMBER (#.136)</td>
<td></td>
</tr>
<tr>
<td>VOICE PAGER (#.137)</td>
<td>Set up pager numbers for the user in these fields.</td>
</tr>
<tr>
<td>DIGITAL PAGER (#.138)</td>
<td></td>
</tr>
<tr>
<td>LANGUAGE (#200.07)</td>
<td>Overrides the setting of the DEFAULT LANGUAGE field in the KERNEL SYSTEM PARAMETERS file (#8989.3). Both of these are used to set the DUZ("LANG") flag for each user. VA FileMan uses this setting to enable the display of language-specific dates and times, numeric formats, and dialogues.</td>
</tr>
</tbody>
</table>

Figure 3-15. Edit an Existing User option—Screen 1

```
NAME: XUUSER, ONE

NAME... XUUSER, ONE                                    INITIAL: OX
TITLE: COMPUTER SPECIALIST                              NICK NAME: ONE
SSN: 000123456                                          DOB:
DEGREE:                                                MAIL CODE:
DISUSER:                                               TERMINATION DATE:
Termination Reason:

PRIMARY MENU OPTION: EVE
Select SECONDARY MENU OPTIONS: ISCSTAFF
Want to edit ACCESS CODE (Y/N): FILE MANAGER ACCESS CODE: @
Want to edit VERIFY CODE (Y/N):

Select DIVISION:                                        SERVICE/SECTION: INFORMATION SYSTEMS CENTER

Exit     Save     Next Page     Refresh

Enter a command or ‘^’ followed by a caption to jump to a specific field.

COMMAND: Press <PF1>H for help Insert
```
Figure 3-16. Edit an Existing User option—Screen 2

Edit an Existing User

NAME: XUUSER,ONE

TIMED READ (# OF SECONDS): 999

MULTIPLE SIGN-ON: ALLOWED

MULTIPLE SIGN-ON LIMIT:

ASK DEVICE TYPE AT SIGN-ON: DON'T ASK

AUTO MENU: YES, MENUS GENERATED

PROHIBITED TIMES FOR SIGN-ON:

TYPE-AHEAD: ALLOWED

AUTO SIGN-ON:

Preferred Editor: SCREEN EDITOR - VA FILEMAN

AL e TED TO USE SPOOLER:

PAC:

CAN MAKE INTO A MAIL MESSAGE:

FILE RANGE:

ALWAYS SHOW SECONDARIES:

Exit Save Next Page Refresh

Enter a command or '^' followed by a caption to jump to a specific field.

COMMAND: Press <PF1>H for help Insert

Figure 3-17. Edit an Existing User option—Screen 3

Edit an Existing User

NAME: XUUSER,ONE

PROHIBITED TIMES FOR SIGN-ON:

PHONE: 510-768-6874

OFFICE PHONE: 510-768-6874

COMMERCIAL PHONE:

FAX NUMBER:

VOICE PAGER:

DIGITAL PAGER:

LANGUAGE:

Person Class Effective Expired
Technologists, Technicians and Other Tec DEC 7,2005 JAN 1,2006
Emergency Medical Service Providers JAN 1,2006 DEC 7,2005
Other Service Providers DEC 7,2005 DEC 8,2005
Allopathic and Osteopathic Physicians DEC 8,2005

Exit Save Next Page Refresh

Enter a command or '^' followed by a caption to jump to a specific field.

COMMAND: Press <PF1>H for help Insert
Figure 3-18. Edit an Existing User option—Screen 4

Edit an Existing User

NAME: XUUSER,ONE

RESTRICT PATIENT SELECTION:
OE/RR LIST:

CPRS TAB ACCESS:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Effective Date</th>
<th>Expiration Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exit
Save
Next Page
Refresh

Enter a command or '^' followed by a caption to jump to a specific field.

COMMAND:
Press <PF1>H for help

Figure 3-19. Edit an Existing User option—Screen 5

Edit an Existing User

NAME: XUUSER,ONE

PERMANENT ADDRESS:

<table>
<thead>
<tr>
<th>Street 1:</th>
<th>Street 2:</th>
<th>Street 3:</th>
<th>City:</th>
<th>State:</th>
<th>Zip Code:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E-Mail Address:

Is this person an active Trainee?:

VHA Training Fac.:

Start Date of Training:
Last Training Month & Year:
Trainee Inactive (Date):

Program of Study:

Target Degree Lvl:

Exit
Save
Next Page
Refresh

Enter a command or ‘^’ followed by a caption to jump to a specific field.

COMMAND:

Press <PF1>H for help

3.3.1 Additional Attributes Editable by Users

Some but not all of the user attribute fields can be edited by users using the Edit User Characteristics option. The only field the user can edit that is not part of the system manager's Edit an Existing User form is the TEXT TERMINATOR field.

REF: For a description of the fields users can edit (using the default Edit User Characteristics form and template), see Table 2-2 in the "Edit User Characteristics Option" topic in Chapter 2, "Signon/Security: User Interface" in this manual.

3.3.2 Edit User Characteristics Form and Template

Kernel exports a ScreenMan form and a template to be used in the Edit User Characteristics option. Both are called XUEDIT CHARACTERISTICS. The INPUT template by the same name is invoked if the ScreenMan form cannot be loaded on the current terminal type.

IRM can substitute a locally-developed template by entering its name in the USER CHARACTERISTICS TEMPLATE field in the KERNEL PARAMETERS file (#8989.2). IRM can also design a customized form with the same name as the local INPUT template that will be displayed instead, terminal type setup permitting. In other words, to invoke a locally modified display, an INPUT template must exist. If a ScreenMan form by the same name also exists, an attempt will be made to display the form before defaulting to the INPUT template.

REF: For more information on creating a local Edit User Characteristics form and template, see the Kernel Installation Guide. For a sample form, see the "Edit User Characteristics Option" topic in Chapter 2, "Signon/Security: User Interface" in this manual.

3.4 Deactivating and Reactivating Users

Kernel provides options to deactivate and reactivate users on the User Management menu [XUSER]. When users no longer need access privileges, IRM can partially or entirely close access to their account.

Figure 3-20. User Management menu options

<table>
<thead>
<tr>
<th>SYSTEMS MANAGER MENU ...</th>
<th>[EVE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Management ...</td>
<td>[XUSER]</td>
</tr>
<tr>
<td>Deactivate a User</td>
<td>[XUSERDEACT]</td>
</tr>
<tr>
<td>Purge Inactive Users' Attributes</td>
<td>[XUSERPURGEATT]</td>
</tr>
<tr>
<td>Reactivate a User</td>
<td>[XUSERREACT]</td>
</tr>
</tbody>
</table>
3.4.1 Deactivating Users

The Deactivate a User option [XUSERDEACT] lets you temporarily or permanently disable access for users. You can schedule termination of a user for a future date. The Deactivate a User option loads a ScreenMan form with the fields described in Table 3-2:

<table>
<thead>
<tr>
<th>Field/Attribute</th>
<th>Description</th>
</tr>
</thead>
</table>
| DISABLE USER | Setting the DISABLE USER field to YES prevents a user from signing on, but leaves all of their menus, keys, and other attributes (essentially the user's entire account) still enabled. It sets the DISUSER field (#7) in the user's NEW PERSON file (#200) to YES.
You might want to use this feature to prevent access to your system by an external support person, except during pre-approved times (where you may want to monitor their actions). Setting DISUSER to YES prevents them from logging on to the system until you clear the field.
If you set this field to YES, do not set any other fields in the Deactivate a User form (they only apply to terminating a user). Then, to re-enable access, use the Reactivate a User option [XUSERREACT].
REF: For a description of the Reactivate a User option, see the "Reactivating Users" topic that follows. |
| TERMINATION DATE (#9.2) | Terminating a user is the way to formally deactivate a user (as opposed to temporarily disabling their account). Setting this date effectively terminates that user's account, effective from that date forward.
The Deactivate a User option automatically performs the following steps when you deactivate a user:
- Revokes the user's status as an authorized sender of any mail groups.
- Revokes the user's status as a surrogate.
- Revokes the user's status as a Secure Menu Delegation delegate.
- Deletes the user's Access code, Verify code, Electronic Signature code, VA FileMan Access code (i.e., FILE MANAGER ACCESS CODE field [#3]), and Programmer Access code.
- Deletes the user's menu templates.
- Deletes the user's delegated options.
- Purges the ^DISV global on that CPU for that user.
You can also decide whether all mail messages and all security keys for the account will be deleted on the TERMINATION DATE with the final two fields in the Deactivate a User option [XUSERDEACT] (DELETE ALL MAIL ACCESS and DELETE KEYS AT TERMINATION). If the user is expected to return to the facility and will need to have the user account reopened, security keys and mail could be retained.
REF: For more information on cleaning up user access and privileges at
Field/Attribute Description

*termination, see the "XU USER TERMINATE Option" topic in the "Signon/Security: Developer Tools" chapter in the *Kernel Developer's Guide.*

DELETE ALL MAIL ACCESS (#9.21) Setting the DELETE ALL MAIL ACCESS field causes all mail messages for the user to be deleted when their account is terminated on the TERMINATION DATE.

DELETE KEYS AT TERMINATION (#9.22) Setting the DELETE KEYS AT TERMINATION field causes all security keys for the user to be deleted at termination (except security keys marked "KEEP AT TERMINATE").

As discussed in the "Security Keys" chapter in this manual, the application developer can export a security key with the KEEP AT TERMINATE field set to YES in such a situation. The Provider security key, included with Kernel, has the flag set to YES for this purpose. Although a user may have been deactivated, it could be important to continue a processing activity that the user had authorized, based on privileges associated with a security key. A medical order could continue to hold an approved status, for example, even though the authorizing provider had been deactivated.

3.4.2 Automatically Deactivating Users

The Automatic Deactivation of Users option [XUAUTODEACTIVATE] finds all users in the NEW PERSON file (#200) with a TERMINATION DATE (#9.2) in the past, but who still have an Access code. In addition, it also looks to see if there are any users who have not signed on in the last "n" days.

The XUAUTODEACTIVATE option terminates any users who fit this criteria. Any such users are users who had been scheduled for termination but were not terminated (usually because the task that should have terminated them did not run). It acts as a safety net to ensure that all users who were scheduled for termination are, in fact, terminated. It should be scheduled to run on a regular basis.

REF: For recommended frequency of scheduling, see the *Kernel Installation Guide.*

Because the XUAUTODEACTIVATE option is not intended for interactive use, it is placed on the ZTMQUEUABLE OPTIONS menu.
3.4.2.1 Termination Process

The termination process does the following:

- Sets the DISUSER field (#7) in the NEW PERSON file (#200) to YES (1).
- Deletes the user's Access code.
- Deletes the user's security keys.
- Calls the XU USER TERMINATE protocol in the OPTION file (#19) so other applications can take any action they need.
- If the DELETE ALL MAIL ACCESS field (#9.21) in the NEW PERSON file (#200) is set to YES, then the user will also be removed from the VistA MailMan system, which deletes their MailMan mail boxes and deletes them from any mail groups.

3.4.2.2 Academic Affiliation Waiver

The VA Handbook 6500 page 60 (POLICY AND PROCEDURES, Technical Controls, Logical Access Controls), Item "d" states that accounts are automatically disabled if inactive for 30 days. This requirement is repeated in VA Handbook 6500 Appendix D.

The Office of Academic Affiliation requested a waiver for the 30 day disabling of inactive accounts asking it be 90 days and the waiver was approved.

REF: A copy of the approved waiver is available as an attachment to Remedy Ticket #283028.

Kernel Patch XU*8.0*514 added the ACADEMIC AFFILIATION WAIVER field (#13) to the KERNEL SYSTEM PARAMETERS file (#8989.3). This field is used to control the LAST SIGN-ON DATE/TIME field (#202) in the NEW PERSON file (#200). If the Office of Academic Affiliation waiver is applicable to a site, the site can set the ACADEMIC AFFILIATION WAIVER field (#13) to YES (1). The default for this field is NULL.

When the ACADEMIC AFFILIATION WAIVER field (#13) is set to YES, the users will only be automatically disabled if they have been inactive for over 90 days (i.e., LAST SIGN-ON DATE/TIME is over 90 days). If it is not set, this option will work as usual (i.e., 30 day limit).

3.4.3 Purging Mail and Security Keys for Inactive Users

You can use the Purge Inactive Users' Attributes option [XUSERPURGEATT] to clean up files. It removes all mailboxes, messages, mail groups, and security keys for users who have been terminated. If any of these users still retain Access codes, they are deleted.

This is particularly significant with mail. A mail message cannot be completely removed from a system until all recipients have deleted it from their mail baskets. If a user is no longer active, then it becomes unlikely that the message will ever get purged.
There are two modes of running this option. You can VERIFY the process for each user that the computer selects as eligible. If you choose not to verify the process for each user, then for every user with a non-future TERMINATION DATE, their set of security keys, mail groups, messages, and mail baskets will be deleted.

3.4.4 Reactivating Users

You can use the Reactivate a User option [XUSERREACT] to re-enable access for a user who has either been terminated, or whose access has been temporarily disabled. To re-enable access for someone whose account is merely disabled (with the DISUSER field set to **YES**), use this option to simply clear the DISUSER field. Otherwise, using this option, you can fill in all the fields needed for an active account (i.e., FILE MANAGER ACCESS CODE field [#3], PRIMARY MENU OPTION, etc.).

When you reactivate a user, you are asked whether to deny access to old mail messages. If the reactivated user account is a less privileged account than previously, it may be appropriate to deny the user access to messages that were received in the user's prior capacity. Even if that user's mailbox was deleted at termination, once the user is reactivated, an old message would be delivered if responded to by another recipient.

3.5 User Management Options on the Operations Menu

Kernel provides a set of options for IRM to monitor and support users logged onto the system. These options are on the User Management Menu [XUOPTUSER], under the Operations Management menu [XUSITEMGR], as shown below:

![User Management Menu options](image)

Figure 3-21. User Management Menu options

3.5.1 Find a User Option

You can use the Find a User option [XU FINDUSER] to find a user who is currently signed on to the system in this UCI group. If you are on the same CPU as the user, this option will also show the menu path of the user. The option finds users based on the "CUR" cross-reference of the SIGN-ON LOG file (#3.081).
3.5.2 List Users Option

The List Users option [XUSERLIST] lists all users known to the system.

3.5.3 Print Sign-on Log Option

The Print Sign-on Log option [XUSC LIST] prints out the SIGN-ON LOG file (#3.081).

Figure 3-22. Sample Kernel Sign-On Log report

<table>
<thead>
<tr>
<th>USERS WHO HAVE SIGNED ONTO THE COMPUTER</th>
<th>MAY 3,2006 15:20</th>
<th>PAGE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign-on time</td>
<td>ELAPSED TIME</td>
<td>USER</td>
</tr>
<tr>
<td>IP ADDRESS</td>
<td>(MINUTES)</td>
<td>$I</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>MAY 2,2006 10:28</td>
<td>-628</td>
<td>XUUSER,ONE</td>
</tr>
<tr>
<td>10.6.15.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 2,2006 10:28</td>
<td>0</td>
<td>XUUSER,TWO</td>
</tr>
<tr>
<td>10.6.17.191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 2,2006 12:51</td>
<td>0</td>
<td>XUUSER,TWO</td>
</tr>
<tr>
<td>10.6.17.191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 2,2006 14:00</td>
<td>3</td>
<td>XUUSER,TWO</td>
</tr>
<tr>
<td>10.6.17.191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 2,2006 14:14</td>
<td>3</td>
<td>XUUSER,TWO</td>
</tr>
<tr>
<td>10.6.17.191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 2,2006 14:45</td>
<td>6</td>
<td>XUUSER,TWO</td>
</tr>
<tr>
<td>10.6.17.191</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.5.4 Release user Option

If multiple signons are prohibited, problems can occur if users experience an abnormal exit such that the signon record cannot be cleared. IRM can use the Release user option [XUSERREL] to remedy the problem for individual users. To clear all users on startup, schedule the Clear all users at startup option.

3.5.5 User Inquiry Option

The User Inquiry Option option [XUSERINQ] displays various attributes of a specified user. If the user is currently signed on, it displays the job and device numbers, the signon time, and what option is being executed. Otherwise, it displays the last signon time. It also displays which security keys are held by the user.

3.5.6 User Status Report Option

The User Status Report option [XUUSERSTATUS] produces a report of the users currently signed on to this CPU and UCI. It shows the option each user is running and when they signed on, as well as their device and job numbers.
3.6 Signon Audits

Signon events are recorded in the SIGN-ON LOG file (#3.081). Statistics, such as the time of access and the user's identity, are stored for audit purposes. If the user exits normally (is not "bumped" off the system), the signon record will include the time of exit. If the user exits abnormally with an error or enters programmer mode, the signon record cannot include a time of exit.

Information about signon activity can be reviewed with options on the Operations and System Security menus.

The SIGN-ON LOG file (#3.081) is purged with the XUSCZONK option that should be tasked to run on a regular schedule (e.g., every night). This option cannot be reached from Menu Manager; like other options that should only be queued, it is on the PARENT OF QUEUABLE OPTIONS menu.

3.6.1 Signon Statistics

Statistics about active sessions can be obtained with the CPU/Service/User/Device Stats option [XUSTAT]. This option permits sorting by CPU, by the user's Service/Section (e.g., MAS) by individual users, or by particular devices.

Figure 3-23. CPU/Service/User/Device Stats option

3.6.2 Failed Access Attempts Audit

When a user enters invalid Access and Verify code pairs, the number of attempts is recorded and the device appears to lock after the site parameter limit of failed access attempts is reached. After this point, Signon/Security continues to record what the user types (but only to create a record in the FAILED ACCESS ATTEMPTS LOG file [#3.05]). If a valid Access code is entered, Signon/Security can link the attempt with a known user and will record that user's name in the log. Since it is a valid code, its text is not recorded in the log. The text of subsequently entered invalid Verify codes can, however, be recorded as clues to the source of the access attempt. If the Access code is not valid, a user's name cannot be associated but the text of the attempt can be recorded. The log also records the time of day, device used, and CPU/UCI location.

Table 3-3. Kernel Signon Auditing Files

<table>
<thead>
<tr>
<th>File</th>
<th>Global Location</th>
<th>Set Parameters</th>
<th>Display Parameters</th>
<th>Initiate/ Terminate</th>
<th>Print Reports</th>
<th>Purge Logs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGN-ON LOG (#3.081)</td>
<td>^XUSEC(0,</td>
<td>Predefined</td>
<td>N/A</td>
<td>Always done</td>
<td>Print Sign-on Log [XUSC LIST]</td>
<td>Purge Sign-on Log [XUSCZ0]</td>
</tr>
</tbody>
</table>
The Purge Log of Old Access and Verify Codes option [XUSERAOLD] purges all inactive Access and Verify codes, which allows for the recycling of codes. Old Access and Verify codes are stored so that users cannot pick a previously used code when required to choose a new code. If old codes are stored indefinitely, though, it may become difficult for users to invent new codes. When you use this option interactively, you can purge codes older than a retention period you specify, from 7 to 90 days. When scheduled, the retention period defaults to 90 days, but can be changed to anything from 30 to 90 days by putting the number of days in the TASK PARAMETERS field.

The log of Access codes is stored in the whole-file AOLD cross-reference of the NEW PERSON file (#200). The log of Verify codes is stored per user in the VOLD cross-reference of the NEW PERSON file (#200, not a whole-file cross-reference). Thus, Verify codes are not necessarily unique between users, while Access codes are.
4. Electronic Signatures

4.1 User Interface

An electronic signature is a security tool that software applications can use as an additional identification check. For example, software can require that an electronic signature be applied to a particular form or document before subsequent processing can continue.

Electronic signature codes are stored in the NEW PERSON (#200) file.

4.1.1 Electronic Signature code Edit Option

If you need to create an electronic signature for yourself, you can choose the Electronic Signature code Edit option [XUSESIG], available from the User's Toolbox menu.

You can enter a new electronic signature code or change an existing code. The length of the code must be between 6 and 20 uppercase characters. Requiring all uppercase allows the code to be verified with either uppercase or lowercase input, since lowercase will be converted to uppercase in the matching process. You should choose a code that other users are not likely to guess, as this code verifies that it is actually you who are signing off on some important action.

The Electronic Signature code Edit option [XUSESIG] also allows you to edit the following fields in the NEW PERSON file (#200):

- INITIAL
- SIGNATURE BLOCK PRINTED NAME (#20.2)
- SIGNATURE BLOCK TITLE (#20.3)
- OFFICE PHONE (#.132)
- VOICE PAGER (#.137)
- DIGITAL PAGER (#.138)

Applications can print some or all of these fields when printing an electronically signed document. You should therefore ensure that the values entered in these fields are accurate.

4.2 System Management

Figure 4-1. User Edit menu options

<table>
<thead>
<tr>
<th>SYSTEMS MANAGER MENU ...</th>
<th>[EVE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Edit ...</td>
<td>[XUSER]</td>
</tr>
<tr>
<td>Electronic Signature Block Edit</td>
<td>[XUSESIG BLOCK]</td>
</tr>
<tr>
<td>Clear Electronic signature code</td>
<td><locked: XUMGR></td>
</tr>
</tbody>
</table>
4.2.1 **Electronic Signature Block Edit Option**

The Electronic Signature Block Edit option [XUSESIG BLOCK] lets you edit the electronic signature code for any user on the system. When you create an electronic signature code for a user, the SIGNATURE BLOCK PRINTED NAME field is initially filled in by a cross-reference on the NAME field (#.01) (and will be overwritten if the NAME field [#.01] is changed). Credentials (e.g., "M.D.") can be added to customize the printed name. As a security feature, an input transform requires that the user's last name (first comma piece of the NAME field (#.01)) be included in the printed name. (This field cannot be edited through VA FileMan since it is WRITE-protected with a caret ["^"].)

4.2.2 **Clear Electronic signature code Option**

The Clear Electronic signature code option [XUSESIG CLEAR] is another option available to IRM that allows the clearing (deleting) of an electronic signature code. This option is locked with the XUMGR security key. This option can be used to clear a user's electronic signature code if the user has forgotten the code. The user can then enter a new code with the Electronic Signature code Edit option [XUSESIG] in the User's Toolbox menu.
5. File Access Security

The File Access Security system is an optional Kernel module. It provides an enhanced security mechanism for controlling user access to VA FileMan files.

REF: For more information on File Access Security, see the *VA FileMan (Version 22.0) and Kernel (Version 8.0) File Access Security* supplemental documentation located on the VHA Software Document Library (VDL) at the following Website:

5.1 User Interface

As a user, you typically access VistA data by use of application options. You enter data into files and retrieve information from files through the menu options within the software. Except under a few unusual circumstances, your use of the system will *not* be affected by the File Access Security system. If you need to work directly with files by using VA FileMan options, however, you will be affected.

VA FileMan options provide direct access to data files. Figure 5-1 lists some sample VA FileMan options:

![Figure 5-1. Sample VA FileMan menu options](image)

If the File Access Security system is implemented, the only files you can access directly through VA FileMan options are those listed in your ACCESSIBLE FILE Multiple field (#32) in the NEW PERSON file (#200). IRM grants file access by using a sub-menu on the User Management menu [XUSER].

There are six levels of File Access Security properties (listed alphabetically):

- AUDIT
- DATA DICTIONARY ("DD")
- DELETE ("DEL")
- LAYGO
- READ ("RD")
- WRITE ("WR")
File Access Security

REF: These File Access Security level properties are described in Table 5-1.

Each level of access is granted as **YES** or **NO**. If the File Access Security system is implemented, file access is controlled by these YES/NO flags, not by the matching of your FILE MANAGER ACCESS CODE field (#3) string in the NEW PERSON file (#200) with security placed on the file.

If you have *not* been granted any security access to VA FileMan files, entering two question marks ("??") when prompted for a file name/number shows no files to access:

![User dialogue example](image)

*Figure 5-2. User has *not* been granted security access to any VA FileMan files—Sample user dialogue*

In this case, you need to contact IRM and be granted access to the VA FileMan files you need.

File Access Security is also invoked when an option uses VA FileMan's Line Editor. In particular, the Transfer Lines from Another Document option on the Line Editor's Edit menu does not permit access to other word-processing documents in the current file or other files unless READ access to that file has been explicitly granted. If you need to transfer text from other files using the Line Editor, contact IRM to request access to those files.
5.2 System Management

Prior to introduction of the File Access Security system, user access to VA FileMan files through VA FileMan options was controlled by matching a character in a user's FILE MANAGER ACCESS CODE field (#3) (the DUZ(0) string) in the NEW PERSON file (#200) with a character in the file's top level file security fields.

Kernel's optional File Access Security system uses a different method. It allows you to control access to files for any user using VA FileMan options directly. Access is granted (or denied) by adding (or removing) a file from a user's ACCESSIBLE FILE Multiple field (#32) in their NEW PERSON file (#200) entry.

The File Access Security system does not affect access to files through non-VA FileMan options; security in this case is managed by controlling the availability of the option.

REF: For exceptions, see the "When is File Access Security Checked?" topic in this chapter.

If a user's DUZ(0) is set to the at-sign ("@"; programmer access), VA FileMan options allow complete file access. If it is set to anything else (except the caret ["^"]), VA FileMan options use the ACCESSIBLE FILE Multiple field (#32) specifications in the NEW PERSON file (#200) to grant varying levels of file access.

NOTE: The caret ("^") overrides the at-sign ("@"; programmer access).

This higher degree of control over a user's file access comes at a price, because it requires more management on IRM's part to provide each user access to the files to which they need access. However, the payoff in using the File Access Security system is in enhanced control and security for VA FileMan files.

5.2.1 When is File Access Security Checked?

When using VA FileMan options, access to files through the File Access Security system is checked.

When initially accessing data in a file through software options (e.g., options using VA FileMan Application Program Interfaces [APIs]), File Access Security is not checked. File Access Security is checked, however, when calling the following APIs:

- ^DIC calls—Adding an entry to the top level of a file (i.e., LAYGO access)
- ^DIE calls—Deleting an entry at the top level of a file (i.e., DELETE access).

Developers can bypass these LAYGO and DELETE access checks using the following variables:

- DLAYGO
- DIDEL, respectively.
When accessing data through software options, File Access Security is also checked when a file is navigated to from another file (i.e., READ, WRITE, DELETE, and LAYGO access). Currently, there is no way for developers to override access checks when navigating to a file from another file, so explicit access to files navigated to/from an application option must be granted by IRM.

5.2.2 What in VA FileMan is Still Protected by the File Manager Access Code?

When the File Access Security system is enabled, access to templates (e.g., INPUT, PRINT, SORT, etc.) is denied when using VA FileMan options, if the user's DUZ(0) string does not contain a matching character. Similarly, when editing fields via VA FileMan's Enter or Edit File Entries option [DIEDIT], the DUZ(0) matching process is invoked to permit or deny editing for protected fields. The DUZ(0) value is also checked by some non-VA FileMan applications. Finally, if a user's DUZ(0) is "@", they are allowed complete access to all files.

5.2.3 Purpose for Granting File Access

IRM is responsible for granting file access. The needs of each user must be determined and an appropriate degree of access authority assigned. Too much access may risk the security of your system, while too little may inhibit productive activity.

What is the purpose of File Access Security? Why bother specifying who has access to which files? The answer is threefold:

- To monitor the use of VA FileMan.
- To regulate the extent of VA FileMan access from among six levels of security that allow AUDIT, DATA DICTIONARY ("DD"), DELETE ("DEL"), LAYGO, READ ("RD"), or WRITE ("WR") access.

REF: These File Access Security level properties are described in Table 5-1.

- To reserve DUZ(0), the FILE MANAGER ACCESS CODE field (#3), as a security measure to protect just templates and fields, not files, from VA FileMan options.

With file access security, it is possible to know who has access to which files and what kind of access they have. This information can also be retrieved by user or by file. In addition, privileges can also be entirely restricted for an individual user or for a single file that may contain sensitive information.
5.2.4 Who Needs File Access?

You need to grant File Access Security in the following cases:

- A user needs to access files directly through VA FileMan options.
- Within an application option, VA FileMan is used to navigate from one file to another.
- Within an application option that calls the ^DIE API to edit a file entry; a user is unable to add or delete entries in a pointed-to file.
- Within an application option that calls the ^DIE or ^DIC APIs to edit a file entry; a user is unable to add or delete entries in the primary file (because the application did not set the DLAYGO or DIDEL variables).
- A user needs to use VA FileMan's Line Editor's Transfer Lines from Another Document option.

Application developers can document which files need to be granted to whom, or can modify their code or data dictionary (DD) specifications to allow access.

5.2.5 Levels of File Access Security

There are six file access security properties involved with File Access Security. If a file access security property is not defined (i.e., the value is null), the VA FileMan exported menu options for that property are not open to full access for users.

REF: The following table is taken from the VA FileMan (Version 22.0) and Kernel (Version 8.0) File Access Security supplemental documentation located on the VHA Software Document Library (VDL) at the following Website:

Table 5-1. File Access—Security level properties

<table>
<thead>
<tr>
<th>Access</th>
<th>Security Property Description</th>
<th>Property Location (Classic VA FileMan)</th>
</tr>
</thead>
</table>
| AUDIT | The AUDIT security property controls the setting of auditing characteristics and the deletion of audit trails. This property only deals with the auditing of data and not the auditing of data dictionary (DD) changes. To audit DD changes, users would enter "YES" at the "DD AUDIT? NO/" prompt when modifying a file's File Security Access. Examples of the VA FileMan options that this property controls are as follows:
 - Fields Being Audited [DIAUDITED FIELDS]
 - Data Dictionaries Being Audited [DIAUDIT DD] | ^DIC(<file number>,0,"AUDIT")=<value> |
File Access Security

<table>
<thead>
<tr>
<th>Access</th>
<th>Security Property Description</th>
<th>Property Location (Classic VA FileMan)</th>
</tr>
</thead>
</table>
| | • Purge Data Audits [DIAUDIT PURGE DATA]
• Purge DD Audits [DIAUDIT PURGE DD]
• Turn Data Audit On/Off [DIAUDIT TURN ON/OFF] | |
| **DATA DICTIONARY** (*"DD"*) | The DATA DICTIONARY security property controls who has access to modify the data dictionary. Examples of the VA FileMan options that this property controls are as follows:
• Modify File Attributes [DIMODIFY]
• Utility Functions [DIUTILITY]
• Data Dictionary Utilities [DI DDU]
For example, to use the Map Pointer Relations option, DD access is needed to the PACKAGE file (#9.4) and to the files one selects for mapping. | ^DIC(<file number>,0,"DD")=<value> |
| **DELETE** (*"DEL"*) | The DELETE security property controls who can delete an existing record that is contained within the file. It does not permit deletion of the file or any of its attribute fields. Examples of the VA FileMan options that this property controls are as follows:
• Enter or Edit File Entries [DIEDIT]
• Transfer Entries [DITRANSFER] | ^DIC(<file number>,0,"DEL")=<value> |
| **LAYGO** | The LAYGO (Learn As You Go) security property controls who can add a new record to the file. Examples of the VA FileMan options that this property controls are as follows:
• Enter or Edit File Entries [DIEDIT]

NOTE: You must have LAYGO and WRITE access to a file to add new entries. In addition, you must have WRITE access at the field level for all required identifier fields. | ^DIC(<file number>,0,"LAYGO")=<value> |
| **READ** (*"RD"*) | The READ security property controls who has access to read data contained within a file. Examples of the VA FileMan options that this property controls are as follows: | ^DIC(<file number>,0,"RD")=<value> |
File Access Security

Access Security Property Description

<table>
<thead>
<tr>
<th>Access</th>
<th>Security Property Description</th>
<th>Property Location (Classic VA FileMan)</th>
</tr>
</thead>
</table>
| • Print File Entries [DIPRINT]
• Search File Entries [DISSEARCH]
• Inquire to File Entries [DIINQUIRE]
• Statistics [DISTATISTICS]
• List File Attributes [DILIST]
• Transfer Entries [DITRANSFER] | To transfer text, the user needs READ access to the file from which text is being transferred. Similarly, WRITE access is needed for the file to which entries are being transferred with this option. |
| • Transfer File Entries (transfer-to file) | **NOTE:** READ access is also required to use some of the Filegram and Audit options. |

WRITE ("WR")

The WRITE security property controls who can alter data in an existing record that is contained within the file. It will not permit the adding of new entries to the file. Examples of the VA FileMan options that this property controls are as follows:

- Enter or Edit File Entries [DIEDIT]
- Transfer Entries [DITRANSFER]

To transfer text, the user needs READ access to the file from which text is being transferred. Similarly, WRITE access is needed for the file to which entries are being transferred with this option.

\`^DIC(<file number>,0,"WR")=<value>`

Any or all of these six levels of access can be enabled for each of the user's accessible files. This is done by changing the field value from **NULL** to **YES**. This flag is overridden for developers whose DUZ(0)=@.

Granting the READ, WRITE, DELETE, and LAYGO levels of access permits adding and deleting file entries as well as editing their attribute field data values. This is true unless the attribute field has been protected. If so (i.e., if there is READ, WRITE, or DELETE protection within the data dictionary [DD] for a given field), the user's FILE MANAGER ACCESS CODE field (#3), DUZ(0), is checked. Access is
denied if the user's DUZ(0) does not contain a character matching the field protection. Again, DUZ(0)=@ overrides this restriction.

The DATA DICTIONARY ("DD") and AUDIT levels of access pertain to the structure of the file itself. While this provides a generous scope for VA FileMan data dictionary (DD) modification, it falls short of, for example, deleting a field protected with the at-sign (@; programmer access).

The same applies to templates. If the template is protected, the user who has access to the file will not have access to the template from VA FileMan options unless there is a match in the DUZ(0) character string.

5.2.6 Audit Access to Files

Audit privileges might be granted to advanced VA FileMan users who are interested in developing new audit capabilities. With AUDIT access, which must be accompanied by DD access, VA FileMan's Modify File Attributes option [DIMODIFY] can be used to set an audit flag for a particular field within a file. This access does not include setting audit conditions with M code, which is reserved for users with a FILE MANAGER ACCESS CODE field (#3) containing @.

The data values for attribute fields can be recorded in the AUDIT file (#1.1) by setting an audit flag in the data dictionary (DD) for that field. For example, the SSN field in the PATIENT file (#2) could be audited. There are two choices for the audit in the AUDIT file (#1.1):

- An entry can be made when a value is entered or changed.
- An entry can be made only when the value is changed (i.e., edited or deleted).

The second method may be all that's needed. In the SSN example, you would monitor just the circumstances of the change, not of the initial SSN assignment.

To display the results of the audit, your DUZ(0) must equal the at-sign (@; programmer access). Then, you can query the AUDIT file (#1.1) in the usual way with VA FileMan's Inquire to File Entries option [DIINQUIRE].
5.2.7 How to Grant File Access

IRM specifies the particular files and levels of access for users. The File Access Security menu [XUFILEACCESS], on the User Management menu [XUSER], provides options to grant file access security. These options edit the ACCESSIBLE FILE Multiple field (#32) in the NEW PERSON file (#200).

The options for granting file access privileges fall into three functional categories:

- **EDITING**—To assign file access to an individual user or a group of users. One user's profile can also be duplicated or copied to another user or group of users. To simplify adding files, number ranges can be specified.

- **LISTING**—To display one user's profile, a name-sorted list of all user's profiles, or a file or range of files with associated users and the access levels of each.

- **RESTRICTING**—To entirely limit access by user or by file, or to delete a range of files for a user or group of users.

The options are designed to facilitate queries by user or by file. You can add or delete file access for one user or for many users. Or, you can begin with the file and list users with access or restrict access.

5.2.8 Using the File Access Options

![Figure 5-3. File Access Security menu options](image)

When using options on the File Access Security menu [XUFILEACCESS], you may have the following questions:

- What is the DUZ# that appears next to the user's name?
- How is a range of file numbers specified?
- What are the queuing questions all about?
5.2.8.1 Understanding DUZ (the User Number)

When listing the file accesses by user or by file, the user's name is followed by a number in parentheses. The heading indicates that this is the "User #," which is the same as the DUZ#.

DUZ is a local variable that identifies the user who has signed onto the system. Once the user enters an Access and Verify code, Kernel's Signon/Security uses this variable to identify an entry in the NEW PERSON file (#200). It must be unique, so the user's name will not do. Instead, the internal entry number (IEN) is used. That is what becomes the value of DUZ.

Some users have low numbers while others have high ones. This simply indicates the order their names were entered into the NEW PERSON file (#200). Users with low numbers are often people who began using the system some years ago, while users with high numbers tend to be recent entries in the file.

5.2.8.2 Using Ranges of File Numbers

Can files be specified by number ranges? Yes; it is useful to do this when granting several files at once. First, find out the number of the files. Typing a question mark ("?") at the "to Files:" prompt will display the number and name of the files. Note the numbers and then put them together on one line. You can use hyphens to indicate a consecutive range and commas to separate the single numbers and hyphenated groups as follows:

2,3,4,6,7,8,125,236,799
OR
2-4,6-8,125,236,799

File numbers are also used when printing a group of consecutive files. The prompt asks for a place to start with a default file name presented. To print just this one file, respond to the next prompt by simply pressing the <Enter> key, thereby accepting the default of ending after printing that one file.

To print a consecutive range of files, the lowest number is entered as the starting point and the highest number as the ending point. All files that fall in this range will be printed.

5.2.8.3 Queuing File Access Specifications

Most of the options provide the opportunity to queue, after specifying who is to be granted which files. Queuing sends the specifications to TaskMan to assign to users at a later time. TaskMan can work at an off-peak time (e.g., midnight) to avoid consuming system resources during the daytime. If the system is not busy, queuing is still a good idea since your terminal will otherwise be tied up while the report is being printed.
5.3 Running the File Access Security Conversion

5.3.1 Advantages

To implement File Access Security you need to run a conversion. Some advantages of implementing File Access Security include:

- **Easier to identify levels of access**—Running the conversion makes it possible to identify the levels of access each individual user has to each file.
- **Enhanced system performance**—Checking file access by user is slightly faster in terms of global accesses and CPU time.

5.3.2 Advance Preparation for the Conversion

The File Access Security conversion is designed to allocate access privileges to all of your users according to their current FILE MANAGER ACCESS CODE field (#3) value in the NEW PERSON file (#200), DUZ(0), combined with information about their file access through options stored in the ^DISV global. After the conversion you should get only a few user requests for file access. The File Access Security menu [XUFILEACCESS], an option on the User Management menu [XUSER], should then be used to add a file to a user's ACCESSIBLE FILE Multiple field (#32) in the NEW PERSON file (#200).

The conversion uses the FILE MANAGER ACCESS CODE field (#3) (DUZ[0] string) to assign file access according to the characters in the string. If a file is protected with a particular character that matches one in the user's code, that file is entered into the user's ACCESSIBLE FILE Multiple field (#32). Levels of access are granted according to the file's original security (field-level security continues to function the same, by checking the FILE MANAGER ACCESS CODE field (#3)).

NOTE: Users with programmer-level access (FILE MANAGER ACCESS CODE field [#3] = @) will **not** need to have any files in their ACCESSIBLE FILE Multiple field (#32), since they will be able to access all files without restriction.

5.3.2.1 ^DISV Global

The File Access Security conversion process makes use of the ^DISV global to identify which files have recently been accessed by which users. The conversion adds all files that the user has been able to access (select from) to the user's ACCESSIBLE FILE Multiple field (#32) list. It grants READ access to these files.

Using the ^DISV global to grant file access has the benefit of permitting option usage "as usual" the day after the conversion is run. KILLing the ^DISV global just **before** the conversion is **not** advised, since many users will suffer inappropriate access restrictions and will need special attention by IRM just after the conversion. KILLing the ^DISV global a week or two before the conversion, however, may be worthwhile as a way of purging obsolete user data. In multi-CPU environments, where each CPU has its own copy of the ^DISV global, you should choose the busiest user node upon which to run the conversion (in order to pick up the most comprehensive information from that node's ^DISV). Caché sites should run the conversion from their busiest user node.
It is assumed that ^DISV is not translated, so K ^DISV on the CPU where the conversion will be run. Do this about two weeks before you perform the conversion, as advance preparation. ^DISV will be reset as soon as a user responds to a "Select:" prompt.

Figure 5-4. KILLing ^DISV—Sample code

> K ^DISV

Do this only on the CPU where the conversion will run, about two weeks beforehand, as advance preparation.

5.3.2.2 Adding Explicit File Access for IRM

If there are any files that are neither protected nor accessed by users (e.g., the DOMAIN file [#4.2]) the conversion will **not** list them in any user's ACCESSIBLE FILE Multiple field (#32). Before the conversion, these types of files are accessible to everyone, while after the conversion these files will only be accessible to users with programmer-level access. Therefore, before the conversion, assign a unique symbol/character to otherwise unprotected files. This will ensure that at least those users with that unique symbol (e.g., IRM staff) will be granted access. VA FileMan's Edit File option [DIEDFILE] can be used to edit the codes.

NOTE: In previous documentation and data dictionaries, it has been **implied** that the pound sign ("#") symbol/character was reserved for File Access Security for IRM, however, this is **not** true. It has merely been used as a **convention**.

Figure 5-5. Updating file access settings (before conversion)

```
Select OPTION: UTILITY FUNCTIONS
Select UTILITY OPTION: EDIT FILE

MODIFY WHAT FILE: USER// DOMAIN <Enter>   (227 entries)
Do you want to use the screen-mode version? YES// n <Enter>  NO
NAME: DOMAIN// <Enter>
DESCRIPTION:
   No existing text
   Edit? NO// <Enter>
Select APPLICATION GROUP: <Enter>
DEVELOPER: <Enter>
DATA DICTIONARY ACCESS: <Enter>
READ ACCESS: <Enter>
WRITE ACCESS: <Enter>
DELETE ACCESS: <Enter>
LAYGO ACCESS: <Enter>
AUDIT ACCESS: <Enter>
```

Enter a unique symbol/character for each level of access so that those unprotected files will be assigned to IRM staff.
5.3.3 Summary of the File Access Security Conversion

The File Access Security conversion prepares the NEW PERSON file (#200) for VA FileMan's method of file access (lookup into a user's record for file access). VA FileMan's ability to protect data within files on fields and templates, remains the same. The summary steps that occur when the conversion is run are outlined below:

1. Setup structure. The structure for implementing the file access method is set up via the following:
 a. Place the data dictionary (DD) for the ACCESSIBLE FILE Multiple field (#32) in the NEW PERSON file (#200). This multiple will be permanently put in place by running the File Access Security conversion.
 b. Install menu options, help frames, and templates used for maintaining the user file access method (i.e., entries with the XUFI namespace).

2. Add protected files to the ACCESSIBLE FILE Multiple field (#32). Each user's FILE MANAGER ACCESS CODE field (#3) is used to add entries to the ACCESSIBLE FILE Multiple field (#32) as follows:
 a. Create a list of files to be processed by examining each file's protection codes. Files that meet both of the following requirements are temporarily stored in the ^UTILITY($J global:
 - Files that have protection defined.
 - Files with protection not equal to "@".
 NOTE: Files that lack any protection will be bypassed. Such unprotected files will not later be listed in anyone's ACCESSIBLE FILE Multiple field (#32). Protection should therefore be applied before running the conversion so that at least some users (e.g., IRM Staff) will be granted access.
 b. Examine each user in the NEW PERSON file (#200). Each user meeting all of the following requirements is selected for further processing:
 - Users not terminated.
 - Users with an Access code.
 - Users with a VA FileMan Access code (i.e., FILE MANAGER ACCESS CODE field [#3] in the NEW PERSON file [#200]).
 - Users with a FILE MANAGER ACCESS CODE field (#3) in the NEW PERSON file [#200] not equal to "@".
 The user's FILE MANAGER ACCESS CODE field (#3) in the NEW PERSON file [#200] is parsed. Each symbol/character is compared with the list of files in the ^UTILITY($J global. All files that have a protection code matching this symbol/character are added to the user's ACCESSIBLE FILE Multiple field (#32) in the NEW PERSON file [#200]. If the symbol/character is used as the file's DATA DICTIONARY ("DD") file security, the user is granted DD access; if it is used as LAYGO, the user is granted LAYGO access, and so on.

3. Add files accessed by the user to the ACCESSIBLE FILE Multiple field (#32). Files accessed by the user through options since the last time the ^DISV global was KILLed are added to the user's ACCESSIBLE FILE Multiple field (#32) by the processing of the ^DISV global. Entries in
^DISV that meet *both* of the following requirements will be added to the ACCESSIBLE FILE Multiple field (#32), with READ access:

- The file *must* not be in VA FileMan's file number range (i.e., file number *must* be equal to or greater than 2).
- The user does *not* already have access to this file.

5.3.4 File Access Security Conversion Instructions

The steps that occur when the file access security conversion is run are described below:

1. Identify unprotected files and assign protection codes as desired (as described in the "Advance Preparation for the Conversion" topic described earlier). For example, the DOMAIN file (#4.2) may need to be protected so that it will be granted to users having a FILE MANAGER ACCESS CODE field (#3) containing the assigned symbol/character.

 NOTE: In previous documentation and data dictionaries, it has been *implied* that the pound sign ("#") symbol/character was reserved for File Access Security for IRM, however, this is *not* true. It has merely been used as a *convention.*

2. Review the FILE MANAGER ACCESS CODE fields (#3) of VA FileMan users. The codes should contain symbols/characters matching those used to protect the files that these individuals use. Since the conversion will automatically grant files to users according to previous privileges as indicated by the FILE MANAGER ACCESS CODE field (#3), add any additional symbols/characters to their FILE MANAGER ACCESS CODE fields (#3) to take advantage of the conversion's automated file assignment according to levels of access.

3. Be ready to use the File Access Security menu [XUFILEACCESS], Figure 5-3, to review and grant file access privileges *after* the conversion.

4. In the production account, enable File Access Security system features and options with ENABLE^XUFILE3, as illustrated below:

 ![Figure 5-6. Enabling File Access Security—Sample user dialogue](image)

 In VAH:

 >D ENABLE^XUFILE3

 >
5. In the production account, begin the conversion with ^XUINCON:

Figure 5-7. ^XUINCON conversion routine—Sample user dialogue

In VAH:

```
>D ^XUINCON
```

Version 7 of the Kernel defined a new multiple-valued field in the New Person File called Accessible File. This conversion will store file access in this multiple in the following manner:

Those Users who have a FileMan Access Code (DUZ(0)) which is not null, i.e., contains some character string, will have their access string matched to the protection currently on your files. For each match between the file and the user, the file will be listed in the user's Accessible File multiple as will the type of access (dictionary, delete, laygo, read, write, audit).

NOTE: Files with no protection will NOT be assigned to any user.

Would you like to run the conversion now? NO/

6. If you are ready to run the conversion, answer YES:

Figure 5-8. Running a conversion—Sample user dialogue

```
Would you like to run the conversion now? NO// YES
56237,36565
Build Table.
Convert Users.
Give access from DISV file.
X-ref.
Done56237,36565.
>
```

7. Review the newly assigned access settings. Use the File Access Security menu [XUFILEACCESS], Figure 5-3, located on the User Management Menu [XUSER], to display file access by user and by file.

5.3.5 After the File Access Security Conversion

After the file access security conversion, users may complain about not being able to add entries to files as they previously could. This typically results from use of an option that navigates from one file to another. To be able to add entries to the navigated-to file, the user needs LAYGO access to that file. IRM can solve the problem by granting LAYGO access using the File Access Security menu options [XUFILEACCESS], Figure 5-3.

If this form of security is implemented, IRM will find that it provides a more accurate and precise knowledge of who has what level of access to which files. When the conversion is run, privileges are
File Access Security

granted to existing users by making use of information stored in the VA FileMan record of file manipulation activity, the ^DISV global. The file access conversion grants each user READ access to files that the user had recently accessed as indicated in the ^DISV global. IRM can grant file access privileges to new users by copying the profile of an existing user with similar duties (e.g., a laboratory application coordinator or admissions clerk).

To be sure that appropriate levels of access have been allocated, IRM staff should determine who has what level of access to which files. Access to sensitive files (e.g., the NEW PERSON file [#200]) should be reviewed and readjusted for individual users as appropriate. All files on a system should be reviewed before and after running the File Access Security conversion.

Figure 5-9 shows how to create a PRINT template to display a report on the current file access security:

Figure 5-9. Creating a PRINT template to display file access security—Sample user dialogue

```
Select OPTION: PRINT FILE ENTRIES

OUTPUT FROM WHAT FILE: FILE
SORT BY: NAME// @NUMBER
START WITH NUMBER: FIRST// 3
GO TO NUMBER: LAST// 4
WITHIN NUMBER, SORT BY: <Enter>
FIRST PRINT ATTRIBUTE: NUMBER;L8;S;"
FIRST PRINT ATTRIBUTE: NAME;L25;"
THEN PRINT ATTRIBUTE: DD ACCESS;R6
THEN PRINT ATTRIBUTE: RD ACCESS;R6
THEN PRINT ATTRIBUTE: WR ACCESS;R6
THEN PRINT ATTRIBUTE: DEL ACCESS;R6
THEN PRINT ATTRIBUTE: LAYGO ACCESS;R6
THEN PRINT ATTRIBUTE: AUDIT ACCESS;R6
THEN PRINT ATTRIBUTE: <Enter>
HEADING: FILE LIST// FILE SECURITY
STORE PRINT LOGIC IN TEMPLATE: ZZFILE SECURITY
```

Once the conversion has been run, you can use the File Access Security menu [XUFILEACCESS], Figure 5-3, to print the accessible files for individual users. Thus, you can establish profiles that would be typical of groups of users (e.g., Nursing, Pharmacy, or other services). Then, when establishing an account for a new user or reactivating the access of a previously terminated user, the profile will be available for copying to the new user.
II. Menu Manager
6. **Menu Manager: User Interface**

Kernel's menu system presents menu options within VistA software in a standard fashion. Once you become familiar with using the menu system in one application, using other applications will be easier since the same rules apply.

6.1 Navigating Kernel's Menus

When you successfully sign into the computer system, Menu Manager presents your primary menu options. Your primary menu is the top-level menu assigned to you by IRM. Most options that are available to you are available from your primary menu, or from a sub-menu attached to your primary menu.

The menu system prompts you with a "Select (menu name) Option:" prompt. For example, in a menu named Billing, Menu Manager would prompt you with "Select Billing Option:". You can navigate through the menu system by responding to this prompt in different ways, which are described in this chapter.

You can enter question marks to see option choices and obtain online help. You can enter an option's synonym or the first few letters of its menu text, using upper or lowercase, to select the option. You can also enter a caret (^) along with the option specification (option menu text or synonym) to jump to the destination option rather than traversing the menu pathways step-by-step.

6.1.1 Choosing Options

You can choose an option from your current menu at the select prompt. Choosing the option launches the software application associated with the option. To choose an option, type in the first few letters of the option as it is displayed and press the <Enter> key. If multiple options match those first few characters you will be presented with a list of matching options from which you can choose the specific option you want to run. If the option is another menu, indicated by trailing ellipses (...), it will become the current menu, and so on down the menu pathway.

To come back up the menu pathway, press <Enter> at the select prompt. Each time you press <Enter>, Menu Manager will return you to the next higher menu level, until you reach your highest menu, the primary menu. If you press <Enter> at the primary menu, Menu Manager asks if you want to halt your session. If you answer YES, your Kernel session will be ended.
6.1.2 Listing Options

When you enter a menu, the items may or may not be displayed automatically, based on whether you have AUTO MENU turned on. The AUTO MENU feature, as described in the "Signon/Security: User Interface" chapter in this manual, is a flag that controls the menu display. If you do not have a setting specified for AUTO MENU, the site parameter default will be used. Often, to save system resources, the site parameter can be set to disable automatic display. In this case, to display menu items, simply enter a single question mark ("?"), as shown below:

![Figure 6-1. One question mark (?) help—Sample user dialogue](image)

```
Select Any Level Menu Option: ?

First Item
Second Item
Third Item of Menu Choices ...
Fourth Item

Enter ?? for more options, ??? for brief descriptions, ?OPTION for help text.
```

Select Any Level Menu Option:

6.1.3 Displaying Option Help

To obtain a lengthier description of an individual option, enter a single question mark ("?"), and the first few letters of the option name. If there is an extended description of the option, or a help frame describing the option, they are displayed.

![Figure 6-2. Using ?Option to get help on a named option—Sample user dialogue](image)

```
Select User's Toolbox Option: ?

Display User Characteristics
Edit User Characteristics
Electronic Signature Code Edit
Menu Templates...
Spooler Menu...
TaskMan User
User Help

Select User's Toolbox Option: ?DISPLAY

'Display User Characteristics'     Option name: XUUSERDISP
Display the user's name, location, and characteristics

**> Press 'RETURN' to continue, '^' to stop: <Enter>
```

Select User's Toolbox Option:
6.1.4 Listing Secondary and Common Options

At any select prompt you can enter two question marks ("??") to see options on the Secondary and Common menus, as well as options available on the current branch of your menu tree.

The Secondary menu and the Common menu contain options that you can select at any location in the menu system. Options on the Secondary menu are typically created by your system manager. Options on the Common menu are standard Kernel options available from anywhere in the menu system. Options on the current menu, on the other hand, can only be directly selected while that menu is the current menu.

The two-question-mark display shows the option's synonym (a short abbreviation), if one exists. You can select an option by its synonym as well as by its full name. On the same line, it lists the option's full name followed by the formal option name in capital letters enclosed in square brackets. (The name is the .01 field of the OPTION file [#19].) It also shows any option restrictions such as:

- Out-of-Order
- Locked
- Prohibited times
Figure 6-3. Two question marks (??) help—Listing Primary, Secondary, and Common menu options

<table>
<thead>
<tr>
<th>Primary Option</th>
<th>Secondary Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM VA FileMan ...</td>
<td>[DIUSER]</td>
</tr>
<tr>
<td>Core Applications ...</td>
<td>[XUCORE]</td>
</tr>
<tr>
<td>Device Management ...</td>
<td>[XUTIO]</td>
</tr>
<tr>
<td>> Locked with XUPROG</td>
<td></td>
</tr>
<tr>
<td>Information Security Officer Menu ...</td>
<td>[XUSPY]</td>
</tr>
<tr>
<td>Manage Mailman ...</td>
<td>[XMMGR]</td>
</tr>
<tr>
<td>Menu Management ...</td>
<td>[XUMAINT]</td>
</tr>
<tr>
<td>Operations Management ...</td>
<td>[XUSITEMGR]</td>
</tr>
<tr>
<td>Programmer Options ...</td>
<td>[XUPROG]</td>
</tr>
<tr>
<td>> Locked with XUPROG</td>
<td></td>
</tr>
<tr>
<td>Spool Management ...</td>
<td>[XU-SPL-MGR]</td>
</tr>
<tr>
<td>Taskman Management ...</td>
<td>[XUTM MGR]</td>
</tr>
<tr>
<td>User Management ...</td>
<td>[XUSER]</td>
</tr>
</tbody>
</table>

You can also select a secondary option:

<table>
<thead>
<tr>
<th>Secondary Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT Equipment Checked Out to Myself [A6A EQUIP USER]</td>
</tr>
<tr>
<td>PAID SIGN INTO MARTINEZ VIA TELNET, TYPE DUSER [A6A USE PAID]</td>
</tr>
<tr>
<td>RUM Capacity Planning ... [XTCM MAIN]</td>
</tr>
<tr>
<td>ISC OFFICE MENU OPTIONS ... [ISCSTAFF]</td>
</tr>
</tbody>
</table>

Or a Common Option:

<table>
<thead>
<tr>
<th>Common Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNF Kernel New Features Help [XUVERSIONEW-HELP]</td>
</tr>
<tr>
<td>Halt [XUHALT]</td>
</tr>
<tr>
<td>Continue [XUCONTINUE]</td>
</tr>
<tr>
<td>Restart Session [XURELOG]</td>
</tr>
<tr>
<td>MM MailMan Menu ... [XUSER]</td>
</tr>
<tr>
<td>NPI PROVIDER NPI SELF ENTRY [XUS NPI PROVIDER SELF ENTRY]</td>
</tr>
<tr>
<td>TBOX User's Toolbox ... [XUSERTOOLS]</td>
</tr>
<tr>
<td>VA View Alerts [XQALERT]</td>
</tr>
<tr>
<td>Time [XTIME]</td>
</tr>
<tr>
<td>Where am I? [XUSERWHERE]</td>
</tr>
</tbody>
</table>

You can also select a secondary option:
6.1.5 Displaying Option Descriptions

Entering three question marks ("???") at any select prompt displays option descriptions (from a word-processing-type field in the OPTION file [#19]). If entered at the select prompt for a menu within the primary tree, the top-level options are described; then you are prompted whether you want to see descriptions for secondary or Common options.

Figure 6-4. Three question marks (???) help—Sample user dialogue

Select Spooler Menu Option: ???

'Allow other users access to spool documents' Option name: XU-SPL-ALLOW
This option edits the 'OTHER AUTHORIZED USERS' field of the SPOOL DOCUMENT file to allow other users access to a spool document.

'Delete A Spool Document' Option name: XU-SPL-DELETE
**> Extended help available. Type "?Delete" to see it.
Delete a spool document from the spool document file and delete the associated message if they are still linked.

'List Spool Documents' Option name: XU-SPL-LIST
**> Extended help available. Type "?List" to see it.
This option lists entries in the spool document file.

'Make spool document into a mail message' Option name: XU-SPL-MAIL
**> Extended help available. Type "?Make" to see it.
This option will take a spool document and post it as a mailman message to the user's IN basket. This doesn't move the data at all but does decrease the number of lines charged to the user.

**> Press 'RETURN' to continue, '^' to stop, or '?'[option text]' for more help: <Enter>

'Print A Spool Document' Option name: XU-SPL-PRINT
**> Extended help available. Type "?Print" to see it.
This allows the printing of a document that has been spooled.

Shall I show you your secondary menus too? No// <Enter>
Would you like to see the Common Options? No// <Enter>

Select Spooler Menu Option:

You should be ready to use three question marks ("???") to learn more about unfamiliar options (e.g., options distributed in a new software release).
6.1.6 Jumping to Options—"Up-arrow Jump")

The pathways of the primary, secondary, and Common menus have tree-like structures. You can step up or down the pathways to reach your destination, or invoke the menu system's "Up-arrow Jump" feature as a shortcut. To jump to an option, enter a caret ("^") before the option specification (the option's menu text or synonym in upper- or lowercase letters). You only need to enter the first few characters needed to uniquely identify the option. You can use the option's synonym to limit ambiguity, especially if the synonym is distinct from other synonyms or menu texts.

Figure 6-5. Using the "Up-arrow Jump”—Sample user dialogue

| Select Systems Manager Menu Option: ^INTRO <Enter> ductory text edit |

The menu system carries out the necessary footwork to reach the desired option. If, along the way, there are pathway restrictions (e.g., locks or prohibited times), access to the option will be denied, just as when stepping to an option. If a match is found within the primary or secondary menus, that option is executed (the menu system will not search the Common menu if it can find a match in the primary or secondary menus).

If the menu system finds more than one matching option on either the primary, secondary, or Common menu tree, the menu system presents a list of matching choices. Entering a caret ("^") followed by a question mark ("?"") will display all of the options available to you.

Figure 6-6. List of choices—Sample user dialogue

| Select Systems Manager Menu Option: ^List Names |

<table>
<thead>
<tr>
<th></th>
<th>1 List Namespaces [XUZ NAMESPACES]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 List Namespaces [ZZ NAMESPACE LIST]</td>
</tr>
</tbody>
</table>

Type "^" to stop, or choose a number from 1 to 2 :

IRM should assign "shallow" secondary menus to facilitate menu jumping. When a jump is requested, the menu system searches all the way through the primary as well as the secondary, looking for a match. Users will be inconvenienced and system resources will be consumed if secondary menus are "deep" in terms of their hierarchical tree-like structure.

You may occasionally find jumping disabled; when you try to jump, you may get a message that quick access is temporarily disabled. Jumping will stay disabled until the needed menu trees are rebuilt.
6.1.7 Jumping to Options—"Rubber-band Jump"

The menu system's jump feature includes the ability to jump out to a destination option and then back again, something like the motion of a rubber band. The syntax for the "Rubber-band Jump" request is the use of a double caret ("^^") followed by the usual option specification. For example:

![Figure 6-7. "Rubber-band jump"—Sample user dialogue](image)

Select Systems Manager Menu Option: ^^TASKMAN USER

As with the single "Up-arrow Jump" ("^"), restrictions along the menu pathways are checked.

If you enter two carets ("^^") without a following option specification/name, you are returned to the primary menu. This technique is a quick way for you to "go home" to the menu that is displayed at signon, and is called the "Go-home Jump."

CAUTION: It is important to note that when you invoke the "Rubber-band Jump," there is no attempt to protect variables that can be SET or KILLED, via Entry or Exit Actions, as you jump through the menu tree. Thus, the "Rubber-band Jump" can be inappropriate under certain circumstances, since it could cause significant alteration of your environment.

6.1.8 Common Menu

The Common menu is designed as a collection of options that are available to all users. The standard Common menu items are:

- **User's Toolbox:** As described in the "User's Toolbox Menu" topic in the "Signon/Security: User Interface" chapter, the User's Toolbox is a menu containing options that allow users to control some aspects of their computing environment.
- **Halt, Continue, Restart Session:** As described in the "Signon/Security: User Interface" chapter in this manual, these options are three different ways to log out of the system.
- **View Alerts:** As described in the "Alerts" and "Signon/Security: User Interface" chapters in this manual, View Alerts is an option that lets you process Alerts.
- **Time:** The Time option simply displays the date and time.
- **Where am I?:** This option lists information identifying what computer system you are signed into (e.g., UCI, Volume Set, Node, and Device).
6.1.8.1 Selecting Common Options with the Double Quote

Since Common options are intended to be readily accessible, there is a shortcut method to reach them. While you could use an "Up-arrow Jump," it is quicker to enter a quotation mark followed by the option specification (e.g., name, synonym). Figure 6-8 selects the User's Toolbox menu from the Common menu via its synonym, TBOX:

Figure 6-8. Selecting common options via the double quote—User's Toolbox menu option

<table>
<thead>
<tr>
<th>Select Sample Menu Option: "TBOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display User Characteristics</td>
</tr>
<tr>
<td>Edit User Characteristics</td>
</tr>
<tr>
<td>Electronic Signature code Edit</td>
</tr>
<tr>
<td>Menu Templates ...</td>
</tr>
<tr>
<td>Spooler Menu ...</td>
</tr>
<tr>
<td>TaskMan User</td>
</tr>
<tr>
<td>User Help</td>
</tr>
</tbody>
</table>

Select User's Toolbox Option:

6.2 Menu Templates Option

Menu templates are like scripts. You can use them to execute a fixed series of options, in sequence. Tools for creating, deleting, listing, and renaming templates are options on the Menu Templates menu, part of the User's Toolbox (TBOX) menu:

Figure 6-9. Menu Templates Option

<table>
<thead>
<tr>
<th>Select Menu Templates Option: ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a new menu template</td>
</tr>
<tr>
<td>Delete a Menu Template</td>
</tr>
<tr>
<td>List all Menu Templates</td>
</tr>
<tr>
<td>Rename a menu template</td>
</tr>
<tr>
<td>Show all options in a Menu Template</td>
</tr>
</tbody>
</table>

Select Menu Templates Option:

When you create a MENU template, you are prompted for a series of options that lead to a final non-menu (i.e., executable) destination option. Once you choose one non-menu option to be executed, you can navigate to other options and choose them to be executed as well, if you wish. When you have selected each executable option to be part of the template, enter a plus sign ("+") to store the sequence of options. You will be asked to confirm the sequence of options in the template, and then to give the template a name.
To invoke the template, simply enter a left square bracket followed by the template name:

![Figure 6-10. Invoking a template—Sample user dialogue](image)

```
Select Option: [mytemplate
Loading MYTEMPLATE...
```

The template will then execute each option that is part of the template, in the same order as the options were selected for the template.

MENU templates are stored in the MENU TEMPLATE field (Multiple) of the NEW PERSON file (#200), so you can use any name for MENU templates. If your MENU template points to options that are subsequently removed from the OPTION file (#19), you receive a message that the MENU template will no longer function properly and needs to be deleted or rebuilt.

Use menu jumping (i.e., the "Up-arrow Jump") when you want to jump immediately to an option. Use MENU templates when you have a series of options that you will need run in the same order repeatedly, over a period of time.

6.2.1 LOGIN Menu Template

Beginning with Kernel 8.0, you can have a MENU template execute automatically, on your first signon of the day. If you have a MENU template named LOGIN (all uppercase), the MENU template will be executed on your first signon of the day. So if you have a series of options you execute on your first signon every day, an easy way to execute them is to create a MENU template; store the series of options in the template; and name the template LOGIN.

6.3 Summary

Once you learn how to navigate Kernel's menu tree, you can use some of Menu Manager's additional features to help increase your productivity in the VistA computer system. These features include the "Up-arrow Jump," the "Rubber-band Jump," using three question marks ("???") to obtain online option help, and using MENU templates as scripts.
7. Menu Manager: System Management

Menu Manager is built around options, which are entries in the OPTION file (#19). There are several types of options:

- **Menus**—Options with subentries in the MENU (item) field (Multiple).
- **Multiples**—Options that point back to the OPTION file (#19) itself.
- **Plugins**—Options that are designed as items that plug into the MENU (item) field (Multiple) of a menu-type option.

Kernel provides a number of tools to create and manage menus and options.

7.1 Kernel Menus

Most of the options exported with software are tied to a parent option, or master menu, as a collection point. Kernel exports three menu tree "roots." The Systems Manager menu [EVE] is the master menu for IRM. The Common menu [XUCOMMAND] is linked through the display function of the menu system rather than the OPTION file (#19). Kernel also exports a menu that is a miscellaneous collection of options that should not normally be invoked by the interactive user; it is the PARENT OF QUEUABLE OPTIONS menu [ZTMQUEUABLE OPTIONS]. Most of the options on this menu should be scheduled to run as TaskMan jobs.

Figure 7-1. Kernel menu tree roots

<table>
<thead>
<tr>
<th>SYSTEMS MANAGER MENU ...</th>
<th>[EVE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM COMMAND OPTIONS ...</td>
<td>[XUCOMMAND]</td>
</tr>
<tr>
<td>PARENT OF QUEUABLE OPTIONS ...</td>
<td>[ZTMQUEUABLE OPTIONS]</td>
</tr>
</tbody>
</table>

7.2 Creating Menus and Options

One task IRM performs frequently is defining local primary menus that are appropriate for their users. This task of menu creation is accomplished by grouping exported menus from various software application together on a new master menu. You can use Edit options, on the Menu Management menu, to define a new menu if READ, WRITE, and LAYGO access to the OPTION file (#19) has been granted (either through the FILE MANAGER ACCESS CODE field [#3] or through the File Access Security system if that is enabled). Only a few fields need to be defined, as shown below. The new menu can then
be assigned to a user, as described in the "Signon/Security: User Interface" chapter, with one of several options on the User Edit menu.

Figure 7-3. Defining local primary menus (IRM)—Sample user dialogue

<table>
<thead>
<tr>
<th>Select OPTION to edit: ZZSTAFF MENU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Located in the Z (Local) namespace.</td>
</tr>
<tr>
<td>ARE YOU ADDING 'ZZSTAFF MENU' AS A NEW OPTION (THE 721ST)? Y <Enter> (YES)</td>
</tr>
<tr>
<td>OPTION MENU TEXT: Staff Menu</td>
</tr>
<tr>
<td>NAME: ZZSTAFF MENU// <Enter></td>
</tr>
<tr>
<td>MENU TEXT: Staff Menu// <Enter></td>
</tr>
<tr>
<td>PACKAGE: <Enter></td>
</tr>
<tr>
<td>OUT OF ORDER MESSAGE: <Enter></td>
</tr>
<tr>
<td>LOCK: <Enter></td>
</tr>
<tr>
<td>REVERSE/NEGATIVE LOCK: <Enter></td>
</tr>
<tr>
<td>DESCRIPTION:</td>
</tr>
<tr>
<td>1> This is the primary menu for staff members.</td>
</tr>
<tr>
<td>2> <Enter></td>
</tr>
<tr>
<td>EDIT Option: <Enter></td>
</tr>
<tr>
<td>TYPE: menu</td>
</tr>
<tr>
<td>Select ITEM: XUCORE <Enter> Core Applications</td>
</tr>
<tr>
<td>ARE YOU ADDING 'XUCORE' AS A NEW MENU (THE 1ST FOR THIS OPTION)? Y <Enter> (YES)</td>
</tr>
<tr>
<td>MENU SYNONYM: <Enter></td>
</tr>
<tr>
<td>SYNONYM: <Enter></td>
</tr>
<tr>
<td>DISPLAY ORDER: 10</td>
</tr>
<tr>
<td>Select ITEM: XUSPY <Enter> System Security</td>
</tr>
<tr>
<td>ARE YOU ADDING 'XUSPY' AS A NEW MENU (THE 2ND FOR THIS OPTION)? Y <Enter> (YES)</td>
</tr>
<tr>
<td>MENU SYNONYM: <Enter></td>
</tr>
<tr>
<td>SYNONYM: <Enter></td>
</tr>
<tr>
<td>DISPLAY ORDER: 20</td>
</tr>
<tr>
<td>Select ITEM: XT-KERMIT MENU <Enter> Kermit menu</td>
</tr>
<tr>
<td>ARE YOU ADDING 'XT-KERMIT MENU' AS A NEW MENU (THE 3RD FOR THIS OPTION)? YES <Enter> (YES)</td>
</tr>
<tr>
<td>MENU SYNONYM: <Enter></td>
</tr>
<tr>
<td>SYNONYM: <Enter></td>
</tr>
<tr>
<td>DISPLAY ORDER: 30</td>
</tr>
<tr>
<td>Select ITEM: <Enter></td>
</tr>
<tr>
<td>CREATOR: SITE, MANAGER// <Enter></td>
</tr>
<tr>
<td>HELP FRAME: <Enter></td>
</tr>
<tr>
<td>PRIORITY: <Enter></td>
</tr>
<tr>
<td>Select TIMES PROHIBITED: <Enter></td>
</tr>
<tr>
<td>Select TIME PERIOD: <Enter></td>
</tr>
<tr>
<td>RESTRICT DEVICES?: <Enter></td>
</tr>
<tr>
<td>Select PERMITTED DEVICE: <Enter></td>
</tr>
</tbody>
</table>

7.2.1 Option Name and Menu Text

By convention, the formal option name is usually entered in all capital letters. According to namespacing conventions, it must begin with a namespace that identifies the associated software. It is the NAME field (#.01) of the OPTION file (#19). The menu text is what is displayed to the user at the select prompt. Like the words of a heading or title, initial capitalization is used for all words except prepositions and articles, all of which are presented in lowercase. To minimize the number of keystrokes needed to select an option, different first letters should be used for the text of each menu item. Menus should be limited to about seven items so they will all appear together on one screen. The most frequently used items should be presented first.
7.2.2 Synonyms and Display Order

By default, the items on the menu are displayed in alphabetical order by menu text. If any of the items is assigned a synonym, those items will be displayed before others lacking synonyms. To facilitate menu jumping, synonyms should ideally be unique; numbers are not good choices for synonyms.

To customize the order of the display, each item on the menu can be assigned a Display Order. This field is an option attribute that will be presented when using Edit options. When first assigning a number for the display order, you may want to use 10, 20, and 30 rather than 1, 2, and 3 to permit easier modification in the future if another item needs to be inserted.

7.2.3 PRIORITY

You can set an option's PRIORITY field to set a run priority for an option. Experimentation will be needed to determine the effect of priority settings.

7.2.4 HELP FRAME

You can specify a help frame for an option. The help frame is displayed if, at the "Select..." menu prompt, the user enters ?OPTION (where OPTION is the name of an option).

7.2.5 DISPLAY OPTION

If AUTO MENU (#200.06) is in effect for a user, the items on that user's current menu are always displayed. A problem can arise when, if an option displays output and then quits, AUTO MENU's automatic display of menu options scrolls the output off the screen. Since the AUTO MENU display usually scrolls the option's output off the screen faster than the user can read the output, it can effectively render the option unusable. You can avoid this problem by setting the option's DISPLAY OPTION field (#11) in the OPTION file (#19) to YES. If set to YES and the user has AUTO MENU turned on, Menu Manager will prompt "Press RETURN to continue..." after the option completes, but before displaying the list of menu options. The user will then have a chance to review the output before returning to their menu.

REF: For information on other fields in the OPTION file (#19), including how to create options of a type other than Menu, see the "Menu Manager: Developer Tools" chapter in the Kernel Developer's Guide.

7.2.6 If the Option Invokes Non-VistA Applications

If you create an option that invokes non-VistA applications (e.g., WordMan or CalcMan) include a call to the Device Handler with the code D HOME^%ZIS in the EXIT ACTION field of the OPTION file (#19) so that the required IO variables will be present when leaving these options. Do the same for any other utility that is known to KILL IO variables upon exit.
7.2.7 If the Option Should Be Regularly Scheduled

If an option should be regularly scheduled to run through TaskMan, you must set its SCHEDULING RECOMMENDED field (#209) in the OPTION file (#19) to YES. You will not be able to use Schedule/Unschedule Options to schedule an option unless this field is set to YES for the option.

7.2.8 Auditing Option Use

Figure 7-4. Auditing menu options

You can establish an audit on options to record every time an option is used. You can do this with the Establish System Audit Parameters option [XUAUDIT], which is in the Audit Features [XUAUDIT MENU] menu tree. Simply enter a time to initiate audit and a time to terminate audit. Then enter the specific options you want to audit (you can also choose all options).

Each time a user uses an audited option, an entry is made in the AUDIT LOG FOR OPTIONS file (#19.081). You can display these entries using the Option Audit Display option [XUOPTDISP]. You can purge the AUDIT LOG FOR OPTIONS file (#19.081) with the Audited Options Purge option [XUOPTPURGE].

If Kernel Toolkit is installed at your site, you can also use its Alpha/Beta Test Option Usage menu to count the number of times an option is invoked.

REF: For more information, see the Kernel Toolkit documentation and the Kernel Security Tools Manual.
7.3 Display Menus and Options Menu

![Menu Diagram](image)

Figure 7-5. Display Menus and Options menu

 Kernel provides a number of options to display and diagram menus and options on the Display Menus and Options menu [XQDISPLAY OPTIONS].

7.3.1 Diagramming Options

To discover the menu tree roots of other software applications and how options and suboptions are related, you can use the following menu diagramming options:

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviated Menu Diagrams</td>
<td>Outlines the menu tree.</td>
</tr>
<tr>
<td>Diagram Menus</td>
<td>Outlines the menu tree, and shows option attributes (e.g., locks and prohibited times).</td>
</tr>
<tr>
<td>Menu Diagrams (with Entry/Exit Actions)</td>
<td>Outlines the menu tree, shows option attributes, and shows entry/exit and header actions as well.</td>
</tr>
</tbody>
</table>

Also, the List Options by Parents and Use option [XUXREF] identifies which options have "no parents," and thus, are standalone roots. It also indicates whether options are used as primary menus, secondary menus, or as regularly scheduled tasks.

7.3.2 Option Descriptions

To learn more about the options included in a software application, you can use the Print Option File option [XUPRINT] (from the Display Menus and Options menu [XQDISPLAY OPTIONS]) to print the option description, type, and other information. This listing can be sorted by namespace. For example, to print all the VA FileMan options, you can sort from DD to DI.
7.3.3 Displaying Options

To display an option, use the Inquire option:

Figure 7-6. Inquire option—Sample user dialogue

```
Select Display Menus and Options Option: Inquire
Which OPTIONS item to display: XT-KERMIT MENU <Enter> Kermit menu
NAME: XT-KERMIT MENU                MENU TEXT: Kermit menu
  TYPE: menu                         CREATOR: POSTMASTER
  PACKAGE: KERNEL                    E ACTION PRESENT: YES
  X ACTION PRESENT: YES
DESCRIPTION:   This is the top level menu for kermit functions. It gives access to the send, receive, and edit options.
ITEM: XT-KERMIT RECEIVE             SYNONYM: R
ITEM: XT-KERMIT SEND                SYNONYM: S
ITEM: XT-KERMIT EDIT                SYNONYM: E
  EXIT ACTION: D CLEAN^XTKERM4       ENTRY ACTION: D INIT^XTKERM4
UPPERCASE MENU TEXT: KERMIT MENU
```

7.3.4 Option Access by User Option

Figure 7-7. Option Access by User option

```
Menu Management ...                     [XUMAINT]
  Show Users with Selected Primary Menu  [XUXREF-2]
  Option Access By User                 [XUOPTWHO]
```

Use the Show Users with Selected Primary Menu option [XUXREF-2] to show which users have been assigned a particular option as a primary or secondary menu. The Option Access by User option [XUOPTWHO] is another cross-referencing tool.
7.4 Managing Menus and Options

7.4.1 Managing Primary Menus

When IRM receives new software applications, existing primary menus should be modified to include the new menus. It is not wise to create a new primary menu for every new or unusual circumstance. This would lead to a tremendous variety of menus that would be difficult to sort out and use in the future. Primary menus can be customized with security keys.

REF: For more information on security keys, see the "Security Keys" chapter in this manual.

If there are a few menu options that require special privilege, they can be locked and the security keys assigned to the appropriate users. In this way, a smaller number of primary menus can serve the needs of a larger number of users.

Also, while putting new master menus onto users' secondary menus can be a quick fix, it is not a good idea to do this. Too many options on a user's secondary menu can be cumbersome for the user. In addition, in the long run, it is easier for IRM to manage access to a menu reached from a few well-defined primary menus than to manage access to a menu reached from a large number of users' secondary menus.

7.4.2 Assigning Secondary Menus

An easy way to allocate menu options is to assign them to users individually as SECONDARY MENU OPTIONS. Secondary options are unique for each user and are stored in a multiple in the user's NEW PERSON file (#200) entry. Assignment of SECONDARY MENU OPTIONS should be limited to the essential few, and should not involve deep structures with multiple levels. Instead, new primary menus should be built or existing ones modified. During menu jumping, all branches of both the primary and secondary menu trees are searched each time a jump request is received by the menu system. Greater efficiency and user convenience will result if the depth of the secondary menu trees is confined.

7.4.3 ALWAYS SHOW SECONDARIES Field

You can set the ALWAYS SHOW SECONDARIES field in a user's NEW PERSON file (#200) entry. If set to YES for a user, that user will always have their secondary and common options listed when options on their primary menu are listed (which occurs either by the user entering two question marks ["??"] at the "Select..." menu prompt, or when AUTO MENU is turned on).
7.4.4 Redefining the Common Menu

All users automatically have access to the options on the Common menu [XUCOMMAND] by virtue of the menu system's design. As described earlier, entering two question marks ("??") at any select prompt will display the Common menu. The only way to deny access to a particular user is to lock the Common menu option with a reverse key and then allocate the security key to the same user.

REF: For more information on security keys, see the "Security Keys" chapter in this manual.

The items on the Common menu can be left as they are distributed by Kernel, or modified locally as desired. For example, an item can be added to display online help about local computer access policies. This is accomplished by using Edit options to edit the XUCOMMAND menu option. The Item multiple lists the existing menu choices; other locally namespaced options can be added.

If options are locally added to the standard XUCOMMAND menu set, new installations of Kernel will not overwrite the changes. During installation, items on the local XUCOMMAND menu are compared with the exported items. Any previously exported items that were removed by the site will not be added back. Brand new items, however, will be added and any matching items will be updated. Other items that the site may have added will be left in place.

7.4.5 Altering Exported Menus

Generally speaking, exported menu structures should stay intact. If local modifications to exported menus are made, great care must be taken to preserve any logic that may exist in the exported structure. For example, the entry action of one option can set up key variables that are then assumed to exist when another option, one further down on the menu tree, is invoked. Although each one of a software's options should be able to be invoked independently once the steps described in the Kernel Technical Manual for creating and KILLing software-wide variables have been taken (according to the Programming Standards and Conventions [SAC]), this is not always the case and cannot be assumed.

If an option cannot be invoked independently, the developer can set that option's INDEPENDENTLY INVOCABLE field to NO, as an alert that some other option or action must be done before the option can be called.

To give users the options associated with new software applications, IRM should try to allocate the menus as whole entities. If dissection appears necessary, the "Internal Relations" section of the software documentation should be consulted before rearranging any of the items.

7.4.6 Delete Unreferenced Options Option

Figure 7-8. Delete Unreferenced Options option

Programmer Options ... <locked: XUPROG> [XUPROG]
Delete Unreferenced Options [XQ UNREF'D OPTIONS]
All options for interactive use (not designed exclusively as queuable tasks) should normally be tied to a menu that is used as a primary menu or at least as a secondary menu. Standalone options that have no parents and are not menu-type options should be reviewed. They may be obsolete software options or local test options and could be candidates for deletion. Use the Delete Unreferenced Options option [XQ UNREF'D OPTIONS] to delete unreferenced options. It can be used to cycle through the entire OPTION file (#19) and delete non-menu options that are not referenced by other options. Deletion should obviously be done with care. Use of this option is limited to those who hold the XUPROG security key.

7.4.7 Fix Option File Pointers Option

![Figure 7-9. Fix Option File Pointers option](image)

After performing maintenance work on the OPTION file (#19) (e.g., deleting obsolete options that may have been items on a menu), you can use the Fix Option File Pointers option [XQOPTFIX] (see Figure 7-10) to remove any dangling pointers that may have been left in the Item multiple. Running this option is an alternative to having VA FileMan update the pointers each time an individual option is deleted.

![Figure 7-10. Fix Option File Pointers option—Sample user dialogue](image)

7.4.8 Testing a User's Menus

![Figure 7-11. Switch Identities option](image)

You can test a user's menus using the Switch Identities option [XUTESTUSER]. It lets you test the user's menus and security keys. It does not allow you to execute any bottom-level menu options, however; it only lets you navigate menu trees. You are reminded at each prompt whose menu it is that you are testing. To exit this mode and return to your own menus, simply enter an asterisk ("*").
7.4.9 Managing Out-Of-Order Option Sets

Menu Manager, starting with Kernel 8.0, provides a mechanism for defining sets of options and protocols, and a way to disable and enable access for these pre-defined option and protocol sets via options on the Out-Of-Order Set Management menu [XQOOMAIN]. This can be handy when you need to repeatedly disable and enable sets of options and protocols.

Use the Create a Set of Options to Mark Out-Of-Order option [XQOOMAKE] to define a set of options. You are prompted first to select options, and then to select protocols.

For both options and protocols, you can use the following to:
- Add a group of options to the set—Use the wildcard asterisk ("*") with or without a namespace.
- Add a range of options to a set—Use NAM1-NAM2 to add a range of options from NAM1 to NAM2 to the set, where "NAM" represents a namespace.
- Subtract/Remove a group of options from a set—Use the minus sign (i.e., hyphen, "-") followed by a namespace.

Use the Mark Option Set Out-Of-Order option [XQOOFF] to disable access to a set of options. You are asked to enter the message used to place all options in the set out-of-order. The option then places the message in each option's OUT OF ORDER MESSAGE field (#2).

Use the Remove Out-Of-Order Messages from a Set of Options option [XQOON] to enable access to an option set.

To toggle the status of an individual option only, use the Toggle Options/Protocols On and Off option [XQOOTOG].

Out-of-Order Option sets are stored in the ^XTMP global, with a purge date set for seven days in the future. If you place a set of options out of order, but the option set is purged from ^XTMP before you enable access to it, you can rebuild the out-of-order option set using the Recover Deleted Option Set option [XQOOREDO]. It asks you to specify the exact text of the message used to place the set of options out of order; it then recreates an out-of-order option set containing all options currently placed out of order with the specified message.
NOTE: Make sure the message you specify is unique to the set of options you are re-enabling.

You can then enable access to the rebuilt option set with the Remove Out-Of-Order Messages from a Set of Options option [XQOON].

To see what sets of options have been grouped in sets on the system, use the List the Defined Options Sets option [XQOOSHOW]. To show all options and protocols currently marked out of order, use the Options in the Option File that are Out-of-Order option [XQOOSHOFIL] and the Protocols Marked Out-of-Order in Protocol File option [XQOOSHOPRO].

7.5 Restricting Option Usage

Figure 7-13. Restrict Availability of Options option

<table>
<thead>
<tr>
<th>Menu Management ...</th>
<th>XUMAINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restrict Availability of Options</td>
<td>XQRESTRICT</td>
</tr>
</tbody>
</table>

Options can be restricted in terms of when users can select them and when devices can be used to invoke them. Many of the option restrictions are included in the Restrict Availability of Options option [XQRESTRICT].

7.5.1 Setting Options Out of Order

To completely restrict access, you can mark an option to be out-of-order. Do this by entering text in an option's OUT OF ORDER MESSAGE field (#2) in the OPTION file (#19). If a user attempts to invoke the option, the Out of Order Message will be displayed.

7.5.2 Locks

Both the normal lock, and also the Reverse/Negative lock can be associated with options (as described in the "Security Keys" chapter). Also, M code can be entered in the HEADER, ENTRY ACTION, or EXIT ACTION fields to restrict the use of an option given certain conditions.

7.5.3 Prohibited Times

You can prohibit the use of an option at certain times during the day by assigning a set of prohibited time periods at the "Select TIMES PROHIBITED" prompt.
7.5.4 Permitted Devices

If the RESTRICT DEVICES flag is set to YES, the option can only be invoked on one of the devices listed in the PERMITTED DEVICES field (Multiple). Thus, the running of an option can be restricted. This flag does not affect the choice of devices used for the output from options. It instead controls the processing involved in the use of the option itself.

7.5.5 QUEUING REQUIRED Flag

Using the option Edit options, you can allow users to invoke an option, but force any output to be queued outside of certain times of day, by editing the option's QUEUING REQUIRED field (Multiple). In this multiple's TIME PERIOD (#.01) and DAY(S) FOR TIME PERIOD (#.02) fields enter the time periods and days in which you do not want the option's output to be produced. During these time periods, the output of the options can only be queued. When a user requests a time for queuing, the menu system will determine the next permissible day and time for output. Thus, users can invoke the option and use it to define the parameters for the subsequent processing, but the actual work will be done during a later time period, presumably when the system is less busy.

7.6 Menu Manager Options that Should Be Scheduled

This topic describes the two Menu Manager options that should be regularly scheduled.

Kernel exports a number of other options that should be scheduled to run at regular intervals. Most of these are located on the PARENT OF QUEUABLE OPTIONS menu.

REF: For a complete list, along with suggested scheduling frequencies, see the Kernel Installation Guide.

7.6.1 Clean Old Job Nodes in XUTL Option

The Clean old Job Nodes in the XUTL option [XQ XUTL $J NODES] is Kernel's purge option for Kernel globals. This option purges the following globals:

- ^XUTL
- ^UTILITY
- ^TMP
- ^XTMP
- ^XUSEC
User stacks for each user's job are stored in the ^XUTL global.

REF: For more information, see the "^XUTL Global: Structure and Function" topic in this chapter.

This is also called the compiled menu system. If a job ends abnormally (e.g., upon error, UCI switching, or developer exits that bypass ^XUS), the entries remain in the global (this explains why developers are advised to halt out of programmer mode with D ^XUSCLEAN rather than simply halting.)

The purge routine sets a purge date of seven days in the past. Any user stack in ^XUTL older than seven days is purged. Any entries with a matching $J at the top level of ^UTILITY and ^TMP are also KILLED.

Next, after cleaning out the user stacks in ^XUTL, the purge routine checks ^UTILITY and ^TMP. Any entry at subscript ($J) or (namespace, $J) that does not have a matching entry in the user stacks in ^XUTL is KILLED.

Next, the purge routine checks ^XTMP. Any entry in ^XTMP at subscript (namespace) lacking a header node at (namespace,0), or with a purge date in the header node less than the purge date determined by the purge routine is KILLED.

Finally, the purge routine goes through the signon nodes stored at ^XUSEC(0,"CUR",DUZ,DATE). Any nodes older than the purge date are KILLED.

The XQ XUTL $J NODES option should be queued to run on a regular basis. If separate copies of ^XUTL are maintained on different CPUs, separate entries should be made in the OPTION SCHEDULING file for each CPU so that a separate job will purge each CPU's XUTL global. Because this option deletes any user stacks that are time-stamped with a date earlier than the purge date determined by this option (seven days) you need to take care how frequently you schedule it (in the unusual event of a seven-day long job, this option should obviously not be run).

7.6.2 Rebuilding Primary Menu Trees

Figure 7-15. Building primary menu trees options

<table>
<thead>
<tr>
<th>PARENT OF QUEUABLE OPTIONS</th>
<th>[ZTMQUEUABLE OPTIONS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-interactive Build Primary Menu Trees</td>
<td>[XQBUILDTREEQUE]</td>
</tr>
<tr>
<td>Menu Management ...</td>
<td>[XUMAINT]</td>
</tr>
<tr>
<td>Build Primary Menu Trees</td>
<td>[XQBUILDTREE]</td>
</tr>
</tbody>
</table>
The menu system uses local menu trees to process requests. When changes are made to the menu structure, the local menu trees are rebuilt (a process also known as microsurgery). If a user attempts an "Up-arrow Jump" when the local trees need to be rebuilt or are being rebuilt, a message is issued about quick access being temporarily disabled; the user will not be able to jump to reach the option. Microsurgery is triggered in the following situations:

- The option Edit options is used.
- An Out-of-Order option set is enabled or disabled.
- A sufficiently large number of changes have been made to a menu tree.

It is also recommended to rebuild all primary menu trees every other day during non-peak hours, using the XBUILDTREEQUE option. If separate copies of ^XUTL are maintained on different CPUs, separate entries should be made in the OPTION SCHEDULING file (#19.2) for each CPU so that a separate job will rebuild each CPU's ^XUTL global.

Primary menu trees can also be built/repaired immediately using the Build Primary Menu Trees option. In particular, if menu jumping has stopped working and microsurgery is not fixing the menus, use the Build Primary Menu Trees option to force a menu rebuild to fix the problem.

7.7 Error Messages During Menu Jumping

There are some conditions under which a menu jump may not be completed. In these cases the user will see one of the following error messages:

Figure 7-16. Menu jump error message (1 of 6)

```
I NEED TO REBUILD MENUS .... QUICK ACCESS IS TEMPORARILY DISABLED  Please proceed to {target option's menu text}
```

This means that the time stamps on the OPTION file (#19) and the ^XUTL global indicate that the OPTION file (#19) has been modified since the menus were compiled in ^XUTL and the global is therefore locked until XQ8 can recompile the modified menus. This error message can be generated by both user-generated jumps and phantom jumps.

Figure 7-17. Menu jump error message (2 of 6)

```
*** WARNING ***
Illegal jump requested to option '{option's menu text}'  Jump pathway locked at option '{locked option's menu text}'
```

This indicates that a locked option for which the user does not possess the security key has been encountered in the tree between the option where the jump was requested and the target option to which the jump was requested. This error message can be generated by both user-generated jumps and phantom jumps.
Figure 7-18. Menu jump error message (3 of 6)

*** WARNING ***
Illegal jump was requested to option '{option menu text}' Jump path out of order from '{option's menu text}' with message '{out of order message}'

This means that an option on the tree between the option where the phantom jump was requested and the target option has been marked as out of order (OUT OF ORDER MESSAGE Field [#2] of the OPTION file [#19]). This error message can be generated by both user-generated jumps and phantom jumps.

Figure 7-19. Menu jump error message (4 of 6)

*** WARNING ***
Illegal jump was requested to option '{option menu text}' Variable XQUIT encountered at option '{option name}'

This means that the jump logic has encountered the variable XQUIT (detected with a $DATA statement). This variable is usually set by an Entry Action (Field #20 of the OPTION file [#19]) and causes the menu system to refuse to run or jump past that option. This error message can be generated by both user-generated jumps and phantom jumps.

Figure 7-20. Menu jump error message (5 of 6)

*** WARNING ***
Background jump requested to option '{value in XQMM("J")}' but this option does not exist on your system.

A VA FileMan lookup was attempted for the option set in the variable XQMM("J") but no such option was found in the OPTION file (#19). This error message can only be generated from a phantom jump.

Figure 7-21. Menu jump error message (6 of 6)

*** WARNING ***
Background jump requested to option '{option's menu text}' but you do not have access to this option. See your computer representative.

This means that the target option requested by XQMM("J") is not in the tree of options to which this user has access (that is, the target option was neither in the user's primary menu tree nor specifically listed as a secondary menu for that user). This error message can only be generated from a phantom jump.

REF: For more information on phantom jumps, see the "Menu Manager: Developer Tools" chapter in the Kernel Developer's Guide.
7.8 \(^\text{XUTL} \) Global: Structure and Function

The \(^\text{XUTL} \) global is an account-specific global. It should exist in each production account on your system. This global is created primarily from information in the OPTION file [\(^\text{DIC}(19) \)] and is therefore sometimes referred to as "the compiled menu system."

\(^\text{XUTL} \) is divided into three main sections:

- **User Stacks**
 \(^\text{XUTL}("XQ","J")\)
 \(^\text{XUTL}("XQT","J")\) (MENU templates only)

- **Display Nodes**
 \(^\text{XUTL}("XQO","i\text{en})\)

- **Jump Nodes**
 \(^\text{XUTL}("XQO","P_i\text{en})\)

7.8.1 User Stacks

User stacks are stored in nodes in \(^\text{XUTL}("XQ","J")\) and \(^\text{XUTL}("XQT","J")\).

The example illustrated in Figure 7-22 shows a typical user stack. In this case the $J is 541065826.

The "XQ" nodes can be divided into meaningful sets according to what is contained in the third subscript. The numeric third subscripts begin with the zero node which is set to the date and time in VA FileMan format by the program \(^\text{XUS1}\) when the user logs on or \(^%\text{XUCI}\) when the user is changing UCIs.

The other numeric, third subscripts (in this case the numbers 1 to 3) reflect the user's progression through the menu system. Each time a new option is invoked, a new node is created which contains the option number, concatenated with a "P", the number of the option whose compiled menu tree contains the current option, a caret ("\(^\text{^}\)"), and the zero-node of the OPTION file (#19) for that option. A different format is used for options in a user's secondary menu tree.

A pointer in the node \(^\text{XUTL}("XQ","J","T")\) indicates which option in this list of numbered nodes the menu driver is currently using. This pointer is set and reset by the menu driver as the user moves up and down the menu tree. In the example, \(^\text{XUPROGMEMODE}\) is the option that the menu driver is currently using.

Other "XQ" nodes of the global that have a non-numeric third subscript are used to store various pieces of Kernel information that are set up at signon. \(^\text{XUTL}("XQ","J","XQM")\) points to the user's primary menu.
In the following example (Figure 7-22), the user's primary menu is OPTION file (#19) entry #29.

Figure 7-22. User Stack example

```
^XUTL("XQ",541065826,0) = 2920113.081624
^XUTL("XQ",541065826,1) = 29P29^EVE^Systems Manager
    Menu^^M^5^192^^n^1^^^n
^XUTL("XQ",541065826,2) = 31P29^XUPROG^Programmer Options^^M^^
    XUPROG^^n
^XUTL("XQ",541065826,3) = 49P29^XUPROGMODE^Programmer mode^^R
    ^^XUPROGMODE^^ n
^XUTL("XQ",541065826,"DUZ") = 63
^XUTL("XQ",541065826,"DUZ(0)") = L1Fp
^XUTL("XQ",541065826,"DUZ(2)") = 16000
^XUTL("XQ",541065826,"IO") = _TNA5103:
^XUTL("XQ",541065826,"IOBS") = $C(8)
^XUTL("XQ",541065826,"IOF") = #$C(27,91,50,74,27,91,72)
^XUTL("XQ",541065826,"IOM") = 79
^XUTL("XQ",541065826,"ION") = LAT DEVICE
^XUTL("XQ",541065826,"IOS") = 158
^XUTL("XQ",541065826,"IOSL") = 24
^XUTL("XQ",541065826,"IOST") = C-VT100HIGH
^XUTL("XQ",541065826,"IOST(0)") = 149
^XUTL("XQ",541065826,"IOT") = VTRM
^XUTL("XQ",541065826,"IOXY") = W $C(27,91)_((DY+1))_$C(59)_((DX+1))_$C(72)
^XUTL("XQ",541065826,"T") = 3
^XUTL("XQ",541065826,"XQM") = 29
```

7.8.2 XQT Nodes (MENU Templates)

The "XQT" nodes are used to create a stack of options similar to the "XQ" stack when a MENU template is invoked. These nodes are translated from the ^VA(200,DUZ,19.8) Multiple when a user precedes an option selection with a left square bracket character, "[", much like a PRINT template is invoked in VA FileMan. For example, if the user has defined a MENU template named "DOIT" using the Menu Template options of the User's Tool Box, typing "[DOIT" will load that sequence of options into the "XQT" nodes and begin executing them. When a MENU template is requested by the user, the option tree of that template is loaded into the "XQT" nodes and remains loaded as long as the user is logged on. Further requests for "[DOIT" will use that same stack.

7.8.3 Display Nodes

Display nodes are stored in ^XUTL("XQO", internal number).

The first example below (Figure 7-23) shows the display nodes for EVE, the System Manager's Menu. The internal number of EVE in this particular OPTION file (#19) is 29. In the first part of the example the option names and menu texts, along with a limited number of fields for that option compiled from the OPTION file (#19), are concatenated together. It is from this part that XQ2 (the menu display program) gets the information it needs.

In the second part, all the menu texts and synonyms are listed in order in uppercase. It is here that XQ tries to match what the user entered at the terminal with the correct option. The third part of the example, the 0th node of the options, is listed by number and provides the remaining information that the Menu
System may need to make the option work. To understand what the various "^" pieces mean, look at a VA FileMan global format data dictionary listing of the OPTION file (#19).

Illustrated in the second example (Figure 7-24) is the display node for the SECONDARY MENU OPTIONS of a user whose DUZ is equal to 66. Here, the user has only a single secondary menu called "Secondary Menu" (with an internal number of 580 in the OPTION file [#19]). The various parts of this example are identical to those of the Display Nodes for the EVE menu example above.

NOTE: The second subscript, instead of pointing to a menu in the OPTION file (#19), is a "U" concatenated with the user's DUZ which points to the NEW PERSON file (#200) entry. This is because secondary menu options are stored in the SECONDARY MENU OPTIONS field in the NEW PERSON file (#200) entry for each user.

Figure 7-23. Display Nodes for EVE example

```plaintext
^XUTL("XQQ",29,0) = 2^55048,38923
^XUTL("XQQ",29,0,1) = ^XUCORE^Core Applications ...^NOT
  AVAILABLE^^^^^XUTIO^Device Handler
  ...^^n"FM^DIUSER^VA FileMan ...^^n"XMGR^Manage Mailman ...^^n"XUMAINT^Menu Management
  ...^^n"XUPROG^Programmer Options ...^^XUPROG^...

^XUTL("XQQ",29,0,2) = ^XUSITEMGR^Operations Management ...^^n"XU-SPL-MGR
  Spool Management ...^^n"XUSPY^System Security
  ...^^n"ZTMMGR^Task Manager ...^^n"XUSER^User Edit ...

^XUTL("XQQ",29,"CORE APPLICATIONS") = 40^1
^XUTL("XQQ",29,"DEVICE HANDLER") = 32^1
^XUTL("XQQ",29,"FM") = 19^0
^XUTL("XQQ",29,"MANAGE MAILMAN") = 30^1
^XUTL("XQQ",29,"MENU MANAGEMENT") = 9^1
^XUTL("XQQ",29,"OPERATIONS MANAGEMENT") = 174^1
^XUTL("XQQ",29,"PROGRAMMER OPTIONS") = 31^1
^XUTL("XQQ",29,"SPOOL MANAGEMENT") = 415^1
^XUTL("XQQ",29,"SYSTEM SECURITY") = 226^1
^XUTL("XQQ",29,"TASK MANAGER") = 83^1
^XUTL("XQQ",29,"USER EDIT") = 39^1
^XUTL("XQQ",29,"VA FILEMAN") = 19^1
^XUTL("XQQ",29,"",9) = ^XUMAINT^Menu Management^^M"105"^^n"n"n"n"
^XUTL("XQQ",29,"",19) = FM^DIUSER^VA FileMan "M"^^n"n"n"n"
^XUTL("XQQ",29,"",30) = ^XMGR^Manage Mailman "M"^^299"^^n"n"n"n"

^XUTL("XQQ",29,"",31) = ^XUPROG^Programmer Options "M"^^XUPROG"^^n^n^n^n^n^n
^XUTL("XQQ",29,"",32) = ^XUTIO^Device Handler "M"^^413"^^n"n^n^n^n^n
^XUTL("XQQ",29,"",39) = ^XUSER^User Edit "M"^^153"^^n^n^n^n^n^n^n^n
^XUTL("XQQ",29,"",40) = ^XUCORE^Core Applications "M"^^n^n^n^n^n^n^n^n
^XUTL("XQQ",29,"",83) = ^ZTMMGR^Task Manager "M"^^n^n^n^n^n^n^n^n
^XUTL("XQQ",29,"",174) = ^XUSITEMGR^Operations Management "M"^^n^n^n^n^n^n
^XUTL("XQQ",29,"",226) = ^XUSPY^System Security "M"^^n^n^n^n^n^n^n^n
^XUTL("XQQ",29,"",415) = ^XU-SPL-MGR^Spool Management "M"^^419"^^n^n^n^n^n
```
7.8.4 Jump Nodes

Jump nodes are stored in \(^{\text{XUTL}}(\text{"XQO","P" internal number})\), where there is one "P..." entry in \(^{\text{XUTL}}(\text{"XQO"})\) for each primary menu that exists. The jump nodes, for each primary menu, store the pathways to all options that can be jumped to.

The jump nodes are created in the XQ8* series of programs. They are very similar to display nodes, except that:

- They have a "P" concatenated on the front of the primary option's number in the second subscript.
- These nodes describe the entire primary menu tree rather than just the single level tree.

Examples of the jump nodes for a single primary menu are shown in Figure 7-25 and Figure 7-26. Since these nodes can be very extensive in number, some nodes have been removed from the examples to save space.

In the first example (Figure 7-25) are the "lookup" nodes, where the jump software tries to match a menu text or synonym with what the user has entered at the terminal. Each node is set to its internal number in the OPTION file (#19) and, in the second "^" piece, a 0 if it is a synonym or a 1 if it is menu text.

In the second example (Figure 7-26), the "menu pathway" entries below the "P580" node show all of the options that can be jumped to from the primary menu whose internal entry number (IEN) is 580. Each entry contains list(s) of the series of options that must be navigated through in a jump from the primary menu. In the case of the option DILIST (# 17), the list of options that will have to be processed is 520,519,518,411,17. If, as in the case of ZZTEST4 (# 318), there is more than one possible pathway, then each is listed along with various other necessary pieces of information (e.g., locks, time restraint, etc.).
7.9 Menu Manager Variables (Troubleshooting)

There is a group of Menu Manager variables that is always defined. It may be useful for IRM staff to know what these variables signify when investigating errors. If an error is reported in VA FileMan's DIP routine, for example, knowing the value of XQY at the time of the error indicates which option was invoking the DIP routine. The option can then be reviewed to discover the name of the routine that was calling DIP.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XQABTST</td>
<td>Flag that signals whether alpha-beta testing is in effect.</td>
</tr>
<tr>
<td>XQDIC</td>
<td>Internal entry number (IEN) of the option's parent (which must be a menu) in the OPTION file, if an option is executing. If the user is in a menu, XQDIC is set to the IEN of the current menu's parent (unless they are in their primary menu, in which case XQDIC is set to the IEN of the primary menu). The value of XQDIC also corresponds to the second subscript in the display nodes portion of the ^XUTL global, ^XUTL("XQO",) for the menu in question.</td>
</tr>
<tr>
<td>XQPSM</td>
<td>Like XQDIC, a lookup value into the second subscript of ^XUTL, the compiled menu global. XQPSM points to the tree of the target option in the jump. It resulted from the ability to jump to any option, not just ones on the primary menu tree. It can help identify jumps from a primary, secondary, or Common option.</td>
</tr>
<tr>
<td>XQT</td>
<td>Current option's type (e.g., M for menu, A for action).</td>
</tr>
<tr>
<td>XQUR</td>
<td>User's response to the menu prompt (replaces A).</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>XQUSER</td>
<td>User's name in the form SEVEN A. XUUSER.</td>
</tr>
<tr>
<td>XQY</td>
<td>Internal entry number (IEN) of the current option or menu (replaces Y).</td>
</tr>
<tr>
<td>XQY0</td>
<td>First node (subscript of zero) of the current option (replaces Y(0)).</td>
</tr>
<tr>
<td>XQXFLG</td>
<td>Contains several flags, including whether capacity management testing is active.</td>
</tr>
</tbody>
</table>
8. Security Keys

8.1 User Interface

Security keys are primarily used to allow access to specially protected options. If a software application exports a menu that has one or two options that require a secured level of access, they can use security keys to lock those special options. When an option is locked, you can only use the locked option if you hold the security key matching the key with which the option was locked.

Entering two question marks ("??") at the menu system's select prompt displays the current options. If any of the options are locked, that fact is listed also, along with the names of any associated security keys. In the following example, the option Programmer Options is locked with a security key named XUPROG:

Figure 8-1. Sample locked menu options showing required security key—Entering two question marks (??)

<table>
<thead>
<tr>
<th>Select Systems Manager Menu Option: ??</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Handler ... [XUTIO]</td>
</tr>
<tr>
<td>Menu Management ... [XUMAINT]</td>
</tr>
<tr>
<td>Programmer Options ... [XUPROG]</td>
</tr>
<tr>
<td>**> Locked with XUPROG</td>
</tr>
</tbody>
</table>

You can list which security keys you currently hold by using the Display User Characteristics option on the Common menu. It displays a list of all security keys you hold, similar to the following:

Figure 8-2. Display User Characteristics option—Sample output

<table>
<thead>
<tr>
<th>KEYS HELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>XUPROG XUMGR XUPROGMODE XUAUTHOR ZTMQ</td>
</tr>
</tbody>
</table>

The security keys you need to carry out computing activities should be assigned by IRM when your computer account is first added to the system. Other keys can be allocated at a later time by IRM or by an IRM designee (e.g., an application coordinator) with the use of the Secure Menu Delegation menu utilities.
8.2 System Management

8.2.1 Identifying Locked Options

IRM can list which security keys lock what options by using Menu Management's Diagram Menus option. The following example (Figure 8-3) shows that the Programmer Options menu is locked with the XUPROG security key. It also shows that one of its options, Programmer mode, is locked with the XUPROGMODE security key:

Figure 8-3. Diagram Menus option—Sample user dialogue

Select Menu Management Option: Diagram Menus
Select USER (U.xxxxx) or OPTION (O.xxxxx) name: O.XUPROG
Programmer Options (XUPROG)
LOCKED: XUPROG
--------------------------PG Programmer mode
[XUPROGMODE]
LOCKED: XUPROGMODE

Security keys are stored in the SECURITY KEY file (#19.1). Security keys given to users are stored in the users' NEW PERSON file (#200) entries, in the KEYS field (Multiple).

Options are locked by a given security key when the name of that key is entered into the LOCK field (#3) of the OPTION file (#19). If an option is locked, users need to be given the security key in order to invoke the option.

8.2.2 Key Management

Keys are defined and allocated to users with options on the Key Management menu.

Figure 8-4. Key Management menu options

SYSTEMS MANAGER MENU ...
Menu Management ...
Key Management ...
 Allocation of Security Keys
 De-allocation of Security Keys
 Enter/Edit of Security Keys
 All keys a user needs
 Change user's allocated keys to delegated keys
 Keys for a given menu tree
 Delegate keys
 List users holding a certain key
 Remove delegated keys
 Show the keys of a particular user
8.2.3 Allocating and De-allocating Security Keys

The main option to assign security keys to a user or users is the Allocation of Security Keys option [XUKEYYALL]. Allocating a security key to a user lets them invoke options that are locked with the key. For options with reverse locks, allocating the security key locks the user out from the option. In either case, allocating the key to a user does not allow the user to give the key to anyone else.

To remove a security key from a user, use the De-allocation of Security Keys option [XUKEYDEALL].

Unless you have been delegated a security key, the only way you can allocate or de-allocate keys is if you hold the XUMGR security key or have a FILE MANAGER ACCESS CODE field (#3) of "@".

REF: For more information on delegating security keys, see the "Delegating Security Keys" topic that follows.

All of the security keys that a new user needs to use their assigned options can be determined by using the All Keys a User Needs option on the Key Management menu [XQLOCK1]. This produces a list of the primary and secondary menus for that user, and compiles a list of the keys for that menu tree. This list can then be assigned or delegated. It can also be edited before the keys are given to the user. Similarly, the Keys For a Given Menu Tree option [XQLOCK2] examines a menu and lists all of the security keys associated with all sibling options.

8.2.4 Delegating Security Keys

Delegating keys allows you to give a user the ability to assign specific security keys to other users, as opposed to the XUMGR security key and "@" VA FileMan Access code (i.e., FILE MANAGER ACCESS CODE field [#3]), which allow all keys to be assigned.

One way to delegate security keys is to use the Change user's allocated keys to delegated keys option [XQKEYALTODEL]. This option delegates to a user all of the security keys that are currently allocated to that user. Any entries in their KEYS field (Multiple) are entered in the DELEGATED KEYS field (Multiple) as well. They can now use the Allocation of Security Keys option [XUKEYYALL] to give the security keys to others.

Alternatively, IRM can use the Delegate keys option [XQKEYDEL] to populate the DELEGATED KEYS field (Multiple) one-by-one.

A user who has been delegated a security key can allocate that key to others in two ways:

- Through the Allocation of Security Keys option [XUKEYYALL], if it is on their menu.
- By delegating an option locked by the security key in question; the key will be allocated along with the option.

The key recipients (excepting holders of the XUMGR security key or a FILE MANAGER ACCESS CODE field [#3] of "@") cannot assign the security key to others, however, even if they have access to the Allocation option, because the key does not exist in their DELEGATED KEYS field (Multiple).

One example of key delegation is an IRM designee, delegated the Provider key, who allocates that key to incoming medical residents.
For security reasons, users who have a key in their DELEGATED KEYS field (Multiple) cannot allocate that key to themselves. That key must be awarded by another user who has been delegated the key or by an IRM staff member who holds the XUMGR system security key.

8.2.5 Creating and Editing Security Keys

Keys can be created using the Enter/Edit of Security Keys option [XUKEYEDIT] on the Key Management menu. If a security key has already been defined, its name cannot be edited. It also cannot be deleted, as discussed below. Other key attributes stored in the SECURITY KEY file (#19.1) can be used for special purposes. Attributes of the Provider key are shown in the following example:

Figure 8-5. Attributes for the Provider security key—Sample user dialogue

Select SECURITY KEY NAME: PROVIDER
NAME: PROVIDER// <Enter>
DESCRIPTIVE NAME: Provider// <Enter>
PERSON LOOKUP: LOOKUP// <Enter>
KEEP AT TERMINATE: YES// <Enter>
DESCRIPTION:
1>This KEY is given to all entries in the New Person file that need to be looked up as a Provider. Those entries that hold this key are considered to be providers. It was given to all active Providers in file 6 at the time of the Kernel 7 install.
2>Providers in file 6 at the time of the Kernel 7 install.
EDIT Option: <Enter>
Select SUBORDINATE KEY: <Enter>
GRANTING CONDITION: <Enter>

8.2.5.1 PERSON LOOKUP

As described in the "Security Keys: Developer Tools" chapter in the Kernel Developer's Guide, a special AK cross-reference on the NEW PERSON file (#200) is maintained automatically for anyone who is granted a security key that is flagged for Person Lookup. This cross-reference has been introduced to facilitate identification of user groups, like providers.

8.2.5.2 KEEP AT TERMINATE

As described in the "Signon/Security" section concerning user deactivation, security keys that are marked as "KEEP AT TERMINATE" will not be removed as a user attribute of terminated users. This allows the continued processing of activities that had been previously authorized because the user held the key.
8.2.5.3 SUBORDINATE KEY (Exploding Keys)

If a security key has any associated subordinate keys (i.e., entries in the SUBORDINATE KEY Multiple field), the subordinate keys are automatically assigned along with the overall key. A security key with this feature is called an exploding key, since it and its subordinates are assigned all at once.

NOTE: If entries in the SUBORDINATE KEY Field (Multiple) are edited, dynamic updating of the security keys already assigned to users does not occur.

Exploding security keys cannot be exported with software, although, there may be support for this functionality in the future. They are intended to be created by IRM as a timesaving method in the key allocation process.

8.2.6 Deleting Security Keys

Keys should not be deleted from the SECURITY KEY file (#19.1). Kernel has made the NAME field (#.01) of the SECURITY KEY file (#19.1) uneditable to prevent deletion of security keys through VA FileMan. IRM should not attempt to edit the key global directly to remove a key, since associated pointing relationships will be left to cause errors. The one mechanism Kernel does provide for deletion of security keys is through the Kernel Installation and Distribution System (KIDS).

REF: For more information on KIDS, see the "Kernel Installation and Distribution System" section in this manual and the "KIDS Developer Tools" chapter in the *Kernel Developer's Guide*.

8.2.7 Reindexing All Users' Security Keys Option

You can use the Reindex the users key's option [XUSER KEY RE-INDEX] to re-index all users' security keys in the NEW PERSON file (#200). If a user has a security key, but is lacking the corresponding ^XUSEC cross-reference for the key, you can use this option to regenerate the ^XUSEC cross-reference. While the ^XUSEC cross-reference is being rebuilt, there can be an impact on all users with security key lookups failing in ^XUSEC until the index is entirely rebuilt; therefore, this option should be used with caution and is best delayed until users are not signed on.
8.2.8 Using Security Keys with Reverse Locks

If a security key is associated with an option via the REVERSE/NEGATIVE LOCK field, rather than the LOCK field (#3), it functions to lock out users who hold the key. The security key used for a reverse lock is just like any other key, differing only in the way it is associated with an option. Menu Management's Diagram Menus option indicates the existence of any reverse locks, such as the use of the XMNOPRIV security key to prevent access to MailMan's shared mail facility.

The typical use of a security key with the REVERSE/NEGATIVE LOCK field is to restrict access to options otherwise available to all users (e.g., MailMan User and other options on the Common menu).

8.2.9 Security Key Delegation Levels

Starting with Kernel 8.0, security keys are subject to delegation levels just as options are subject to delegation levels. A field in the NEW PERSON file (#200), DELEGATION LEVEL, stores a user's delegation level (for security keys and options). When a security key is delegated, the person to whom it is delegated is assigned a level one number lower than the delegation level of the person doing the delegating. This is to prevent the delegated-to person from removing DELEGATED KEYS from someone with a lower delegation level.

REF: For more information about delegation levels, see the "Secure Menu Delegation" chapter in this manual.
9. Secure Menu Delegation

The job of allocating menu options to users can be a time-consuming activity, so site managers may want to consider delegating this responsibility to application coordinators. Application coordinators are familiar with the menus for their software and can learn how to assign these to new users in their service area.

Secure Menu Delegation allows the Site Manager to delegate the management of certain menu options to another user (e.g., an application coordinator). This user, now a delegate, can then assign these as primary or secondary options (along with their security keys) to users who fall under their administrative jurisdiction.

For example, the Site Manager might delegate the management of the Laboratory software options to the Lab Application Coordinator (LAC), and the LAC could then allocate or remove options from everybody in the Laboratory software. The system is set up in such a way that the LAC could also delegate, with the Site Manager's permission and manager's menu, the management of all the chemistry menus to the head of the Chemistry Section, and so on, creating another level of delegation.

There are two divisions in Secure Menu Delegation:

- The menu to create and manage delegates.
- The menu for the delegates themselves to assign options to end users.
9.1 User Interface: Acting as a Delegate

As a delegate, you have been delegated options (usually by IRM). If you have been delegated options, you can assign these options to computer users on the computer system.

As a delegate, you can assign the following options to your users:

- Options that have been delegated to you.
- Menus that you have created from options delegated to you.
- Options you have created from VA FileMan templates.

As a delegate, you need to understand the basic structure of the OPTION file (#19), which is a file that points back to itself. That is, a menu is an entry in the OPTION file (#19); but items on menus are themselves pointers to other entries in the OPTION file (#19). You should also understand the difference between types of options, be familiar with menu trees, and be sufficiently reluctant to assign great numbers of secondary menus.

9.1.1 Delegate's Menu

To delegate options to users, you need to be assigned a menu called Delegate's Menu Management [XQSMD USER MENU], which is located under the Secure Menu Management menu. The options on the Delegate's Menu Management menu are as follows:

![Delegate's Menu Management options](image)

Each of these options on the delegate's menu is discussed in the topics that follow.

9.1.2 Edit a User's Options Option

Using the Edit a User's Options option [XQSMD EDIT OPTIONS] allows you to edit a user's primary and secondary menus. This is the chief method you can use to add (and subtract) options on your users' menus.

Most of your work will be in adding and deleting options on your users' secondary menus. You are only able to add or delete options from a user's secondary menu if the option in question has been delegated to you. That means that you do not have access to a user's entire secondary menu; instead, only those options on the secondary menu that are also delegated to you.
If, when you edit a user's secondary menu, you choose an option that is already on a user's secondary menu, you are asked if you want to delete it from their secondary menu. Otherwise, you are asked if you want to add the option to their secondary menu.

If you are assigning an option that is locked with a security key, the delegation process checks whether you have been delegated the key as well. If you have, the key is automatically assigned to the user along with the option. If you have not been delegated the key, you get an error message saying that you have not been delegated the needed security key (the option is assigned to the user, but they will not have the key to unlock the option).

If you delete an option that is locked with a security key and that key is delegated to you (and you are at a higher key delegation level than the option holder), the key is deleted along with the option (unless the user holds another option locked by the same security key).

In the following example (Figure 9-2), the LRZ MAIN menu option is added to the user's secondary menu. LRZ MAIN is locked with a security key and that key is automatically assigned when the option is assigned:

Figure 9-2. Edit a User's Options—Sample user dialogue

<table>
<thead>
<tr>
<th>Select Delegate's Menu Management Option:</th>
<th>Edit a User's Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select NEW PERSON NAME: XUUSER,FIVE</td>
<td></td>
</tr>
<tr>
<td>PRIMARY MENU OPTION: XMUSER// <Enter></td>
<td>MailMan Menu</td>
</tr>
<tr>
<td>No keys needed to delete!.</td>
<td></td>
</tr>
<tr>
<td>No keys needed to give!</td>
<td></td>
</tr>
<tr>
<td>SECONDARY MENU OPTION: LRZ MAIN <Enter></td>
<td>Lab User Menu</td>
</tr>
<tr>
<td>ZZLRMAIN key also given!</td>
<td></td>
</tr>
<tr>
<td>SECONDARY MENU OPTION: <Enter></td>
<td></td>
</tr>
</tbody>
</table>

Unlike secondary menus, you are only able to edit a user's PRIMARY MENU OPTION if their current primary menu is an option that has been delegated to you. Otherwise, you are not allowed to change that user's PRIMARY MENU OPTION.

NOTE: You cannot add or subtract options on a user's primary menu; you can only replace the user's entire PRIMARY MENU OPTION with another one.

9.1.3 Build a New Menu Option

Using the Build a New Menu option [XQSMD BUILD MENU], located on the Delegate's Menu Management menu [XQSMD USER MENU], you can create new menus with menu items chosen from your delegated options.
Secure Menu Delegation

First, you need to provide an option name for the new menu you are creating. The menu name prefix, used by the delegate to create local options, can be in one of two forms:

- (Preferred) An IRM-assigned local namespace beginning with the letter "A" (e.g., A6A).
- (Discouraged) Package namespace (e.g., LR) to which the user must add the letter "Z" (e.g., LRZ) in order to avoid conflict with national releases.

NOTE: As of Kernel Patch XU*8.0* 482, options in the A* namespace can be created without adding a "Z" to the end of the package namespace.

Once you provide a name for the menu, you are asked to provide the following information:

- Text for the menu.
- Description for the menu.
- Items for the menu (choose from your delegated options).

Once you have created a new menu, you can assign it to your users just as if it were an option delegated to you.

9.1.4 Copy Everything About an Option to a New Option Option

Using the Copy Everything About an Option to a New Option option [XQCOPYOP], you can copy any option on the computer system into a new option. First you are asked which existing option you would like to copy; then, you are asked for a name for the copied option. The option name must begin with a namespace assigned to you by IRM.

9.1.5 Copy One Users Menus and Keys to others Option

Using the Copy One Users Menus and Keys to others option [XQSMD COPY USER], you can copy the menus and security keys of one user to another user. Each menu or security key you copy, however, must have been delegated to you; otherwise, they are skipped in the copy process. What gets copied from one user into the other user are:

- PRIMARY MENU OPTION (and all descendant menus).
- SECONDARY MENU OPTIONS.
- KEYS.

The PRIMARY MENU OPTION of the user you're copying from replaces the PRIMARY MENU OPTION of the user you are copying to. The SECONDARY MENU OPTIONS and the KEYS of the user you're copying from are merged into the SECONDARY MENU OPTIONS and the KEYS of the user you're copying to.
9.1.6 Limited File Manager Options (Build) Option

The Secure Menu Delegation system provides a way for delegates to create options out of VA FileMan templates. Delegates who have enough access to VA FileMan to create INPUT, SORT, or PRINT templates can create menu options for their users that directly call these templates.

9.1.6.1 Characteristics of Intended Users

The Limited File Manager Options (Build) option [XQSMD LIMITED FM OPTIONS] is designed for delegates, such as some application coordinators who have VA FileMan access to a set of files and can create INPUT, SORT, or PRINT templates. These delegates may have the VA FileMan options for editing or printing without the ability to modify data dictionaries. They may also have explicit file access to a specified set of files via the File Access Management system. Typically they would be working without the special FILE MANAGER ACCESS CODE field (#3), DUZ(0).

9.1.6.2 IRM Setup to Enable Building Options from Templates

To allow a user to create menu options from VA FileMan templates, IRM must first assign to the user:

- Delegate's Menu Management menu [XQSMD USER MENU].
- XQSMDFM Security Key.
- A namespace beginning with the letter "A" (e.g., A6A) in which to create options. To do this, use the Specify Allowable New Menu Prefix option [XQSMD SET PREFIX] located on the Secure Menu Delegation menu [XQSMD MGR]. IRM is discouraged from assigning package namespaces (e.g., LR) to which the user must add the letter "Z" (e.g., LRZ) to avoid conflict with national releases.

9.1.6.3 Building Options

The tool for building options with VA FileMan templates is called the Limited File Manager Options (Build) option [XQSMD LIMITED FM OPTIONS]. It is part of the Delegate's Menu Management menu under the Secure Menu Management menu and is locked with the XQSMDFM security key.

First, you must have created a SORT, PRINT, or INPUT template for a VA FileMan file. Once you have created a template, you can make this template available as an option to your users by turning it into an option.

You can create three types of options:

- Edit-type option (from an EDIT template).
- Print-type option (from PRINT and SORT templates).
- Inquire-type option (from either a PRINT template or a file name).

Once you have turned the template into an option, you can assign that option to your users as you deem necessary. Then, when a user uses the option, they execute the PRINT, SORT, or INPUT template from which the option was created.
Suppose you have created a PRINT template called LRZ REFERRAL PRINT for the Lab's REFERRAL file. To turn this PRINT template into an Inquire option, use the Limited File Manager Options (Build) option, as shown below:

Figure 9-3. Limited File Manager Options (Build)—Sample user dialogue

```plaintext
Select Delegate's Menu Management Option: Limited File Manager Options (Build)
The menu options you build or edit must begin with the namespace:
LRZ

The option types that may be built are P(rint), E(dit), and I(nquire), and you must have a template or templates ready to be included in the option.

Or enter D(elete) to DELETE an option

Select Option Type (P/E/I/D): I
  Enter Print Template Name (Optional): LRZ REFERRAL PRINT

  Option Name: LRZ REFERRAL INQUIRE
  Located in the LR (LAB SERVICE) namespace.
  ARE YOU ADDING 'LRZ REFERRAL INQUIRE' AS A NEW OPTION (THE 996TH)? Y <Enter> (YES)

  OPTION MENU TEXT: Display a Referral
  MENU TEXT: Display a Referral   Replace <Enter>
  DESCRIPTION:
    1> Display Lab Referral entries (option created by LAB ADPAC).
    2> <Enter>

  EDIT Option: <Enter>

Select Delegate's Menu Management Option:
```
9.2 System Management: Managing Delegates

The options for creating and managing delegates are on the Secure Menu Delegation menu [XQSMD MGR], which is on the Menu Management menu. Typically, IRM would be the sole holder of this menu. The options on this menu are:

<table>
<thead>
<tr>
<th>Option Text</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Options to be Delegated</td>
<td>Delegate options</td>
</tr>
<tr>
<td>List Delegated Options and their Users</td>
<td>Print Report</td>
</tr>
<tr>
<td>Print All Delegates and their Options</td>
<td>Print Report</td>
</tr>
<tr>
<td>Remove Options Previously Delegated</td>
<td>Undo Delegation</td>
</tr>
<tr>
<td>Replicate or Replace a Delegate</td>
<td>Copy a Delegate</td>
</tr>
<tr>
<td>Show a Delegate's Options</td>
<td>Print Report</td>
</tr>
<tr>
<td>Delegate's Menu Management ...</td>
<td>Delegate's menu</td>
</tr>
<tr>
<td>Specify Allowable New Menu Prefix</td>
<td>Assign namespaces</td>
</tr>
</tbody>
</table>

The main options to create and manage delegates are:
- Select Options to be Delegated
- Replicate or Replace a Delegate

9.2.1 Delegating Options: Select Options to be Delegated Option

To delegate options, use the Select Options to be Delegated option [XQSMD ADD] from the Secure Menu Delegation menu. Using this option is a two-step process:

4. Choose the users to whom options are delegated.
5. Choose which options to delegate to that group of users.

You can choose to set up one user or many users as delegates. You can choose one option or a group of options to delegate to them.

You also need to assign (not delegate!) the Delegate's Menu Management menu [XQSMD USER MENU] to the delegate; this menu gives delegates the means to assign delegated options to users.
Figure 9-4. Delegating Options: Select Options to be Delegated option—Sample user dialogue

Select Secure Menu Delegation Option: Select Options to be Delegated

Enter the name(s) of your delegate(s), one at a time

Name: XUUSER,THREE
Name: XUUSER,FOUR
Name: <Enter>

Enter options you wish to DELEGATE TO these users

Add option(s): XUINQUIRE
Add option(s): XUUSERACC
Add option(s): <Enter>

For the following user(s):
1. XUUSER,THREE
2. XUUSER,FOUR

You will delegate the following options:
XUINQUIRE Inquire
XUUSERACC Diagram Menus

Delegated by XUUSER,FIVE on Jul. 21, 2004 3:55 PM.

Ready to delegate these options to these people? Y// <Enter>

Request to add delegated options has been queued, task # 465,
named: XUUSER,FIVE adding delegated options.

9.2.1.1 Delegating Security Keys

If options that you intend to delegate are locked with security keys, you need to delegate the matching keys to the delegate; otherwise, the delegate will not be able to assign keys to unlock options they have assigned to their users.

If the option is locked with a security key that you possess, the Select Options to be Delegated option branches you to the Key Management program, and lets you allocate (if you so wish) the appropriate keys to the delegates you are creating.

However, to assign security keys to users, the delegate must be delegated the key. To do that, you need to use the Key Management menu option, Delegate keys option [XQKEYDEL]. This option allows you to delegate security keys to delegates by populating the DELEGATED KEYS field (Multiple) in their NEW PERSON file (#200) entry. Security keys entered in a delegate's DELEGATED KEYS Multiple allow them to allocate the entered keys to other users (but not themselves).
When a delegate assigns options to a user, they can assign the matching security keys as part of that process. However, as an enhancement to a delegate's ability to work with keys, IRM can assign the delegate the following options from the Key Management menu:

- Allocation of Security Keys
- De-allocation of Security Keys
- Show the Security Keys of a Particular User

As long as the delegate does not hold the XUMGR security key, which allows any key to be allocated, the Key Management menu options only allow delegates to allocate and de-allocate security keys they've been delegated. Kernel also follows key delegation levels with the Allocation of Security Keys and De-allocation of Security Keys options.

NOTE: Key management options must be separately assigned; they are not a part of the Delegate's Menu Management menu [XQSMD USER MENU].

9.2.1.2 Delegation Level (Options and Keys)

DELEGATION LEVEL is a field in the NEW PERSON file (#200) specifying the number of steps that a person is from the original delegation of options by the Site Manager (whose Delegation Level is 0). Starting with Kernel 8.0, the delegation level is also maintained for DELEGATED KEYS. For instance, if the Site Manager delegates all laboratory options to the Lab ADP Application Coordinator (ADPAC), then the Lab ADPAC would have a Delegation Level of 1. Should the Lab ADPAC further delegate a set of those options to the Chief of Chemistry, the Chief would have a level of 2, and so on.

The use of levels insures that supervision is not compromised such that the lower level user could alter menus or remove security keys of the higher level person. No attempt is made to determine who actually works for whom since that information is not available to the software. Delegation chains should therefore be constructed with some care.

To modify the set of options (and accompanying security keys) delegated to a particular person, you must have a Delegation Level equal to, or less than, the person you are trying to modify. If you create a new delegate by delegating some (or all) of the options delegated to you, that person will have a Delegation Level equal to your level +1.

It may be necessary to modify Delegation Levels using VA FileMan as the organization's structure changes over time.

9.2.2 Further Delegation

The only way a delegate can delegate, rather than simply assign, options to someone else is if the delegate has access to the Select Options to be Delegated option [XQSMD ADD], or the Replicate or Replace a Delegate option [XQSMD REPLICATE]. These options should only be on the Secure Menu Delegation menu [XQSMD MGR]. You should carefully evaluate whether to give this menu to delegates (which gives them the right to further delegate).
9.2.3 Options too Sensitive to Delegate

Certain options (e.g., Programmer-related options) are considered too sensitive or powerful to be delegated. They are marked as not delegable in the OPTION file (#19); and the Secure MenuMan Delegation software will *not* delegate these options. The traditional methods of assigning these menu options must be employed by the Site Manager.

It should be noted that a higher-level option, such as EVE, would still give the delegate access to lower level options, such as XUMAINT, even though XUMAINT is itself marked in the OPTION file (#19) as non-delegable. The Delegation software does not follow the option trees down to ensure that options of options are not delegable.

CAUTION: It is highly recommended that the Site Manager, Information Security Officer (ISO), or IRM Chief review the options marked as too sensitive to be delegated and, using VA FileMan, add any locally sensitive options to this list.

It is the responsibility of each site to ensure that the security of the system is not violated.

9.2.4 Replicate or Replace a Delegate Option

You can copy the Delegated Options of a delegate to another user. Use the Replicate or Replace a Delegate option [XQSMD REPLICATE] to do this. The options that you transfer to another user do not replace any options the user has been previously delegated. They will be added to those options, if any. Like the Select Options to be Delegated option, this option also can branch you to the security key allocation program for the new delegate.

You are also asked if the delegated options should be removed from the original delegate. If you say NO ("N"), the original delegate remains a delegate. If you say YES ("Y"), all Delegated Options are removed from the original delegate, who will no longer be an active delegate. In order to remove the options from a delegate, however, you must have a Delegation Level lower than they do.

9.2.5 Remove Options Previously Delegated Option

To simply remove an option from a delegate's list of delegable options, use the Remove Options Previously Delegated option:

1. Enter the name or names of the delegate(s) from which you want to remove options.
2. Enter the option or options you want to remove from the specified set of delegates.

You're given a chance to review the choices you made; if you say to proceed, a task is queued that removes the options you selected from the delegates you specified.
9.2.6 Specify Allowable New Menu Prefix Option

Use the Specify Allowable New Menu Prefix option to assign allowable menu prefixes to your delegates. Your delegates need to be given allowable new menu prefixes if they:

- Build new menus.
- Copy options.
- Create options from VA FileMan templates.

Typically, if your delegate works with one particular software application, you would assign them that software's namespace as an allowable prefix. Options that the delegate creates *must* then be prefixed with that namespace, appended with a Z.

If you do not specify an allowable prefix for a delegate, they will *not* be able to use the following options:

- Build a New Menu
- Copy Everything About an Option to a New Option
- Limited File Manager Options (Build)

You can specify multiple new menu prefixes for a given delegate.

9.2.7 Reports

You can use the following options to generate reports about delegates on your system:

- List Delegated Options and their Users
 (Sort by delegated option.)
- Print All Delegates and their Options
 (Sort by delegate name.)
- Show a Delegate's Options
 (Display all delegated options for one delegate.)
Secure Menu Delegation
10. Alerts

10.1 User Interface

When you receive an alert, something on the computer system is requesting your immediate attention. A software application might issue an alert to one or more users when certain conditions are met (e.g., depleted stock levels or abnormal lab test results).

The first time you reach a menu prompt after receiving a particular alert, the alert's message is displayed to you by the menu system. The alert message is displayed along with a standard notice to select the View Alerts "VA" option on the Common menu to process the alert (see Figure 10-1).

When you receive an alert, you should find out what the alert is asking of you, and attend to it. This is called processing the alert.

Until you process all unprocessed alerts you receive, you'll be reminded that you have pending alerts each time you're at a menu prompt. You will not, however, see the alert message; you only see that the first time you receive an alert and reach the menu prompt.

![Figure 10-1. Alert—Sample user message](image)

Dr. You need to enter a progress note on 'KRNPATIENT,ONE'.
Enter "VA VIEW ALERTS " to review alerts

Select Systems Manager Menu Option:

10.1.1 Processing Alerts

To process alerts, choose the View Alerts "VA" option from the Common menu. The View Alerts "VA" option presents a list of all pending alerts, numbered consecutively with the most recent alerts listed first.

Information-only alerts are displayed with the letter "I" in front of the alert message. When you process Information-only alerts, all that happens is that they are removed from the pending alerts list. Their only purpose was to send you the one-line alert message.

When you process alerts that are not Information-only, processing the alert may send you to a particular option or program. Afterwards, you are returned to the View Alerts screen if more alerts need processing, or back to the menu prompt if no pending alerts remain.
There are various methods for processing alerts from the View Alerts screen. You can enter any of the following alert process codes (listed alphabetically):

<table>
<thead>
<tr>
<th>Process Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Process all alerts in the order shown.</td>
</tr>
<tr>
<td>D</td>
<td>Delete specific alerts (some alerts cannot be deleted). Only listed if one or more INFORMATION-ONLY alerts have been listed. If unable to delete an alert users will see: "Unable to delete alerts which require action: n,n,n, ..."</td>
</tr>
<tr>
<td>F</td>
<td>Forward one or more specific alerts. Forwarding may be sent as an alert to specific users or mail groups, a mail message, or sent to a specific printer.</td>
</tr>
<tr>
<td>I</td>
<td>Process all INFORMATION-ONLY alerts. Only listed if one or more INFORMATION-ONLY alerts have been listed.</td>
</tr>
<tr>
<td>M</td>
<td>List pending alerts in a mail message and deliver the message to your VistA MailMan IN basket.</td>
</tr>
<tr>
<td>n</td>
<td>Single number to process a single alert.</td>
</tr>
<tr>
<td>n,n,n-n</td>
<td>Range of numbers to process a range of alerts (e.g., 1,3,5-8).</td>
</tr>
<tr>
<td>P</td>
<td>Print a copy of the pending alerts to a printer.</td>
</tr>
<tr>
<td>R</td>
<td>Redisplay available alerts.</td>
</tr>
<tr>
<td>S</td>
<td>Add or remove a surrogate to receive alerts for you. An optional start and end date can also be entered.</td>
</tr>
<tr>
<td>^</td>
<td>Exit the alert processing screen by entering a caret ("^").</td>
</tr>
</tbody>
</table>

The Alert Handler ordinarily deletes alerts once you have processed the alert. If you have processed all pending alerts, and try to select the View Alerts "VA" option, nothing is displayed. View Alerts only offers a listing when there are pending alerts; if no alerts are pending, View Alerts simply returns you to the menu prompt.
Figure 10-2. View Alerts "VA" option—Sample user dialogue

ACCESS CODES: ********
VERIFY CODES: ********
Good evening Jim You last signed on Jan 9,2004 at 14:39

Dr. You need to enter a progress note on 'KRNPATIENT,ONE'.
 Enter "VA VIEW ALERTS" to review alerts

Select Clinic Manager Menu Option: "VA"
1. Dr. You need to enter a progress note on 'KRNPATIENT,ONE'.
2. Alk Phos elevated, schedule fu bone scan
3.I For your information, meeting at 12 noon, room 223
 Select from 1 to 3
 or enter ?, A, I, F, S, P, M, R, or ^ to exit: ?

YOU MAY ENTER:
 One or more numbers in the range 1 to 3 to select specific alert(s)
 for processing. This may be a series of numbers, e.g., 2,3,6-9
 A to process all of the pending alerts in the order shown.
 I to process all of the INFORMATION ONLY alerts, if any, without further ado.
 S to add or remove a surrogate to receive alerts for you
 F to forward one or more specific alerts. Forwarding may be as an ALERT
 to specific user(s) and/or mail group(s), or as a MAIL MESSAGE, or to a
 specific PRINTER.
 D to delete specific alerts (some alerts may not be deleted)
 P to print a copy of the pending alerts on a printer
 M to receive a MailMan message containing a copy of these pending alerts
 ^ to exit
 or RETURN to see additional pending ALERTS

 Select from 1 to 3
 or enter ?, A, I, F, S, P, M, R, or ^ to exit
 or RETURN to continue:

10.1.2 Deleting Alerts

As of Kernel Patch XU*8.0*114, you can delete alerts by using the "D" alert processing code when viewing alerts. The user can, if desired, delete specific alerts without viewing or processing them. This option provides the ability to delete "INFORMATION ONLY" alerts. Alerts that require processing **cannot** currently be deleted. However, if alerts requiring processing are created with the XQACNDEL variable set to 1 they too would be able to be deleted (i.e., the developer of the code that creates the alert can specify if it **must** be processed or can be deleted). Any alerts that were selected for deletion, but could not be deleted will be noted for the user.

The ability for the user to delete alerts other than INFORMATION ONLY will require that the developers within a software application decide that specific alerts, which would normally invoke processing via an option or routine, can be deleted specifically by the user **without** processing. They would then set the XQACNDEL variable to a value of 1 (one) prior to calling SET^XQALERT to set up the alert. Deletion of an alert by the user (or by IRM or ADPAC staff using the existing option) is noted within the ALERT TRACKING file (#8992.1) as deletion by a user (with the user ID) **without** processing of the alert.
10.1.3 Forwarding Alerts

Beginning with Kernel 8.0, you can forward alerts by using the "F" alert processing code when viewing alerts. You can choose one or more alerts and forward them in the following ways:

- Forward as alert(s) to a specific user on the computer system.
- Forward as alert(s) to a mail group on the system.
- Copy alert(s) into mail message(s) and send to users and mail groups on the system.
- Print to an output device on the system (e.g., a printer).

10.1.4 Surrogates and Alerts

Beginning with Kernel Patch XU*8.0*114, you can designate or remove a surrogate for alerts by using the "S" alert processing code when viewing alerts. The user can, if desired, specify a start date/time or an end date/time for the surrogate to be effective. If a start date/time is not specified, the surrogate becomes active immediately. If an end date/time is specified, the surrogate will be removed automatically effective with the first alert sent to the user after the end date/time has passed. If an end date/time is not specified, the surrogate is active until another surrogate is specified or the user removes the surrogate.

A message is sent to the surrogate to indicate that he has been designated as a surrogate, and a message is sent when the surrogate is removed.

If the user has no alerts and selects the alert option, he will be asked if he wants to add or remove a surrogate. The XQALERT SURROGATE SET/REMOVE option is also provided. It can be used by IRM or ADPAC staff to add or remove a surrogate for a selected user. This option is located on the Alert Management menu.
10.2 System Management

An alert notifies one or more users of a matter requiring immediate attention. Thus, alerts function as brief notices that are distinct from mail messages or triggered bulletins.

Starting with Kernel 8.0, alerts are stored in the ALERT file (#8992, stored in ^XTV(8992,). Also the ALERT TRACKING file (#8992.1), stored in ^XTV(8992.1,) provides a means to track alerts and users' responses to alerts.

For each user to whom an alert is sent, the ALERT TRACKING file (#8992.1) stores the following data:

- Alert name
- Date created
- Software identifier of alert
- User who generated the alert
- Message text of the alert
- Action associated with the alert
- Data associated with the alert

For each recipient of the alert, the ALERT TRACKING file (#8992.1) stores the following data:

- First date and time observed (shown in menu cycle)
- First date and time selected for processing
- Date and time processing completed (if any)
- Date and time alert was deleted
- Forwarding information—if alert was forwarded, user who forwarded it, and date and time of forwarding
- Surrogate information—if a surrogate was added for alerts, user who was the surrogate, and date and time of the surrogate

The PATIENT^XQALERT and USER^XQALERT functions provide access to information in the ALERT TRACKING file (#8992.1).

REF: For a description of the XQALERT and other alert-related APIs, see the "Alerts: Developer Tools" chapter in the Kernel Developer's Guide. Kernel and Kernel Toolkit APIs are also available in HTML format at the following VA Intranet Website:

10.2.1 Alert Management Menu

The Alert Management menu [XQALERT MGR] contains the following options, described below:

Figure 10-3. Alert Management menu options

<table>
<thead>
<tr>
<th>SYSTEMS MANAGER MENU ...</th>
<th>[EVE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Management ...</td>
<td>[XUSITEMGR]</td>
</tr>
<tr>
<td>Alert Management...</td>
<td>[XQALERT MGR]</td>
</tr>
<tr>
<td>SURO Alerts - Set/Remove Surrogate for User</td>
<td>[XQALERT SURROGATE SET/REMOVE]</td>
</tr>
<tr>
<td>Delete Old (>14 d) Alerts</td>
<td>[XQALERT DELETE OLD]</td>
</tr>
<tr>
<td>Make an Alert on the fly</td>
<td>[XQALERT MAKE]</td>
</tr>
<tr>
<td>Purge Alerts for a User</td>
<td>[XQALERT BY USER DELETE]</td>
</tr>
<tr>
<td>**> Locked with XQAL-DELETE</td>
<td></td>
</tr>
<tr>
<td>Report Menu for Alerts ...</td>
<td>[XQAL REPORTS MENU]</td>
</tr>
<tr>
<td>Set Backup Reviewer for Alerts</td>
<td>[XQAL SET BACKUP REVIEWER]</td>
</tr>
<tr>
<td>Surrogate for which Users?</td>
<td>[XQAL SURROGATE FOR WHICH USERS]</td>
</tr>
</tbody>
</table>

10.2.1.1 Alerts - Set/Remove Surrogate for Users Option

The Alerts - Set/Remove Surrogate for User option [XQALERT SURROGATE SET/REMOVE] is provided so that IRM or ADPAC personnel can do the following:

- Set a surrogate to receive alerts for a user.
- Remove a surrogate from receiving alerts for a user.

The option asks for a user to be selected, then is ready to specify a new surrogate for the selected user, or to remove the current surrogate for that user.

This option is not needed by the individual users who may select to name or remove a surrogate as one of the options while processing alerts (or if no alerts are present for the user, as his/her only option on selecting alert processing).

10.2.1.2 Delete Old (>14 d) Alerts Option

The Delete Old (>14 d) Alerts option [XQALERT DELETE OLD] performs the following functions:

- Purges unprocessed alerts from the ALERT file (#8992).
- Purges alert tracking information from the ALERT TRACKING file (#8992.1).
- Forwards unprocessed alerts to supervisors or surrogates.

You can use the Delete Old (>14 d) Alerts option to purge all alerts that have been unprocessed for longer than a specified retention period (the default is 14 days.) It is assumed that an alert becomes obsolete within this period and can be purged by IRM staff. This option also performs additional functions, which are described below.

This option can be run either directly or as a queued job. You can specify a retention period other than the 14-day default when you queue the option only, by using the TASK PARAMETERS field of the
OPTION SCHEDULING file (#19.2). If you put a numeric value in the TASK PARAMETERS field, this value replaces the default alert retention value of 14 days.

The Delete Old (>14 d) Alerts option also purges the ALERT TRACKING file (#8992.1). It purges all entries in the ALERT TRACKING file (#8992.1) that are more than 30 days old. The only exception is if, when an alert is created, the call to create the alert specified a retention period different than 30 days; in this case, the different period is used.

Finally, this option forwards unprocessed alerts to supervisors and surrogates (if this was requested when the alert was created). However, if the period to wait before forwarding exceeds the purging retention period used by this option, the alerts will be purged rather than forwarded.

Due to the number of tasks performed by this option, it should be queued through TaskMan on a regular basis. The suggested scheduling frequency is once every day.

10.2.1.3 Make an Alert on the Fly Option

The Make an Alert on the Fly option [XQALERT MAKE] allows you to generate an alert on the fly. It interactively asks you for the alert message, recipients, and alert action, if any (you can specify an alert action type of routine or option). It then generates the alert on the fly.

This option is recommended primarily for IRM personnel and ADPACs; it may or may not be appropriate for other selected users.

NOTE: This option does not allow the user to set the CAN DELETE WITHOUT PROCESSING field (#.1) in the ALERT file (#8992)

10.2.1.4 Purge Alerts for a User Option

The Purge Alerts for a User option [XQALERT BY USER DELETE] allows you to delete alerts for a user. The main purpose of this option is to provide a way to delete alerts for a user who has been inactive for a period of time (e.g., on leave), and who has accumulated a number of alerts that should not need processing.

This option is locked with the XQAL-DELETE security key, and should only be used by IRM personnel or ADPACs.
Alerts

10.2.1.5 Report Menu for Alerts Menu

The Report Menu for Alerts menu [XQAL REPORTS MENU] This menu provides several options for generating reports on alerts for users or patients. It consists of the following submenu items:

Figure 10-4. Report Menu for Alerts menu options

<table>
<thead>
<tr>
<th>Select Report Menu for Alerts Option: ??</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Alerts Count Report [XQAL CRITICAL ALERT COUNT]</td>
</tr>
<tr>
<td>List Alerts for a user from a specified date [XQAL ALERT LIST FROM DATE]</td>
</tr>
<tr>
<td>Patient Alert List for specified date [XQAL PATIENT ALERT LIST]</td>
</tr>
<tr>
<td>User Alerts Count Report [XQAL USER ALERTS COUNT]</td>
</tr>
<tr>
<td>View data for Alert Tracking file entry [XQAL VIEW ALERT TRACKING ENTRY]</td>
</tr>
</tbody>
</table>

10.2.1.5.1 Critical Alerts Count Report Option

The Critical Alerts Count Report option [XQAL CRITICAL ALERT COUNT] is used to generate a report of users who have more than a specified number of alerts containing the word "critical" or the words "abnormal imaging" between the specified start and end dates. The report is presented in descending order for the number of critical/abnormal imaging alerts present.

For each user who has the specified number of critical/abnormal imaging alerts or more, the report includes the following:

- User name
- Section/Service for the user
- Number of alerts in the ALERT file (#8992)
- Last signon date
- Number of Critical alerts or Abnormal Imaging alerts
- Date of the oldest alert

10.2.1.5.2 List Alerts for a user from a specified date Option

The List Alerts for a user from a specified date option [XQAL ALERT LIST FROM DATE] is used to obtain an interactive list of alerts from the ALERT TRACKING file (#8992.1) for a specified user starting from a specified date.

The listing includes the following:

- Internal Entry Number (IEN) for the alert in the ALERT TRACKING file (#8992.1)
- Date and time the alert was generated
- Message text of the alert
- Information about any option or routine to be executed for processing the alert
10.2.1.5.3 Patient Alert List for specified date Option

The Patient Alert List for specified date option [XQAL PATIENT ALERT LIST] is used to obtain a list of alerts for a specified patient from the ALERT TRACKING file (#8992.1) for a selected date.

A prompt is provided to obtain a quick scan listing of dates with at least some alerts for the patient on it based on OR and DVB alerts (other patient related alerts need to be identified by looking at each alert's message text and are included in the full list, but not the quick scan).

The listing includes the following:

- Internal Entry Number (IEN) for the alert in the ALERT TRACKING file (#8992.1)
- Date and time the alert was generated
- Message text of the alert
- Information about any option or routine to be executed for processing the alert

10.2.1.5.4 User Alerts Count Report Option

The User Alerts Count Report option [XQAL USER ALERTS COUNT] is used to generate a report on users who have more than a specified number of alerts in the ALERT file (#8992). The report covers a specified range of dates, and can be sorted by any of the following data:

- User name
- Number of alerts
- Service/Section

In addition, the report in each of these formats may be generated by Divisions if desired.

For each user who has the specified number of alerts or more, the report includes the following:

- User name
- Section/Service for the user
- Number of alerts in the ALERT file (#8992)
- Last signon date
- Number of Critical alerts or Abnormal Imaging alerts
- Date of the oldest alert

10.2.1.5.5 View data for Alert Tracking file entry Option

The View data for Alert Tracking file entry option [XQAL VIEW ALERT TRACKING ENTRY] can be used to view data for one or more entries in the ALERT TRACKING file (#8992.1) in captioned format. The internal entry numbers for the entries to be displayed must be entered individually.
10.2.1.6 Set Backup Reviewer for Alerts Option

The Set Backup Reviewer for Alerts option [XQAL SET BACKUP REVIEWER] was added with Kernel Patch XU*8.0*174.

This option provides a mechanism for a user to set entries into the PARAMETERS file (#8989.5) that will assign an individual as the "Backup Reviewer for Unprocessed Alerts," which is the DISPLAY TEXT Field (#.02) for the "XQAL BACKUP REVIEWER" entry in the NAME field (#.01) in the PARAMETER DEFINITION file (#8989.51), if there is a date specified in the DAYS FOR BACKUP REVIEWER field (#.15) in the ALERT DATE/TIME Multiple field (#.01) in the ALERT file (#8992) for that alert.

If this is the case, an alert that remains unread for the specified number of days will be forwarded to the "Backup Reviewer for Unprocessed Alerts" indicated at the lowest level found for processing for the user in the PARAMETERS file (#8989.5). The following is the processing order (listed lowest to highest level):

1. User
2. OERR Team
3. Team
4. Service
5. Division
6. System

10.2.1.7 Surrogate for which Users? Option

The Surrogate for which Users? option [XQAL SURROGATE FOR WHICH USERS] provides a view of which users have specified a selected user as surrogates for themselves.
11. Server Options

11.1 System Management

11.1.1 What is a Server Option?

A server option is a special type of option (stored in the OPTION file [#19]) that can be triggered by mail messages. Addressing a mail message to a server option is termed a "server request." A server request awakens the option and causes it to execute the following:

- Any M code in the server option's ENTRY ACTION field (#20).
- Any M code in the HEADER field (#26).
- The routine indicated in the ROUTINE field (#25).
- Any M code in the EXIT ACTION field (#15).

A server-type option is similar to a run routine-type option. The difference is that a server option is activated by a mail message while a run routine option is activated by a user choosing that option from a menu on a screen. Server options should only be invoked by mail messages (never directly by a user).

The form of the mail message that activates the server option is identical to any other mail message except that it is addressed to S.<option name>. The "S." (like the "G." form for sending to mail groups) routes the message to the server request software.

11.1.2 What Can Server Options Do?

A server request might trigger a bulletin, send a MailMan reply, or initiate an audit of itself. Developers and local IRM staff can also customize the bulletins or MailMan replies.

11.1.3 Can Server Requests Be Denied?

Only server-type options can be activated by mail messages. The following must be true for a server request to be processed:

- The server option must be set to type "s" in the TYPE field (#4) of the OPTION file (#19). If the type is not "s" and a request is received, it results in an error that, by default, is recorded in the AUDIT LOG FOR OPTIONS file (#19.081).
- The server option name must be complete and exact when a server request is made or the request will be denied.
- The server option must not be disabled (it can be disabled for all requests by setting its LOCK (#3) or OUT OF ORDER MESSAGE fields).
As long as the conditions listed above are satisfied, the only mechanism a site has for security for server requests is the setting of the server option's SERVER ACTION field (#221). This field has the following settings:

Table 11-1. SERVER ACTION field (#221) security values for server requests

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Run immediately. This code causes the server request to be honored in real time as soon as it is received from MailMan (run immediately), provided it is not prevented by a setting in the TIMES/DAYS PROHIBITED field (#3.91).</td>
</tr>
<tr>
<td>Q</td>
<td>Queue server. This code causes the server request to be honored (queued) as soon as permitted by the TIMES/DAYS PROHIBITED field (#3.91).</td>
</tr>
<tr>
<td>N</td>
<td>Notify local authorities. This code causes the server request to create a TaskMan entry but does not schedule it to run. A local mail group is notified along with the task number so that it can be approved locally and then scheduled to run using TaskMan's Requeue Tasks option.</td>
</tr>
<tr>
<td>I</td>
<td>Ignore any server requests. This code causes the software to ignore all requests for this server option. A bulletin or MailMan message can still be sent, however.</td>
</tr>
</tbody>
</table>

When a server request is received, the server option itself is executed similarly to the way a normal option is executed. That is, if a server request causes a server option to be run or queued, the server option, (along with its associated entry action code, header code, routine, and exit action code), does not run until the option as a whole runs as scheduled by TaskMan.

11.1.4 How Can the Number of Instances of a Server Option Be Controlled?

To tie a server option to a device of type RESOURCES, use the SERVER DEVICE field (#227) and set the SERVER ACTION field (#221) to "Q" (Queue server) in the OPTION file (#19). This allows you to control how many instances of the server option can run at any one time. Only as many server option processes can run at any one time as are set up in the associated device's RESOURCE SLOTS field (#35) in the DEVICE file (#3.5). So if 30 mail messages come in at the same time and attempt to fire off 30 server option processes, you can control the maximum number of simultaneous processes that actually run. Additional server options will be able to run when resource slots are freed up from the resource device.
11.1.5 Setting Up a Server Option

A server option has many fields in common with other option types and is set up using the Menu Management option Edit options. This option calls the FileMan edit template option [XUEDITOPT], which prompts for data to be entered in the following fields (listed in field number order):

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME (#.01)</td>
<td>This should be a namespaced set of 3 to 30 uppercase letters.</td>
</tr>
<tr>
<td>MENU TEXT (#1)</td>
<td>Since there is never a menu prompt for a server option, this field should instead contain an accurate description of what this server option does, as it is used by the server request in error messages, bulletins, and MailMan replies. It should be 3 to 50 characters in length.</td>
</tr>
<tr>
<td>OUT OF ORDER MESSAGE (#2)</td>
<td>If this field contains between 1 and 80 characters of text, the server option is placed "out of order" and will not be activated by a server request. The message itself is included in bulletins or MailMan replies that report the failure.</td>
</tr>
<tr>
<td>LOCK (#3)</td>
<td>Since server options have no online user associated with them, the existence of a lock in this field prevents the execution of a server option, much like an OUT OF ORDER MESSAGE. The user for all server options is the PostMaster. The originator of a server request is recorded, however, in the return address variable.</td>
</tr>
<tr>
<td>DESCRIPTION (#3.5)</td>
<td>This word-processing field should contain an extensive description of the server option intended for the local Site Manager and IRM staff. The description should include an exact description of what the server option does and the resources it requires.</td>
</tr>
<tr>
<td>PRIORITY (#3.8)</td>
<td>This field determines the priority at which the server option runs.</td>
</tr>
<tr>
<td>TIMES/DAYS PROHIBITED (#3.91)</td>
<td>This multiple allows the local IRM staff to control the days and times during which the server request is honored. If data is entered that prevents the server option from being honored immediately, the software determines the next available time slice that is not prohibited and queues the request for that time. Server options that are marked "R" for Run Immediately in the SERVER ACTION field are instead queued to run at the next non-prohibited time period.</td>
</tr>
<tr>
<td>TYPE (#4)</td>
<td>This field must always contain the code "s" for server-type option or the request will be denied and an error will result.</td>
</tr>
<tr>
<td>EXIT ACTION (#15)</td>
<td>The M code stored in this field is executed just before the server option exits.</td>
</tr>
<tr>
<td>ENTRY ACTION (#20)</td>
<td>The M code in this field is executed if the server request is honored. If, as with other options, the variable XQUIT exists after the Entry Action is executed, the request is terminated at that point and an error is generated.</td>
</tr>
<tr>
<td>ROUTINE (#25)</td>
<td>If there is a routine name in this field in the forms ROUTINE,</td>
</tr>
</tbody>
</table>
Field Name | Description
--- | ---
^ROUTINE, or TAG^ROUTINE, the routine is run.

HEADER (#26) | This field of M code is executed, if it exists.

SERVER BULLETIN (#220) | This field is a pointer to the BULLETIN file (#3.6); it indicates the bulletin to use to notify the local mail group of a server request on their system. If there is no bulletin entered in this field, the default bulletin XQSERVER is used.

Unless there are pressing reasons to do otherwise, it is recommended that the default bulletin XQSERVER be used by leaving the SERVER BULLETIN field blank.

If the mail group(s) pointed to by XQSERVER (or the bulletin pointed to in this field) does not contain an active user (i.e., a user possessing a Verify code and no effective TERMINATION DATE) the software turns on auditing (i.e., SERVER AUDIT described below) and sends a MailMan message to the local PostMaster.

CAUTION: The most common reason for server options not functioning is that there is no active user associated with the bulletin specified. For security reasons, server options will not run without a locally defined active user associated with the chosen bulletin.

SERVER ACTION (#221) | This SET OF CODES field allows the local IRM staff to decide how a server request is to be treated (see Table 11-1).

SERVER MAIL GROUP (#222) | This field is a pointer to another mail group (the first is pointed to by XQSERVER or the bulletin in Field #220) to which server request notifications are to be sent. The software will notify all legitimate users in all mail groups pointed to. It is recommended that this field be left blank and a mail group be assigned the chosen bulletin instead.

CAUTION: Server options will not work unless there is a local, active user associated with the specified mail group.

SERVER AUDIT (#223) | This field causes the server request to be audited in the AUDIT LOG FOR OPTIONS file (#19.081). The default is YES. The information stored for an audited server option includes:
- Option name
- User (always PostMaster)
- Device
- Job number
- Date/Time
- CPU
- Message number
- Return address of sender
- Subject of the message
Field Name

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Error message</td>
</tr>
</tbody>
</table>

A server option can also be audited using the normal option auditing software. Auditing the PostMaster or the namespace “XQSRV” will capture all server requests.

SUPPRESS BULLETIN (#224)

If set to “Y” (YES), it prevents a bulletin from being sent under normal conditions. If there is an error or a possible security breach, a bulletin will still be fired. If the field is not filled in, it takes the default of "N," which means that the sending of bulletins is not suppressed.

SERVER REPLY (#225)

This SET OF CODES controls the MailMan reply to a server request. The reply is a message returned to the user who has sent the server request and should not be confused with the local user to whom the bulletin is addressed. If a reply is requested, the software uses the return address of the sender as supplied by MailMan to send a local or network reply.

REF: For an example of a server-type option return message, see the Figure 11-2.

The possible codes are:

- **N** No reply is sent (the default).
- **E** A reply is sent to the return address of the sender only in the event of an error.
- **R** A reply is always sent.

SERVER DEVICE (#227)

Optionally, use this field and the SERVER ACTION field (#221) set to "Q" (Queue server) to control the number of server requests for this server option that can be processed at any one time. Enter the name of a device of type RESOURCES (in the DEVICE file [#3.5]). The number of instances of this server option that can run at any one time is limited to the number of resource slots in the selected resource device (i.e., RESOURCE SLOTS field (#35) in the DEVICE file (#3.5)).

11.1.6 Testing if a Site is Reachable: XQSPING Server Option

You can use the XQSPING server option to invoke the Kernel XTSPING utility at a site. This utility tests to see if the domain to which a message is addressed is reachable. For example, if you want to see if the network link to the Oakland OIFO is working properly, you could address a message to:

S.XQSPING@ISC-SF.VA.GOV
If the text of the message and the subject are simply the line "Testing", you should get the following message in return:

![Figure 11-1. Sample message received when "pinging" a domain address](image)

The XTSPING utility copies the message addressed to it and returns it to the person who sent it.

11.1.7 Testing a Server Option: XQSCHK

You can use the XQSCHK server option to return information about a server option on a remote system. You should list the server option you want to test in the text of the message addressed to XQSCHK. The subject of the message sent to the XQSCHK server option is not important. However, the body of the text must contain the name of the server option to be checked. When you specify the server option to be checked, do not precede the server option name with an "S.", instead, list the server option's name exactly as it appears in the OPTION file's .01 field.

The XQSCHK server option returns Fields #220 to #225 from the OPTION file (#19) to show how the option has been set up. In addition, several other things about the option are investigated and error or warning messages may be also returned.

For example, if you want diagnostic information about a server option named ZZSERVER, and the option resides on the system at the Oakland OIFO, you should create a message containing the text ZZSERVER and send it to:

```
S.XQSCHK@ISC-SF.VA.GOV
```
The XQSCHK server option at Oakland will unload the name of the server option (in this example ZZSERVER, see Figure 11-2). Assuming such a server option exists, you would expect to receive a reply in a MailMan message as shown below:

Figure 11-2. XQSCHK server option—Sample MailMan return message

```
MailMan message for XUUSER,ONE  COMPUTER SPECIALIST
Subj: Server Request Reply from SF-ISC.VA.GOV
From: Postmaster  in 'IN' basket

Nov. 28, 1992  12:18 PM

Sender: XUUSER,ONE
Option name: ZZSERVER
Subject: TESTING XQSCHK
Message #: 999

This is a reply from ISC-SF.VA.GOV
Checking Server Option ZZSERVER.

Fields 220 to 225 in the Option File:
  220 - No bulletin selected, will use default XQSERVER.
  221 - The server action code is Run Immediately.
  222 - The mail group ZZGROUP is pointed to.
  223 - Auditing is turned off.
  224 - The server's bulletin is not suppressed.
  225 - Reply mail is sent when an error is trapped.
```
11.1.8 Errors and Warnings from the XQSCHK Server Option

The following table lists the errors or warnings that might be included in the return message from the XQSCHK server option, along with an explanation of each:

<table>
<thead>
<tr>
<th>Error/Warning Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can't unload name of server from message: [message subject].</td>
<td>The name of the server option to be tested could not be unloaded from the text of the message sent to waken the XQSCHK server option. The message should contain just the name of the server option to be tested and nothing more. XQSCHK ignores blank lines (up to 4) and any lines of text that follow the line where it finds the options’ name.</td>
</tr>
<tr>
<td>The option [option name] is not in the Option File.</td>
<td>There is no option in the remote site’s OPTION file (#19) that matches the name of the server option that was unloaded from the text of the message. The string it is using to search the OPTION file (#19) is returned in [option name].</td>
</tr>
<tr>
<td>Option [option name] is not shown as a server-type option but a [type].</td>
<td>The option is not marked in the remote OPTION file (#19) as a server-type option, but some other kind of option returned in [type], such as a print-type option.</td>
</tr>
<tr>
<td>[Option name] is marked as Out Of Order with the message: [message].</td>
<td>The OUT OF ORDER MESSAGE field for that option has been filled in with the text that is returned in [message].</td>
</tr>
<tr>
<td>The expected data in <code>^DIC(19,[option number], 220)</code> is missing.</td>
<td>There is no information for this option in fields 220 through 225. The 220 node of the OPTION file (#19) is missing or blank.</td>
</tr>
<tr>
<td>No bulletin associated with this option default XQSERVER is missing from system.</td>
<td>There is no bulletin pointed to by Field #220 of this option in the OPTION file (#19), and the default XQSERVER bulletin has been removed from the system. Server options will not run without an associated bulletin, even if it is suppressed.</td>
</tr>
<tr>
<td>Option [option name] points to a bulletin not in the bulletin file.</td>
<td>WARNING: there is an invalid pointer in Field #220 of the OPTION file (#19) that points to a nonexistent bulletin. The default bulletin XQSERVER will be used.</td>
</tr>
<tr>
<td>Option [option name] points to a mail group not in the Mail Group File.</td>
<td>WARNING: there is an invalid pointer in Field #222 of the OPTION file (#19) indicating a mail group that should receive the bulletin in addition to the mail group pointed to by the BULLETIN file.</td>
</tr>
<tr>
<td>There are no mail groups associated with the bulletin [bulletin name].</td>
<td>The bulletin returned in [bulletin name] does not have a mail group associated with it in the BULLETIN file (#3.6).</td>
</tr>
<tr>
<td>Error/Warning Message</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>There is no active user associated with the bulletin [bulletin name].</td>
<td>When following the pointers from the bulletin to the mail group to the NEW PERSON file (#200), an active user was not found. Each server option must be linked to a user who has an Access and Verify code and is not terminated.</td>
</tr>
<tr>
<td>There is no routine in field 25 of the Option File for this option.</td>
<td>This server option has no routine associated with it in the ROUTINE field of the remote site's OPTION file (#19).</td>
</tr>
<tr>
<td>The routine [routine name] is not on the system.</td>
<td>The routine that is named in the ROUTINE field of the OPTION file (#19) is not found on the system. It has been removed or is in another UCI.</td>
</tr>
<tr>
<td>There is no server action code for this option.</td>
<td>The required server option action code in field 221 of the OPTION file (#19) is blank.</td>
</tr>
</tbody>
</table>
12. Help Processor

12.1 User Interface

Kernel's Help Processor is a utility for displaying help frames. A help frame is a screen of text that explains some part of a software application. Each individual help frame can have keyword links to other help frames. Using these keywords, you can navigate through a series of related help frames to learn more about each help frame topic.

Some places where you may encounter help frames are:

- When requesting help on options in the menu system.
- When requesting help on a menu in the menu system.
- As a standalone option describing some part of a software application.

Figure 12-1. Help frame example

```
USING THE 'Help Processor' OPTION
The Help processor is a frame-oriented display system which allows
users and programmers to access and manage help text.

The system is driven off of the HELP FRAME FILE.

There are several LINKS which will cause the help text to be
displayed to the user. The system is interactive, and the user may
select which topic he/she wishes further information on.

The Help Frame Processor Menu contains the following options:

DISPLAY/EDIT - Displays the text of a help frame, and allows for the
    edit of the name, header, text, or related frames.

CROSS REFERENCE - Lists all the help frames for a specified package,
    showing parent help frames, linked to menu option,
    and invoking routine.

LIST - Lists the help frames in several different formats.

MORE OPTIONS...

Select HELP SYSTEM action or <return>:
```

At the bottom of every displayed help frame is a "Select HELP SYSTEM action..." prompt. You have several choices at this prompt. To back your way out of the help frame system, you can simply press the <Enter> key. This backs you up one level, or exits you if you are at the top level of a help frame tree. If you want to exit quickly from help frames, you can enter "^Q" to quit immediately without having to back all of the way out.
You can list other choices at the "Select HELP SYSTEM action..." prompt by entering a question mark ("?"). The full list of choices is:

Table 12-1. Help system command actions

<table>
<thead>
<tr>
<th>Response</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyword</td>
<td>Jump to help frame associated with Keyword.</td>
</tr>
<tr>
<td><Enter></td>
<td>Quit to previous help frame (exit if no previous).</td>
</tr>
<tr>
<td>^Q</td>
<td>Quit the help system.</td>
</tr>
<tr>
<td>^R</td>
<td>Refresh the current frame.</td>
</tr>
<tr>
<td>^T</td>
<td>Table of related frames.</td>
</tr>
<tr>
<td>^O</td>
<td>On/off switch for bracketing/reverse video of keywords.</td>
</tr>
<tr>
<td>^H</td>
<td>How you got to this frame.</td>
</tr>
<tr>
<td>^E</td>
<td>Edit this frame (only if authorized as editor of frame).</td>
</tr>
</tbody>
</table>

Keywords in a help frame are displayed by the help processor in reverse video. If you enter the first few letters of a keyword and press the <Enter> key, the help processor will jump to the help frame linked to the entered keyword.

12.1.1 Help Frames in the Menu System

If a menu option has associated help frames, you can display them by entering a question mark ("?") followed by an option's menu text or synonym at a menu prompt (i.e., ?option). For example:

Figure 12-2. Display a help frame for an option—Entering one question mark (?) and option name

```
Select Office Menu Option: ?MAILMAN
```

Entering three question marks ("???") at the menu prompt indicates which options have associated extended help (help frames).

Figure 12-3. Display a help frame for an option—Entering three question marks (???)

```
Select Office Menu Option: ???
```
If a menu itself has an associated help frame, entering four question marks ("????") at the menus "Select ...
action: " prompt displays the help frame associated with that menu if one exists:

Figure 12-4. Display a help frame for an option—Entering four question marks (????)

Select Help Processor Option: ????
12.2 System Management

Help frames are entries in the HELP FRAME file (#9.2). The Header and Text of help frames can be displayed to users to provide instruction about software or other topics. Help frames can be distributed with software or can be created locally to provide information about local policies and procedures.

The options used to create, edit, and link help frames are on the Help Processor menu [XQHELP-MENU], shown below:

Figure 12-5. Help Processor menu options

SYSTEMS MANAGER MENU ...	[EVE]
Menu Management ...	[XUMAINT]
Help Processor ...	[XQHELP-MENU]
Display/Edit Help Frames	[XQHELP-DISPLAY]
List Help Frames	[XQHELP-LIST]
New/Revised Help Frames	[XQHELP-UPDATE]
Cross Reference Help Frames	[XQHELP-XREF]
Assign Editors	[XQHELP-ASSIGN]
Unassign Editors	[XQHELP-DEASSIGN]
Fix Help Frame File Pointers	[XQHELPFIX]

Use of the Help Processor options is explained by help frames associated with the options.

12.2.1 Display/Edit Help Frames Option

The help frames can be displayed with the Display/Edit Help Frames option [XQHELP-DISPLAY] You can use the ?option syntax at the select prompt, as follows:

Figure 12-6. Display/Edit Help Frames option—Displaying help using the ?option syntax

Select Help Processor Option: ?DISPLAY <Enter>/Edit Help Frames

12.2.2 List Help Frames Option

The List Help Frames option [XQHELP-LIST] can be used to print a series of frames with a table of contents and page numbering to resemble a hard copy manual.

Figure 12-7. List Help Frames option—Sample user dialogue

Select Help Processor Option: List Help Frames
Select primary HELP FRAME from which to list: XUDOC NEW
12.2.3 New/Revised Help Frames Option

The New/Revised Help Frames option [XQHELP-UPDATE] produces a VA FileMan-generated print of all help frames that have been updated during a specified time period.

12.2.4 Cross Reference Help Frames Option

The Cross Reference Help Frames option [XQHELP-XREF] lists any of the following cross-references to a specified set of help frames:

- Parents (other help frames that call the specified help frame).
- Options (options whose HELP FRAME field references the specified help frame).
- Routines (if a developer has entered the routine in the specified help frame's INVOKED BY ROUTINE field).

12.2.5 Fix Help Frame File Pointers Option (Deleting Help Frames)

There is no Kernel utility to delete help frames, but the menu system does not generate errors if a pointed-to help frame is missing. If a site chooses to delete help frames using VA FileMan, they should use the Fix Help Frame File Pointers option [XQHELPFIX] afterwards to delete dangling pointers from the OPTION file's HELP FRAME field.

12.2.6 Assigning/De-assigning Help Frame Editors

An existing help frame can be edited, through the Help Processor options, by the following people:

- The help frame author.
- Any holder of the XUAUTHOR security key.
- Anyone who has been assigned as an editor to that help frame.

To assign an editor to a given help frame use the Assign Editors option [XQHELP-ASSIGN] or to de-assign an editor to a given help frame, use the Unassign Editor option [XQHELP-DEASSIGN].
12.2.7 Disk Space Concerns

Help frames consume disk space. The amount can be considerable if numerous frames are exported with a software application. You can estimate the size of the HELP FRAME file (#9.2) by Kernel's Block Count utility.

Figure 12-8. Estimating the size of the HELP FRAME file (#9.2) using Kernel's Block Count utility

Select Systems Manager Menu Option: Prog <Enter> rammer Options
Select Programmer Options Option: Global <Enter> Block Count
Block Count for Global ^DIC(9.2)

12.2.8 Creating and Editing Help Frames

One way to edit help frames from the HELP FRAME file (#9.2) is to use the Display/Edit Help Frames option to display the help frame in question. Then, at the "Select Help System Action:" prompt, you can enter "^E" to edit the help frame if you have edit access to the help frame. You have edit access if:

- You are the help frame's author.
- You are assigned as an editor for the help frame.
- You are a holder of the XUAUTHOR security key.

Another handy way to edit help frames is within the help frame system as invoked from a software application. For example, if the help frames are tied to a software's options, you can use the software, invoke the help frame for each field or option, and then edit that help frame on the spot. To edit a help frame in this manner, enter "^E" at the help frame action prompt. To do this, however, you must have edit access to the help frame as described above.

12.2.8.1 Namespacing of Help Frames

Like entries in the OPTION (#19) or SECURITY KEY (#19.1) files, entries in the HELP FRAME file (#9.2) must be namespaced to avoid overwriting problems.

12.2.8.2 Help Frame Layout Considerations

When entering the text of help frames, you should keep each line to fewer than 80 characters for proper screen display.

NOTE: The text is displayed "as it stands" and is not processed by VA FileMan's text formatter. That is, the text is not wrapped, and word-processing "windows" are not evaluated. Frames are usually 22 lines in length although an end-of-page READ is issued to allow a pause if the frame exceeds 22 lines.
If there are only a few lines of text, the Help Processor displays a table at the bottom of the screen of all related frames (those frames that the current frame has keyword links to). The table shows the choices of other frames so the user need not enter the keywords in the text. You can force the table of related frames out of the display by entering enough blank lines so that the frame's length is 20 lines (assuming the display has a page length of 24 lines).

For the Help Processor to identify and highlight keywords, the keywords are entered in the text of the help frame enclosed in square brackets. By convention, keywords in help frames are usually in all capital letters. A square bracket character can be displayed as part of the frame's text by entering two of the characters (e.g., [[or]]).

If the frames are to be printed using the List Help Frames option, the resulting help manual will have an organized outline, if the frames are linked in a top-down tree structure without any circular connections among the branches.

12.2.8.3 Linking a Help Frame as Help for an Option or Menu

Once a help frame (or a series of help frames) has been created, you can associate it (them) with options by entering the name of the top-level help frame in the HELP FRAME field of the OPTION file (#19). You can use Menu Manager's option Edit options to do this. That way, when a user enters a single question mark ("?") in conjunction with the option name, Menu Manager will invoke the associated help frame.

Figure 12-9. Linking help frames to an option—Sample user dialogue

<table>
<thead>
<tr>
<th>Select Systems Manager Menu Option:</th>
<th>Menu <Enter> Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Menu Management Option:</td>
<td>Edit options</td>
</tr>
<tr>
<td>Select OPTION to edit:</td>
<td>XQHELP-MENU <Enter> Help Processor</td>
</tr>
<tr>
<td>NAME: XQHELP-MENU//</td>
<td>^HELP FRAME</td>
</tr>
<tr>
<td>HELP FRAME: XQHELP</td>
<td></td>
</tr>
</tbody>
</table>
13. Error Processing

13.1 User Interface

When an option you are using encounters an error condition, you are usually returned to the menu system. A message is displayed indicating that an error has occurred. You are then presented with the last menu prompt and can continue.

There are certain error conditions, however, that may prohibit or prevent return to the menu system. In these situations, you will be halted off the system.
13.2 System Management

The Error Processing menu handles errors for Caché systems. It provides access to options pertaining to the error trap, displaying, printing, and purging errors. Like the error traps provided by the operating systems, the utility allows the investigation of program execution errors or the examination of system errors by capturing a picture of the environment for later reconstruction.

The %ZTER* routines are called from ERR^ZU to trap errors and store them in the ^%ZTER global, a Manager account global that should be translated so that all errors are included on one report. The XTER* routines are used to format the error report.

13.2.1 Error Screens

At times you may not want to trap a certain type of error, but merely to count them because you are already aware of the error and can do nothing to prevent it. At other times you may not even want to count the error because it is inevitable or harmless. An error screen is a string of characters that is compared with the error message of every error trapped. Any trapped error whose message contains the screen is screened out. You decide for each screen whether the error is counted or completely ignored. In either case the error is not recorded in either the Kernel ERROR LOG file (#3.075) or the Taskman Error Log. In TaskMan, if a running task encounters a screened error, the Submanager still notes the error in the record for that task.

Kernel gives you four options with which to manage your error screens:

- List Error Screens [XUTM ERROR SCREEN LIST]
- Add Error Screens [XUTM ERROR SCREEN ADD]
- Edit Error Screens [XUTM ERROR SCREEN EDIT]
- Remove Error Screens [XUTM ERROR SCREEN REMOVE]

NOTE: These error screen options are described in the topics that follow in this chapter, "Error Processing." Previously, these options were described in Chapter 22, "TaskMan: System Management—Operation." Because these error screen options apply to all errors and not just TaskMan-specific errors, they were moved to this chapter. For historical purposes, however, these four option names are still prefixed with "XUTM" and located on the Taskman Error Log menu [XUTM ERROR], located under the Taskman Management Utilities menu [XUTM UTIL], located under the Taskman Management menu [XUTM MGR], which are all located under the Systems Manager Menu [EVE].
13.2.1.1 List Error Screens

The List Error Screens option [XUTM ERROR SCREEN LIST] lists in a simple table the screens you have established and the number of errors that have been screened out by each.

13.2.1.2 Add Error Screens Option

With the Add Error Screens option [XUTM ERROR SCREEN ADD] you can enter a screen and specify whether the errors should be counted. If there are already similar screens in place (e.g., entering SYN when SYNTAX is already established) you will be so informed, shown the similar screens, and prompted for confirmation before being asked about the count. Entering two question marks ("??") at the "Enter Screen To Apply:" prompt displays the list of error screens.

13.2.1.3 Edit Error Screens Option

Use the Edit Error Screens option [XUTM ERROR SCREEN EDIT] if you want to reset the counter on a screen or change your mind about whether or not the screen counts its errors. You must type in the exact screen you wish to edit. Again, entering two question marks displays the list of error screens currently in place.
13.2.1.4 Remove Error Screens Option

Figure 13-4. Remove Error Screens option

When you type in a screen at the prompt for this option, the screen is removed for you. If there are any similar screens, the Remove Error Screens option [XUTM ERROR SCREEN REMOVE] asks whether you wish to remove them also. Again, entering two question marks ("??") displays the list of error screens.

13.2.2 Enhanced Error Processing

Enhanced error processing for Caché sites is supported. Kernel's error trap captures variables in their state at the time errors occur, regardless of how variables may have been NEWed beforehand. Stack levels for the routine call stack are recorded in the error trap in the $STACK variable.

The descriptions of the Error Processing menu option topics that follow are arranged in the same order as the options appear on the Error Processing menu [XUERRS].

Figure 13-5. Error processing options

13.2.3 Print 1 Occurrence of Each Error for T-1 (QUEUE) Option

The Print 1 occurrence of each error for T-1 (QUEUE) option [XUERTRP PRINT T-1 1 ERR] lists the first occurrence of each error recorded on the previous day. T-1 represents "Today-1 = Yesterday". You can queue it to run shortly after midnight. If a device is specified, the output is sent to the specified device. If a device is not specified, the output is placed in a mail message and sent to the individual who queued the option to run. It should be set to automatically requeue at a 1 day ("D") interval.
13.2.4 Print 2 Occurrences of Errors on T-1 (QUEUED) Option

The Print 2 occurrences of errors on T-1 (QUEUED) option [XUERTRP PRINT T-1 2 ERR] lists the first two occurrences of each error recorded on the previous day. T-1 represents "Today-1 = Yesterday". It can be queued to run shortly after midnight. If a device is specified, the output is sent to the specified device. If a device is not specified, the output is placed in a mail message and sent to the individual who queued the option to run. It should be set to automatically requeue at a 1 day ("D") interval.

13.2.5 Clean Error Trap Option

You can use the Clean Error Trap option [XUERTRP CLEAN] to purge the error log. It is locked with the XUPROGMODE security key. You can use the corresponding direct mode utility, ^XTERPUR, in programmer mode. There is also a queuable version, Error Trap Auto Clean option [XUERTRP AUTO CLEAN].

Purging is a partial clearing of the ERROR LOG file (#3.075) stored in the ^%ZTER(1, global. This global node should not be deleted directly since potentially important recent errors would be purged. Deletion of the entire ^%ZTER global would be a greater mistake since the standard reference data contained in the ERROR MESSAGES file (#3.076) stored in ^%ZTER(2, would be lost.

You are first prompted for the number of days to leave in the error trap. If you enter a number of days to retain errors, all errors older than the specified number of days are immediately purged:

Figure 13-6. Choosing the number of days to leave errors in the error trap

To Remove ALL entries except the last N days, simply enter the number N at the prompt. OTHERWISE, enter return at the first prompt, and a DATE at the second prompt. If no ending date is entered at the third prompt, then only the date specified will be deleted. If an ending date is entered that range of dates INCLUSIVE will be deleted from the error log.

Number of days to leave in error trap: 50

DONE

If you just press <Enter> instead of entering a number of days to retain, you are then prompted for a start date and end date between which to remove errors. Errors in the period you specify will then be purged immediately:

Figure 13-7. Choosing a start and end date range to delete errors from the error trap

Starting Date to DELETE ERRORS from: 1/1 <Enter> (JAN 01, 2004)
Ending Date to DELETE ERRORS from: 1/31 <Enter> (JAN 31, 2004)

The queuable version of this option, Error Trap Auto Clean, can be scheduled to run in the background. By default, it cleans up errors recorded more than 7 days in the past. You can specify a different interval
by placing a numeric value (representing the number of days beyond which to purge) in this option’s TASK PARAMETERS field.

13.2.6 Error Trap Display Option

The Error Trap Display option [XUERTRAP] displays errors that have been trapped on the system. The messages for these errors are operating-system dependent. You can use the corresponding direct mode utility, ^XTER, from programmer mode.

The error trap tries to capture a description of the error, the local symbol table, the last global reference, and other signon statistics. For Caché, $ZC calls are used to record IO counts, CPU time, and page faults.

![Figure 13-8. Error trap display option—Sample user dialogue](image)

Errors can be reported by searching for a date range or character string. Question marks show a count of errors for the selected range. Two question marks ("??") exclude disconnects and three ("???") include disconnects. A string search could be used to find XQ in all routines or an UNDEF in the definition of all errors. Once an error is identified, the report generator shows the job number, username, IO value, date/time, UCI/Volume Set, error type, last global reference, and the line of code that caused the error. It then prompts for a listing of variables, enter "^L" to list all or a letter, such as X, to list those starting with
X. The listing can be printed to the screen or to an output device. You can page through the screen listing, one screen at a time, and enter "^Q" to quit or enter "^n" to exit at the end of each screen.

A restore feature can be invoked by entering "^R" provided that the user is working in programmer mode. Programmer mode is required as a protection against restoration of variables from within the menu system. To the extent possible, the environment at the time of the error is restored with the routine and local symbol table intact.

Figure 13-9. Local symbol table help

```
Which symbol? > ?
Enter:
  ^Q to EXIT
  ^' to return to the last question
  Leading character(s) of symbol(s) you wish to examine
  $ to get a display of the $ system variables
  ^L to obtain a list of all symbols
  ^R to restore the symbol table and ... and enter direct mode
```

After reviewing the error log, you are given the opportunity to examine the operating system's error log. Now that most VistA applications record their errors in Kernel's error log, however, there is less need to track VistA errors in the operating system error log.

Figure 13-10. Choosing to examine the operating system's error log—Sample user dialogue

```
Do you want to check the OPERATING SYSTEM ERROR TRAP too? NO//
```

13.2.7 Interactive Print of Error Messages Option

The Interactive Print of Error Messages option [XUERTRP PRINT ERRS] provides for an interactive print of the first "n" of occurrences of an error (where "n" is user selectable) over a specified date range.
Error Processing
III. Device Handler
Device Handler
14. Device Handler: User Interface

Applications that are designed for the Kernel environment perform output in a consistent manner, using Kernel's Device Handler. This ensures consistency, both for how you are asked to select devices for output, and also for how output is actually performed.

When you respond to the "DEVICE: " prompt, you are using the Device Handler.

14.1 Printing to Devices

At the "DEVICE: " prompt, to send output to your terminal, you can simply press the <Enter> key. This tells the Device Handler to display the report on the home device (that is, on your terminal), as shown below:

Figure 14-1. Choosing the home device

```
DEVICE: <Enter>
```

Direct output to the current terminal, home device. The home device can also be selected by entering H, h, @, or HOME.

To send output to a printer, enter the name of the printer at the "DEVICE:" prompt, as shown below:

Figure 14-2. Choosing a printer device

```
DEVICE: DVNM5
```

Specify a device with the name DVNM5.

To select the closest printer, if one is defined (unlikely), you can simply enter P and press <Enter>, as shown below:

Figure 14-3. Choosing the closest printer device

```
DEVICE: P
```

Select the closest printer if one is defined.
You can enter a question mark ("?") to display help about the syntax of the response.

Figure 14-4. Device syntax help—One question mark (?)

DEVICE: ?
Specify a device with optional parameters in the format
Device Name;Right Margin;Page Length
or
Device Name;Subtype;Right Margin;Page Length

You can enter two question marks ("??") to display available printers and other devices connected to the current Volume Set or "reachable from" the current Volume Set. You can also ask for a series of help frames under extended help:

Figure 14-5. Displaying devices help—Two question marks (??)

DEVICE: ??
The following information is available:
All Printers
Printers only on 'ROU'
Complete Device Listing
Devices only on 'ROU'
Extended Help

Select one (A,P,C,D, or E):

You can list all devices. In addition to printers, this list shows other types of devices you can use to handle output. An example of a partial printer listing is shown below:

Figure 14-6. Sample printer listing

Select one (A,P,C,D, or E): P
GENICOM10P 6th Floor 301 GENICOM16P 6th Floor 301
HP LASER DEV-10P HP LASER DEV-12P

REF: Unusual device types (e.g., Hunt Groups and Resource devices) are discussed in Chapter 18, "Special Devices," in this manual.

14.1.1 Specifying Right Margin and Page Length

Ordinarily, when choosing an output device, you only need to specify the device name. There can be times, however, when you may find it useful to specify the right margin or the page length for your output. The syntax to specify margin and page length uses semicolon delimiters. The format is:

DEVICE: Device Name ; Right Margin ; Page Length
The following examples show how to use the additional semicolon-delimited pieces at the "DEVICE: " prompt:

Table 14-1. Sample semicolon-delimited pieces at the "DEVICE: " prompt

<table>
<thead>
<tr>
<th>Semicolon-delimited Piece</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICE: DVNM5;80;66</td>
<td>Use the DVNM5 device with a right margin of 80 columns and page length of 66 lines.</td>
</tr>
<tr>
<td>DEVICE: ;132</td>
<td>Use the home device, right margin of 132.</td>
</tr>
<tr>
<td>DEVICE: ;;66</td>
<td>Use the home device and format the output with page breaks at 66 lines.</td>
</tr>
<tr>
<td>DEVICE: ;;9999</td>
<td>Scroll output on the home device without needing to press the <Enter> key at page breaks.</td>
</tr>
</tbody>
</table>

14.2 Queuing

At the "DEVICE: " prompt, if you enter a device's name, the output goes directly to that device. If the output you're sending is, for example, a long report, this ties your terminal up until the report finishes printing to that device.

You can print output and yet keep your terminal free for other processing by queuing your jobs rather than running them directly. As described in the "TaskMan: User Interface" chapter, you can queue output by entering Q at the "Device: " prompt. The device prompt is then presented a second time so that you can specify the output device.

Figure 14-7. Specifying a device and queuing a print job—Sample user dialogue (1 of 2)

```
DEVICE: Q
DEVICE: DVNM5
REQUESTED TIME TO PRINT: NOW// <Enter>
REQUEST QUEUED!
Task number: 856103
```
Alternatively, you can still specify the device first. The Device Handler checks to see if the device is available and, if so, asks you if you want to queue your output. If the device cannot be reached at the current time, Device Handler indicates that the device is busy or unavailable. You can avoid the preliminary availability check by entering Q at the first prompt (see Figure 14-7).

Figure 14-8. Specifying a device and queuing a print job—Sample user dialogue (2 of 2)

```
DEVICE: DVNM5
DO YOU WANT YOUR OUTPUT QUEUED? NO//YES
REQUESTED TIME TO PRINT: NOW//T@18:00 <Enter> (JUL 11, 2004@18:00)
REQUEST QUEUED!
Task number: 856109
```

Whether you request queuing before or after naming a device, Device Handler then asks you to specify a time for the queued job to run. You can accept the default (NOW) or indicate a later time in the usual format. Queuing sends output to TaskMan for scheduling. Meanwhile, you can continue working on the computer system without a delay.

Figure 14-9. Queuing a print job—Sample user dialogue

```
REQUESTED TIME TO PRINT: NOW//T@18:00 <Enter> (JUL 11, 2004@18:00)
REQUEST QUEUED!
Task number: 856109
```

REF: For more information about queuing output, see the "TaskMan: User Interface" chapter in this manual.

14.3 Specifying a Special Subtype

There is an exception to using numbers in the second semicolon piece to indicate a right margin setting. If, instead of a number, you use a letter and then a hyphen in a device specification (e.g., P-DEC), the second semicolon piece specifies a terminal type entry from the TERMINAL TYPE file (#3.2) to use for the output. A terminal type entry specifies information about what commands to use with specific printers (e.g., escape codes).

Figure 14-10. Terminal-type device entry—Without pauses

```
DEVICE: ;P=DEC
If the home device is a video terminal, output would be formatted with page breaks, and it would scroll without waiting for the user to press the <Enter> key after a screen display.
```
One form of the subtype request made possible by VA FileMan's print routines is the use of the word SINGLE along with P- or PK-. Appending "-SINGLE" indicates that a pause should occur after the display of each page. If using a slaved device to print the screen display, for example, the next page is displayed only after the user has pressed <Enter>:

![Figure 14-11. Terminal-type device entry—With pauses](image)

If you're not sure which subtype to use, you can enter a partial specification of the subtype in the second piece, and the Device Handler will let you choose from all matching subtypes. For example, if a dozen subtypes begin with "P-LASER...", you can list them by entering only the beginning of the subtype name (e.g., P-LASER):

![Figure 14-12. Partial Device specification—Unknown subtype](image)

All subtypes beginning with P-LASER are listed; you can then choose a subtype from this list.

When using a subtype as the second semicolon piece of a device specification, you can still specify a right margin and page length to use, but you then do so with the 3rd and 4th semicolon pieces:

![Figure 14-13. Device specification—Four semicolon piece: Sample](image)

The syntax for the four semicolon piece form of the device specification is:

![Figure 14-14. Device specification—Four semicolon piece: Syntax](image)
14.3.1 Spool Document Names—An Exception

When you request the spool device at the device prompt, you can use the following formats to specify the spool document name:

Figure 14-15. Device syntax—Specifying a spool document name: Sample formats (1 of 2)

```
DEVICE:  Spooler ; Spool Document Name ; Right Margin ; Page Length
```

Figure 14-16. Device syntax—Specifying a spool document name: Sample formats (2 of 2)

```
DEVICE:  Spooler ; Subtype ; Spool Document Name
```

Although neither right margin nor page length can be specified when including a subtype as the second piece and spool document name as the third, no functionality is lost. The explanation is simple; the spooler only responds to these two terminal type specifications. In other words, identifying a subtype for the spooler does no more than define a margin and page length.

Spool document entries in the SPOOL DOCUMENT file (#3.51) cannot have names beginning with: P-, PK-, C-, etc. (i.e., one or two letters followed by a hyphen, see Section #15.4.1). Because this syntax is the required naming convention for subtypes, you are allowed to specify the document name and the subtype in any order.

REF: For more information about Spool Devices, see the "Spooling" chapter in this manual.

14.4 Alternate Syntax for Device Specification

An alternate syntax is available for specifying right margin and page length when responding to the device prompt. Using the alternate format, you can specify pitch, intensity, and quality. The success of specifying these additional attributes, however, depends on whether the corresponding fields have been defined by IRM at your site.

The syntax requires the use of a slash ("/") after the last semicolon (see Figure 14-17).
You can use the following codes to specify special device attributes (in any order), without separating punctuation to delimit the pieces:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Boldface</td>
</tr>
<tr>
<td>L</td>
<td>Page length</td>
</tr>
<tr>
<td>M</td>
<td>Margin</td>
</tr>
<tr>
<td>P</td>
<td>Pitch</td>
</tr>
<tr>
<td>Q</td>
<td>Quality (can be Q, Q1, or Q2)</td>
</tr>
</tbody>
</table>

For example, you could specify:

Figure 14-17. Specifying a device—Using alternate syntax

```plaintext
DEVICE: LASER;P-LASER-LANDSCAPE;/M132L100P16BQ2
```

In this example (Figure 14-17), the margin ("M") is set to 132 (i.e., M132), the page length ("L") is set to 100 lines (i.e., L100), the pitch ("P") is set to 16 (P16), the intensity to boldface ("B"), and the quality ("Q") set to letter quality (i.e., Q2). An absence of the B would indicate normal intensity. The quality settings are: Q, Q1, and Q2.

Your IRM needs to confirm that the appropriate code to set the specified printer attributes is set up for the device that you are using. Then, when the Device Handler closes the device, IRM needs to be sure that appropriate reset code is in the CLOSE EXECUTE field so that the characteristics do not stay in effect. If, for example, someone requests a small pitch, subsequent reports will also use the small pitch unless reset in the CLOSE EXECUTE statement for that device (or altered by the OPEN EXECUTE statement of the next device called).

14.5 Summary

The Device Handler is a common interface used by all VistA applications to send output to devices (usually, printers). Once you become familiar with the Device Handler, you can enhance your productivity by making use of some of the Device Handler's special features, including queuing, selecting a specific right margin or page length, and selecting a special subtype.
15. Device Handler: System Management

The Device Handler makes use of two primary Files:

- DEVICE File (#3.5)
- TERMINAL TYPE File (#3.2)

Together, these two files control most of the characteristics of devices in Kernel.

The global locations of the device-related files are:

<table>
<thead>
<tr>
<th>Device-related File Name</th>
<th>Global Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICE (#3.5)</td>
<td>^%ZIS(1,</td>
</tr>
<tr>
<td>TERMINAL TYPE (#3.2)</td>
<td>^%ZIS(2,</td>
</tr>
<tr>
<td>DA RETURN CODES (#3.22)</td>
<td>^%ZIS(3.22,</td>
</tr>
</tbody>
</table>

15.1 DEVICE File (#3.5)

Kernel's DEVICE file (#3.5) stores information about devices on the system. All connected volume sets/CPUs should make use of a single DEVICE file (#3.5). Then all information concerning a particular device is stored in just one place, which facilitates device management.

Sometimes, a CPU will have an attachment point to which a device can be connected, for example, physical ports. The $I field in the DEVICE file (#3.5) entry identifies this attachment point.

Most devices (e.g., printers) are connected to the network and $I points to the name used by the underlying OS to point to the device. When using such a device, Kernel's Device Handler allows the creation and use of multiple DEVICE file (#3.5) entries for the same physical device. Each DEVICE file (#3.5) entry can contain different specifications (font, margin, page length, etc.) to format output. Each entry in the DEVICE file (#3.5), then, uniquely identifies a set of instructions to send to a particular device on the network.

Each device that Kernel Device Handler needs to communicate with should be set up as an entry in the DEVICE file (#3.5). The DEVICE file (#3.5) supports a variety of devices, including video display terminals (VDTs), commonly called cathode ray tube devices (CRTs); printers; tape drives; and operating system files (e.g., Host File Server [HFS] devices).

The DEVICE file (#3.5) is located in the Manager's account for common reference from all associated accounts. With TaskMan's help, this information is also available to all associated processors (CPUs) in the local area network.
15.1.1 DEVICE File Fields

DEVICE file (#3.5)
The most essential fields to populate or consider populating for device entries are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME (#.01)</td>
<td>This is the name of the device. It is used at the "DEVICE" prompt to select this device. It should not be the internal name for the device but a logical one. It must start with one uppercase character and not contain lowercase characters.</td>
</tr>
<tr>
<td>$I (#1)</td>
<td>This field holds the hardware port name that the operating system (OS) can identify when referencing a port on a CPU. On layered systems where opening of host files is supported, this field can hold the host file name.</td>
</tr>
<tr>
<td>VOLUME SET(CPU) (#1.9)</td>
<td>(Optional) This field holds the name of the CPU to which this device belongs. It holds the name of the CPU where the physical port resides.</td>
</tr>
<tr>
<td></td>
<td>If entered, the device is assumed to be accessible only from the specified CPU.</td>
</tr>
<tr>
<td></td>
<td>If the field is left blank, this device is assumed to be accessible from all CPUs in the network. In other words, when this device is referenced, the Device Handler will operate as if this device is resident on the local CPU. For example, if there is a device that uses the same $I on each CPU, one entry can be made in the DEVICE file (#3.5) by leaving this field set to null. This shortcut will work only if the same $I has been associated with this device on every CPU.</td>
</tr>
<tr>
<td></td>
<td>The Device Handler still maintains the CPU cross-reference to support queuing and other activities. The cross-reference format involves use of periods as delimiters. If the VOLUME SET(CPU) value were "BBB," the cross-reference for the device with a $I of 75 would be "BBB.75". If the VOLUME SET(CPU) value were NULL, then ".75" would be the CPU cross-reference.</td>
</tr>
<tr>
<td></td>
<td>NOTE: In the Caché environment, where cluster mounting is used and most devices are set up on all CPUs, all such devices do not need a value for this field.</td>
</tr>
<tr>
<td>SIGN-ON/SYSTEM DEVICE (#1.95)</td>
<td>If set to YES, this field identifies that this entry is the primary device among those device entries that have the same $I with the same VOLUME SET(CPU). Among those device entries that have a common $I and CPU, only one of these entries can have this field set to YES. If none of the common device entries is set to YES, the default device will be identified by the first device on the CPU cross-reference. The default device is used when the Device Handler is invoked with $I as the device to be selected.</td>
</tr>
<tr>
<td>TYPE (#2)</td>
<td>This field contains the general type of device on the CPU.</td>
</tr>
</tbody>
</table>

REF: For a list of device types, see Table 15-3.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBTYPE (#3)</td>
<td>Use this field to select a default terminal type for the device. This field points to the TERMINAL TYPE file (#3.2) to retrieve a standard set of characteristics that have been defined for vendor devices (e.g., Laser printers or VT320 CRTs).</td>
</tr>
<tr>
<td></td>
<td>REF: For a discussion of the TERMINAL TYPE file (#3.2), see the "TERMINAL TYPE File (#3.2)" topic in this chapter.</td>
</tr>
<tr>
<td>QUEUING (#5.5)</td>
<td>You can control the degree of queuing allowed for a device with the QUEUING field.</td>
</tr>
<tr>
<td></td>
<td>REF: For a list of settings to control queuing for a device, see Table 15-4.</td>
</tr>
<tr>
<td>PRE-OPEN EXECUTE (#7)</td>
<td>This is the executable M code that is used by %ZIS before opening the device.</td>
</tr>
<tr>
<td></td>
<td>If you define the %ZISQUIT variable, the device open will fail. Setting %ZISQUIT=1 in the PRE-OPEN EXECUTE code will signal %ZIS to reject the selected device. With this variable, you can use the PRE-OPEN EXECUTE as a screen on whether the device should be opened or not.</td>
</tr>
<tr>
<td>POST-CLOSE EXECUTE (#8)</td>
<td>This is the executable M code that is used by %ZISC after closing the device.</td>
</tr>
<tr>
<td>OPEN PARAMETERS (#19)</td>
<td>These parameters are used to open a device with specified characteristics/addresses. This field is primarily used with non-terminal devices (e.g., Magtape and Sequential Disk Processor). Magtape (MT), SDP (obsolete), and Host File Server (HFS) device types use the value in this field as the default if the ASK PARAMETERS (#5) flag is set. Users would then be prompted for address/parameters. If the ASK PARAMETERS flag is not set and if there is a value in the OPEN PARAMETERS field (#19), this value is used when opening the device (or file).</td>
</tr>
<tr>
<td></td>
<td>NOTE: Each operating system has its own way of specifying parameters. For example, under Caché, margins are set with both the OPEN and USE command.</td>
</tr>
<tr>
<td>USE PARAMETERS (#19.5)</td>
<td>This field holds the parameters to be used in an M USE statement. The Device Handler takes information from this field when opening and using such devices as the Magtape (MT) drive.</td>
</tr>
<tr>
<td></td>
<td>NOTE: Each operating system has its own way of specifying parameters. For example, under Caché, margins are set with both the OPEN and USE command.</td>
</tr>
</tbody>
</table>
Table 15-3. Device types in the TYPE Field in the DEVICE file (#3.5)

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAR</td>
<td>Identifies the device as a bar code reader.</td>
</tr>
<tr>
<td>CHAN</td>
<td>Network Channels are high speed devices that use network protocols (e.g., TCP/IP).</td>
</tr>
<tr>
<td>HFS</td>
<td>The Host File Server (HFS) type, and the associated functionality, provides the vehicle to READ and WRITE to host level files. Instead of directing reports to a printer, the results could be placed into a OpenVMS or UNIX/Linux file. This would allow non-M-based statistical software or spreadsheet to use data produced by the M-based application by simply extracting data from the host file.</td>
</tr>
<tr>
<td>HG</td>
<td>Hunt Groups (HG) are groups of devices that share a purpose for printing common reports. Printers in the same Hunt Group are usually expected to be located in the same general proximity. Reports can be directed to a Hunt Group or to one of its members. If a member is not available, the next available device in the Hunt Group is selected.</td>
</tr>
<tr>
<td>IMPC</td>
<td>Imaging work station device (reserved for VistA Imaging).</td>
</tr>
<tr>
<td>MT</td>
<td>Magtape (MT) devices.</td>
</tr>
<tr>
<td>OTH</td>
<td>Other (OTH) devices that do not fit a particular category.</td>
</tr>
<tr>
<td>RES</td>
<td>Resources (RES) is a type used for special sequencing of tasks that do not require a particular device.</td>
</tr>
<tr>
<td>SDP</td>
<td>(Obsolete) Sequential Disk Processor (SDP) is a predefined allocated disk space used for sequential processing; use HFS.</td>
</tr>
<tr>
<td>SPL</td>
<td>Spool (SPL) device is a predefined allocated disk space. It is similar to SDP; however, access to the spool device can be achieved from multiple users simultaneously.</td>
</tr>
<tr>
<td>TRM</td>
<td>Terminal devices (e.g., most CRTs and printers) should be associated with a corresponding device entry with a type of "TRM".</td>
</tr>
<tr>
<td>VTRM</td>
<td>Virtual Terminal Server devices are those that are associated with a dynamically created M port identification ($I). A generic device entry with a device type of "VTRM" can be established for users who log into the system through terminal servers or other network protocols.</td>
</tr>
</tbody>
</table>

NOTE: Device type descriptions can also be obtained by entering two question marks ("??") at the TYPE field while editing a device.

REF: For more information on these device types, see Chapter 18 "Special Devices," in this manual.

Also, for more information on Host File Server (HFS) devices, see Chapter 16, "Host Files," in this manual.
Table 15-4. Queuing settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Queuing</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ALLOWED</td>
<td>Jobs can be queued or run directly (default).</td>
</tr>
<tr>
<td>1</td>
<td>FORCED</td>
<td>Queuing is forced, unless disallowed by application.</td>
</tr>
<tr>
<td>2</td>
<td>NOT ALLOWED</td>
<td>Queuing to device is not allowed.</td>
</tr>
</tbody>
</table>

15.1.1.1 OpenVMS-Specific DEVICE Fields

NOTE: These fields are used by VMS and not Caché.

The DEVICE file (#3.5) can store operating system-specific information. For example, several fields are included in the DEVICE file (#3.5) to configure terminals and ports on Terminal Servers as part of an OpenVMS start-up command file. These are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAT SERVER NODE (#61)</td>
<td>This is the DECserver/terminal server node name that the device is on. It is used by the XTLATSET routine to build data files for VMS startup.</td>
</tr>
<tr>
<td>LAT SERVER PORT (#62)</td>
<td>This is the port on the DECserver/terminal server to which this device is connected. It can be entered in the LC-2-5 form or 31 form. On EQUINOX it is in the PORT_31 form. This field is used by the XTLATSET routine to build VMS datafiles for startup.</td>
</tr>
<tr>
<td>VMS DEVICE TYPE (#63)</td>
<td>This is a flag that is passed into the file LT_PTR.DAT by the XTLATSET routine to select how this port should be set up in VMS by the SYSSMANAGER:SYSPRINT.COM file when it runs.</td>
</tr>
<tr>
<td>LAT PORT SPEED (#64)</td>
<td>This field holds the value that will be passed to the TSC_LOAD.COM file for loading the DECserver permanent database.</td>
</tr>
<tr>
<td>PRINT SERVER NAME OR ADDRESS (#65)</td>
<td>This field contains the fully qualified domain name (FQDN) or specific TCP/IP address of a remote server (e.g., LPD/LPR printing) or device (e.g., Telnet printer).</td>
</tr>
<tr>
<td>TELNET PORT (#66)</td>
<td>This field contains the Telnet port of a remote device (e.g., Telnet printer). The allowable range is a number between 2000 and 65534.</td>
</tr>
<tr>
<td>REMOTE PRINTER NAME (#67)</td>
<td>This is the name of the remote printer that is referenced by the PRINT SERVER NAME OR ADDRESS (#65) and TELNET PORT (#66) fields.</td>
</tr>
</tbody>
</table>
Kernel Toolkit software distributes the XTLATSET and NVSTNSET routines that make use of these fields.

15.1.2 Device Edit Menu

The DEVICE file (#3.5) has many more fields where additional specific information for particular devices can be entered. Kernel provides a number of options to facilitate creating and editing device types on the Device Edit menu [XUDEVEDIT] on the Device Management menu [XUFIN]:

Figure 15-1. Device Edit options

<table>
<thead>
<tr>
<th>Device Management ...</th>
<th>[XUFIN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Edit</td>
<td>[XUDEVEDIT]</td>
</tr>
<tr>
<td>ALL</td>
<td>Edit All Device Fields [XUDEVEDITALL]</td>
</tr>
<tr>
<td>CHAN</td>
<td>Network Channel Device Edit [XUDEVEDITCHAN]</td>
</tr>
<tr>
<td>HFS</td>
<td>Host File Server Device Edit [XUDEVEDITHFS]</td>
</tr>
<tr>
<td>LPD</td>
<td>LPD/VMS Device Edit [XUDEVEDITLPD]</td>
</tr>
<tr>
<td>MT</td>
<td>Magtape Device Edit [XUDEVEDITMT]</td>
</tr>
<tr>
<td>RES</td>
<td>Resource Device Edit [XUDEVEDITRES]</td>
</tr>
<tr>
<td>SPL</td>
<td>Spool Device Edit [XUDEVEDITSPL]</td>
</tr>
<tr>
<td>TRM</td>
<td>TRM or VTRM Device Edit [XUDEVEDITTRM]</td>
</tr>
</tbody>
</table>
15.1.3 Sample Device File Entries

Kernel Patch XU*8.0*440 also included the addition of the SECONDARY $I field (#52) in the DEVICE file (#3.5).

15.1.3.1 HFS Devices

The following example shows an HFS device using the Host File Server Device Edit option [XUDEVEDITHFS] to update Field #52:

Figure 15-2. HFS device—Sample data entry screen

```
EDIT A HOST FILE SERVER DEVICE

NAME: HFS
LOCATION: Host Disk File

$I: USER$:[TEMP]MIXED.TXT
Alt $I: /tmp/mixed.txt
SUBTYPE: P-OTHER

ASK PARAMETERS: YES
ASK HOST FILE: YES
ASK HFS I/O OPERATION: NO
OPEN PARAMETERS: ("NWS")
CLOSE PARAMETERS:
PRE-OPEN EXECUTE:
POST-CLOSE EXECUTE:
QUEUING: ALLOWED
SUPPRESS FORM FEED: YES

Exit     Save     Refresh

Enter a command or '^' followed by a caption to jump to a specific field.

COMMAND: Press <PF1>H for help
```

Figure 15-3. HFS device—Sample DEVICE file entries

```
NAME: HFS
ASK DEVICE: NO
LOCATION OF TERMINAL: Disk
ASK HOST FILE: NO
ASK HFS I/O OPERATION: YES
SECONDARY $I: /tmp/mixed.txt
OPEN COUNT: 5
SUBTYPE: P-OTHER
TYPE: HOST FILE SERVER
OPEN PARAMETERS: ("NWS")
```
The following example shows a printer set up as an HFS device with the Terminal Type CLOSE EXECUTE, which submits the file to the OS print queue:

Figure 15-4. HFS device—Sample data entry screen with the Terminal Type CLOSE EXECUTE

<table>
<thead>
<tr>
<th>NAME: SDD P10</th>
<th>LOCATION: Printer next to One User</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I: USER$:[TEMP]SDD_DN2$PRT.TXT</td>
<td></td>
</tr>
<tr>
<td>Alt $I:</td>
<td></td>
</tr>
<tr>
<td>SUBTYPE: P-HP8000 TCP/S</td>
<td></td>
</tr>
</tbody>
</table>

- **ASK PARAMETERS:** NO
- **ASK HOST FILE:** NO
- **ASK HFS I/O OPERATION:** NO
- **OPEN PARAMETERS:** "NWS"
- **CLOSE PARAMETERS:**
- **POST-CLOSE EXECUTE:**
- **QUEUING:**
- **SUPPRESS FORM FEED:** YES

Enter a command or '^' followed by a caption to jump to a specific field.

COMMAND: Press <PF1>H for help Insert
15.1.3.2 NULL Devices

The following example shows a NULL device using the TRM or VTRM Device Edit option [XUDEVEDITTRM] to update Field #52:

Figure 15-5. NULL device—Sample data entry screen

![Edit a TRM or VTRM device]

NAME: NULL LOCATION: Bit Bucket

$I: _NLA0:
Alt $I: /dev/null
TYPE: TERMINAL
SUBTYPE: P-OTHER

SIGN-ON/SYSTEM DEVICE: NO
VOLUME SET(CPU):

ASK DEVICE: NO
ASK PARAMETERS: NO
MARGIN WIDTH:
PAGE LENGTH:
QUEUING:
SUPPRESS FORM FEED:

Exit Save Refresh

Enter a command or ‘^^’ followed by a caption to jump to a specific field.

COMMAND: Press <PF1>H for help

Figure 15-6. NULL device—Sample DEVICE file entries

NAME: NULL $I: _NLA0:
ASK DEVICE: NO ASK PARAMETERS: NO
SIGN-ON/SYSTEM DEVICE: NO LOCATION OF TERMINAL: Bit Bucket
SECONDARY $I: /dev/null OPEN COUNT: 8523
SUBTYPE: P-OTHER TYPE: TERMINAL
15.1.3.3 **BROWSER Devices**

The following example shows DEVICE file (#3.5) entries for a BROWSER device:

![Figure 15-7. BROWSER device—Sample DEVICE file entries](image)

<table>
<thead>
<tr>
<th>NAME: BROWSER</th>
<th>$I: USER$:[BROWSER]DDBR.TXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASK DEVICE: YES</td>
<td>ASK PARAMETERS: NO</td>
</tr>
<tr>
<td>SIGN-ON/SYSTEM DEVICE: NO</td>
<td>QUEUING: NOT ALLOWED</td>
</tr>
<tr>
<td>LOCATION OF TERMINAL: BROWSER</td>
<td>ASK HOST FILE: NO</td>
</tr>
<tr>
<td>ASK HFS I/O OPERATION: NO</td>
<td>SECONDARY $I: /tmp/ddbr.txt</td>
</tr>
<tr>
<td>OPEN COUNT: 1</td>
<td>OPEN PARAMETERS: ("NWS")</td>
</tr>
<tr>
<td>POST-CLOSE EXECUTE: D POST^DDBRZIS I $G(IO("CLOSE"))'="" N % S %$DDEL1%ZISH(IO("CLOSE"))</td>
<td></td>
</tr>
<tr>
<td>PRE-OPEN EXECUTE: N X S X=$TEST^DDBRT S:X IO=$UNIQUE%ZISUTL(IO) I 'X S %ZIS</td>
<td></td>
</tr>
<tr>
<td>QUIT=1,X="Browser not selectable from current terminal." W $C(7),!,X</td>
<td></td>
</tr>
<tr>
<td>SUBTYPE: P-BROWSER</td>
<td>TYPE: HOST FILE SERVER</td>
</tr>
</tbody>
</table>

15.1.3.4 **P-MESSAGE Devices**

The following example shows DEVICE file (#3.5) entries for a P-MESSAGE device:

![Figure 15-8. P-MESSAGE device—Sample DEVICE file entries](image)

<table>
<thead>
<tr>
<th>NAME: P-MESSAGE-HFS-ONT</th>
<th>$I: USER$:[TEMP]XMHFS.TMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASK DEVICE: NO</td>
<td>ASK PARAMETERS: NO</td>
</tr>
<tr>
<td>SIGN-ON/SYSTEM DEVICE: NO</td>
<td>QUEUING: ALLOWED</td>
</tr>
<tr>
<td>LOCATION OF TERMINAL: HFS FILE==> MESSAGE</td>
<td></td>
</tr>
<tr>
<td>ASK HOST FILE: NO</td>
<td>ASK HFS I/O OPERATION: NO</td>
</tr>
<tr>
<td>SECONDARY $I: /tmp/xmhfs.tmp</td>
<td>OPEN PARAMETERS: ("NWS")</td>
</tr>
<tr>
<td>PRE-OPEN EXECUTE: D EN^XMAPHOST Q:$G(POP) S IO=$UNIQUE%ZISUTL(IO)</td>
<td></td>
</tr>
<tr>
<td>SUBTYPE: P-MESSAGE-HFS-ONT</td>
<td>TYPE: HOST FILE SERVER</td>
</tr>
</tbody>
</table>

15.1.3.5 **TELNET Devices**

The following examples show DEVICE file (#3.5) entries for TELNET devices:

![Figure 15-9. TELNET device—Sample DEVICE file entries (1 of 2)](image)

<table>
<thead>
<tr>
<th>NAME: TELNET/LINUX</th>
<th>$I: /dev/pts/</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASK DEVICE: YES</td>
<td>SIGN-ON/SYSTEM DEVICE: YES</td>
</tr>
<tr>
<td>LOCATION OF TERMINAL: Telnet Terminal</td>
<td></td>
</tr>
<tr>
<td>OPEN COUNT: 101</td>
<td>SUBTYPE: C-VT320</td>
</tr>
<tr>
<td>TYPE: VIRTUAL TERMINAL</td>
<td></td>
</tr>
</tbody>
</table>
15.2 Mixed OS Environment Fields

NOTE: This is for Caché only.

With the advent of remote data centers (RDCs), the VA may use mixed OS environments with a Caché Extended Caché Protocol (ECP) App/Data server configuration. In this environment output devices need different $IO values depending on where the job is running. Kernel Patch XU*8.0*440 added support to allow the Device Handler to work in a mixed operating system (OS) environment. The following fields were added to the KERNEL SYSTEM PARAMETERS file (#8989.3) to provide this support:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIXED OS (#.05)</td>
<td>This is used to select which field to use when selecting operating system (OS)-specific data fields in a mixed OS environment. The support is for Caché in an ECP client/server configuration with only two operating systems at a time. In a mixed environment the primary OS is always VMS, and the secondary OS is not VMS (i.e., Linux or NT). Some of the fields that need mixed values are:</td>
</tr>
<tr>
<td></td>
<td>- PRIMARY HFS DIRECTORY field (#320) in the KERNEL SYSTEM PARAMETERS file (#8989.3)</td>
</tr>
<tr>
<td></td>
<td>- SECONDARY HFS DIRECTORY field (#320.2) in the KERNEL SYSTEM PARAMETERS file (#8989.3)</td>
</tr>
<tr>
<td></td>
<td>- SECONDARY $I field (#52) in the DEVICE file (#3.5)</td>
</tr>
<tr>
<td>SECONDARY HFS DIRECTORY (#320.2)</td>
<td>This field holds the secondary HFS directory path.</td>
</tr>
<tr>
<td>LOGICAL DISK NAME (#504)</td>
<td>This field holds a logical disk name that is stored in the Caché CPF file for client system in an ECP client/server configuration.</td>
</tr>
<tr>
<td>PHYSICAL DISK (#505)</td>
<td>This field holds the physical disk name to which Cache VMS converts the LOGICAL DISK NAME (#504).</td>
</tr>
<tr>
<td>SECONDARY $I (#52)</td>
<td>This field holds the $IO value to be used if this is the secondary system in a mixed OS environment. It is not used otherwise. It is only used for output devices.</td>
</tr>
</tbody>
</table>
15.2.1 Edit Logical/Physical Mapping Option

Kernel Patch XU*8.0*440 added the Edit Logical/Physical Mapping option [XU SID EDIT] on the Kernel Management Menu [XUKERNEL]. The XU SID EDIT option lets you edit the fields that support the LOGICAL to PHYSICAL translation for the System ID. This is only valid in a Caché 5.2 client/server configuration.

15.2.2 Enter/Edit Kernel Site Parameters option

Kernel Patch XU*8.0*440 updated the Enter/Edit Kernel Site Parameters option [XUSITEPARM], screen 3, shows these added fields:

Figure 15-11. Enter/Edit Kernel Site Parameters option—ScreenMan form 3: MIXED OS (#.05) and SECONDARY HFS DIRECTORY (#320.2) fields

<table>
<thead>
<tr>
<th>Kernel Site Parameter edit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOMAIN:XXX.KERNEL.FO-OAKLAND.MED.VA.GOV</td>
</tr>
<tr>
<td>MAX SPOOL LINES PER USER: 99999</td>
</tr>
<tr>
<td>MAX SPOOL DOCUMENTS PER USER: 99</td>
</tr>
<tr>
<td>MAX SPOOL DOCUMENT LIFE-SPAN: 60</td>
</tr>
<tr>
<td>MIXED OS: VMS/Linux</td>
</tr>
<tr>
<td>DEFAULT DIRECTORY FOR HFS: USER$:[TEMP]</td>
</tr>
<tr>
<td>SECONDARY HFS DIRECTORY: /var/tmp/</td>
</tr>
<tr>
<td>DNS IP: 10.9.99.10,10.9.21.999</td>
</tr>
<tr>
<td>NEW PERSON IDENTIFIERS:</td>
</tr>
</tbody>
</table>

Command: Press <PF1>H for help

15.3 Device Security

To regulate who can use a particular device, you can use the PASSWORD and SECURITY fields.

The SECURITY field, if populated, should contain a string of characters to compare with a user's FILE MANAGER ACCESS CODE field (#3), DUZ(0), when the device is selected. Access is denied to anyone whose DUZ(0) does not contain one of the specified characters. As with other uses of DUZ(0), the at-sign (@, programmer access) will override this restriction.
The PASSWORD field, if populated, forces all users trying to log on to the device to be prompted for the matching password, before entering their Access code.

15.4 TERMINAL TYPE File (#3.2)

The TERMINAL TYPE file (#3.2) holds device vendor-specific code to characterize a terminal type. For example, escape sequences can be entered in the OPEN EXECUTE (#6) and CLOSE EXECUTE (#7) fields to set pitch or font. Every device in the DEVICE file (#3.5) must be assigned a terminal type, in the SUBTYPE field (#3).

The most common fields to populate for TERMINAL TYPE file (#3.2) entries are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME (#.01)</td>
<td>The name of the terminal type.</td>
</tr>
<tr>
<td></td>
<td> For a description and list of acceptable terminal type name formats, see the "Terminal Type Naming Conventions" topic and Table 15-8 in this chapter.</td>
</tr>
<tr>
<td>SELECTABLE AT SIGN-ON (#.02)</td>
<td>This field is used to screen the choices that can be made at the "DEVICE TYPE" prompt during signon.</td>
</tr>
<tr>
<td>RIGHT MARGIN (#1)</td>
<td>This field is the number of characters wide for this device.</td>
</tr>
<tr>
<td>FORM FEED (#2)</td>
<td>The argument of an M WRITE statement that will set the top-of-form for the use of tractor-feed paper on a printer, or will clear the screen of a video display terminal.</td>
</tr>
<tr>
<td>PAGE LENGTH (#3)</td>
<td>This field is the number of usable lines on the output device.</td>
</tr>
<tr>
<td>BACK SPACE (#4)</td>
<td>The argument of an M WRITE statement that will cause the cursor to back space.</td>
</tr>
<tr>
<td>OPEN EXECUTE (#6)</td>
<td>This is the executable M code that is used by %ZIS to OPEN the terminal.</td>
</tr>
<tr>
<td>CLOSE EXECUTE (#7)</td>
<td>This is the executable M code that is used by %ZIS to CLOSE the terminal [i.e., X ^%ZIS(“C“)].</td>
</tr>
</tbody>
</table>
The TERMINAL TYPE file (#3.2) has many more fields where additional specific information for particular terminal types can be entered. Kernel provides the following options to facilitate creating and editing terminal types:

Figure 15-12. Terminal type edit options

<table>
<thead>
<tr>
<th>Device Management ...</th>
<th>[XUTIO]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Type Edit</td>
<td>[XUTERM]</td>
</tr>
<tr>
<td>Change Device's Terminal Type</td>
<td>[XUCHANGE]</td>
</tr>
<tr>
<td>List Terminal Types</td>
<td>[XULIST]</td>
</tr>
</tbody>
</table>

15.4.1 Terminal Type Naming Conventions

The convention for naming terminal types is as follows:

<table>
<thead>
<tr>
<th>Terminal Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-</td>
<td>Video terminals (e.g., C-VT320).</td>
</tr>
<tr>
<td>PK-</td>
<td>Printers with keyboards.</td>
</tr>
<tr>
<td>P-</td>
<td>Printers without keyboards (e.g., P-LASER).</td>
</tr>
<tr>
<td>M-</td>
<td>Modems.</td>
</tr>
</tbody>
</table>

The general format is limited to two alphabetic character prefix, followed by a hyphen, and followed by alphanumeric characters.

As mentioned previously (see Section #14.3.1), a spool document name *cannot* use this format; this is so that it can be distinguished from a device subtype in a call to the Device Handler. Confusion could arise since either can be used as the second piece of the device specification. The SPOOL DOCUMENT file (#3.51) has an input transform pattern match that guards against creation of document names in the format of device subtypes.

15.4.2 How Shared Device and Terminal Type Attributes are Used

The DEVICE (#3.5) and TERMINAL TYPE (#3.2) files share attribute fields for RIGHT MARGIN and PAGE LENGTH. If a value is entered for RIGHT MARGIN or PAGE LENGTH in the DEVICE file (#3.5), it will override the value from the TERMINAL TYPE file [#3.2].

When a user selects a device by responding to the device prompt with only the first required piece of information, the device identification, Device Handler retrieves parameters to characterize the device (e.g., RIGHT MARGIN) from the DEVICE file (#3.5). Furthermore, the Device Handler checks the ASK PARAMETERS (#5) flag for the selected device and, if the flag is set, prompts the user for associated parameters, presenting DEVICE file (#3.5) characteristics as the default. For terminals and virtual terminals (types TRM and VTRM, respectively), the user is prompted for the right margin.
(MT), Sequential Disk Processor (SDP; obsolete), and Host File Server (HFS) devices, they can be prompted for address/parameters with the value of the OPEN PARAMETERS field (#19) (in the DEVICE file [#3.5]) as the default.

REF: For more information on Magtape (MT) devices, see Chapter 18, "Special Devices," in this manual.

For more information on Host File Server (HFS) devices, see Chapter 16, "Host Files," in this manual.

15.4.3 Terminal Type Information Retained by User

User can change some terminal type attributes of their signon device by doing either of the following:

- Changing the terminal type during the session with the Edit User Characteristics option [XUSEREDITSELF].
- Selecting a device for direct output.

Kernel uses the ^XUTL global to hold information about changes made to device characteristics of the home device during a session.

REF: For more information the ^XUTL global, see the "Menu Manager: System Management" chapter in this manual.

The terminal type established for users at each signon is stored in their NEW PERSON file (#200) entries so that, if necessary, it can be used as a default for the next signon.

15.5 Devices and Signon

15.5.1 Device Selection at Signon and Virtual Terminal Devices

Every interactive user must be associated with a device by the Device Handler when they sign onto the VistA system. The device association is done by matching the incoming user's $I (#1) field value with the $I value of an entry in the DEVICE file (#3.5).

Historically, it was practical to set up one device entry with a matching $I for each physical port. With the move to OpenVMS, however, the $I of the user was dynamic, with many thousands of $I values possible. The Virtual Terminal device type (VTRM; see Table 15-3) was created as a way to have one device entry be used for signon for multiple incoming $I values. The Device Handler still checks to see if it can assign a device to an incoming process based on an exact match of $I values. If there is no direct match, however, Device Handler checks to see if the first part of the user's $I value matches the $I value of a virtual device entry. This way, a virtual device with a $I value of ".TNA" can service all incoming processes whose $I values start with the string "TNA".

Virtual devices do not need a value in the VOLUME SET(CPU) field (#1.9); they should have the SIGN-ON/SYSTEM DEVICE field (#1.95) set to YES, however, to speed up the signon device selection process.
Common device prefixes on VMS systems that could be used for virtual terminal device entries include:

- "TNA"—Telnet devices
- "RTA"—Remote processes using the "SET HOST" command
- "FTA"—Secure Shell devices

Processes on VMS systems that use Telnet usually have I values beginning with the prefix "TNA", concatenated with an integer value and a colon (e.g., "TNA8456:"). A single virtual terminal device entry whose I value is "TNA" will service all such processes.

15.5.2 Terminal Type Selection at Signon

Besides needing a device assigned at signon, users also need a terminal type. As described in the "Signon/Security: System Management" chapter in this manual, Kernel can usually determine the correct subtype without needing to prompt the user by querying the terminal and matching the returned string (if any) with return codes for terminals stored in the DA RETURN CODES file (#3.22).

If the user is prompted to enter a terminal type, they will need to choose one. The list of terminal types from which they can choose is screened by the SELECTABLE AT SIGN-ON field (.02) in the TERMINAL TYPE file (#3.2). Users can only choose from entries with this field set to YES. This stops users from choosing inappropriate terminal types. The setting of this field does not prevent terminal types from being chosen by the DA return code method, however. Make sure that all terminal types appropriate for signon have SELECTABLE AT SIGN-ON (.02) set to YES.

If the Signon/Security system cannot supply even a default, the Device Handler makes a selection according to the signon device's subtype.

15.5.2.1 Managing Display Attributes (DA) Return Codes

The DA RETURN CODES file (#3.22) stores entries for the codes returned by different terminals after Kernel prompts for their display attributes at signon. This file then maps Kernel terminal types to the terminal's return codes. This mapping allows sites to set up mappings for new terminals or to map different terminals to a common type. For example, a site could map all codes returned by all DEC VT type terminals to a single C-VT102 type terminal.

The DA RETURN CODES file (#3.22) is a small static file managed by the DA Return Code Edit option [XU DA EDIT]. You can use the DA Return Code Edit option to automate the population of the DA RETURN CODES file (#3.22). When you select this option, the terminal you are using is queried and you are shown the terminal's DA code response. You are then prompted for the terminal type and description for this return code. Enter the terminal type name for the terminal you are using. The option updates the
DA RETURN CODES file (#3.22), and all terminals responding with this code will be recognized at signon. You can quickly populate the DA RETURN CODES file (#3.22) by using this option from several different types of terminals.

Kernel pre-populates the DA RETURN CODES file (#3.22) with a set of standard terminal type entries. You may need to add more entries as needed to handle all terminals at your site.

15.6 Troubleshooting

Figure 15-14. Device management—Troubleshooting options

<table>
<thead>
<tr>
<th>SYSTEM MANAGER MENU</th>
<th>[EVE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Management...</td>
<td>[XUTIO]</td>
</tr>
<tr>
<td>Loopback Test of Device Port</td>
<td>[XUTLOOPBACK]</td>
</tr>
<tr>
<td>Send Test Pattern to Terminal</td>
<td>[XUTTEST]</td>
</tr>
<tr>
<td>Out of Service Set/Clear</td>
<td>[XUOUT]</td>
</tr>
</tbody>
</table>

Kernel provides several options on the Device Management menu [XUTIO] to aid with troubleshooting device problems, which are described in the topics that follow.

15.6.1 Loopback Test of Device Port Option

Use the Loopback Test of Device Port option [XUTLOOPBACK] to test an RS-232 serial data line when using a loopback connection on the line. First, disconnect the data line from the device it is attached to (if any). Then, tie pins 2 and 3 of the RS-232 serial data line together. This is a loopback connection; data sent down pin 2 (transmit) will loop back up pin 3 (receive). The Loopback Test of Device Port option sends the letters of the alphabet down the data line one at a time, and attempts to READ them back. If both lines are intact, you should see "ABCDEFGHIJKLMNOPQRSTUVWXYZ" print on the terminal from which you are testing the data line.

15.6.2 Send Test Pattern to Terminal Option

Use the Send Test Pattern to Terminal option [XUTTEST] to send a simple test pattern to a device. This is an easy way to verify whether a device is connected to the system. It lets you choose how many lines of the test pattern to send, and then sends that number of lines to the device. You can confirm on the device end exactly how many lines of the test pattern you receive, which can be useful when troubleshooting printer handshaking problems.

15.6.3 Out of Service Set/Clear Option

You can use the Out of Service Set/Clear option [XUOUT] to set a device out of order. It asks you the date on which to put the device out of order. From that date forward, the Device Handler will not allow any jobs to use the device (users will get a message that the device is out of order). To clear the out of order status, use this option again and delete the out of order date.
15.7 Device Identification and Cross-references

Devices can be selected in several ways from the "DEVICE:" prompt. Besides the NAME field (#.01), three other attributes: MNEMONIC, LOCAL SYNONYM, and $I can also be used to select devices. When LOCAL SYNONYM is used, the Device Handler searches the local CPU for a match. Thus, the same LOCAL SYNONYM value (e.g., PRINTER) can be used to identify several devices, one per CPU.

When editing devices through VA FileMan, two additional fields can be used for lookup:

- VOLUME SET(CPU) (#1.9)
- SIGN-ON/SYSTEM DEVICE (#1.95)

You can separate these values with a period delimiter, as follows:

<table>
<thead>
<tr>
<th>Period-delimited Piece</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>All devices matching CPU.</td>
</tr>
<tr>
<td>CPU.$I</td>
<td>All devices matching the CPU and $I.</td>
</tr>
<tr>
<td>SYS</td>
<td>All SIGN-ON DEVICES.</td>
</tr>
<tr>
<td>SYS.CPU</td>
<td>All SIGN-ON DEVICES matching CPU.</td>
</tr>
<tr>
<td>SYS.$I</td>
<td>All SIGN-ON DEVICES matching $I.</td>
</tr>
<tr>
<td>SYS.CPU.$I</td>
<td>All SIGN-ON devices matching CPU and $I.</td>
</tr>
</tbody>
</table>

For example, to display all signon devices on CPU "BBB", you could do:

Figure 15-15. Displaying signon devices on a specific CPU—Sample user dialogue

```
Select DEVICE NAME: SYS.BBB
```

To display all signon devices whose $I begins with "_TNA" you could do:

Figure 15-16. Displaying signon devices with a specific $I—Sample user dialogue

```
Select DEVICE NAME: SYS._TNA
```
The ^%ZIS global listing in Figure 15-17 shows the cross-references for a device with a $I value of 99 and an internal entry number (IEN) of 251. It is a SIGN-ON/SYSTEM DEVICE (#1.95) and has a VOLUME SET(CPU) (#1.9) value of AAA.

Figure 15-17. Global listing for device cross-references—$I value = 99 and IEN = 251

|^%ZIS(1,"G","SYS.AAA.99",251) = ""
^%ZIS(1,"CPU","AAA.99",251) = ""
^%ZIS(1,"C","99",251) = ""

If this device is a virtual terminal with a $I of _TNA and established as a SIGN-ON/SYSTEM DEVICE (#1.95) but not given a VOLUME SET(CPU) (#1.9) value, the cross-reference structure would be as follows:

Figure 15-18. Global listing for virtual terminal device cross-references—$I value = _TNA and IEN = 251

|^%ZIS(1,"G","SYS.._TNA",251) = ""
^%ZIS(1,"CPU","._TNA",251) = ""
^%ZIS(1,"C","_TNA",251) = ""
16. Host Files

16.1 Host Files: User Interface

Host File Server (HFS) devices allow you to send output to a file maintained by your computer's operating system, rather than to a printer. You can send your output to an HFS device, if such a device type has been established on the system. Depending upon how IRM defines the HFS device, you may be prompted for a host file name and for an input/output operation:

Figure 16-1. Choosing a Host File Server (HFS) device—Sample user dialogue

DEVICE: HFS <Enter> DISK FILE
HOST FILE NAME: TMP.TMP/// <Enter> INPUT/OUTPUT OPERATION: ?
Enter one of the following host file input/output operation:
R = READMELY
N = NEWVERSION
RW = READ/WRITE

Not all input/output modes are available on all systems. The possible modes for input/output operation work as follows:

Table 16-1. HFS input/output modes of operation

<table>
<thead>
<tr>
<th>Input/Output Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPEND</td>
<td>Data from a WRITE operation will be appended to the file.</td>
</tr>
<tr>
<td>MIXED</td>
<td>Both READs and WRITEs are allowed for the specified file.</td>
</tr>
<tr>
<td>NEWVERSION</td>
<td>A new file will be created with a higher version number; this file can be used for WRITEs only.</td>
</tr>
<tr>
<td>READ</td>
<td>READs are allowed from the specified file; WRITEs are not allowed.</td>
</tr>
<tr>
<td>READONLY</td>
<td>READs are allowed from the specified file; WRITEs are not allowed.</td>
</tr>
<tr>
<td>READ/WRITE</td>
<td>Both READs and WRITEs are allowed for the specified file; if a WRITE operation is performed, output is appended to the file.</td>
</tr>
<tr>
<td>WRITE</td>
<td>WRITEs are allowed; output can be sent to the specified file.</td>
</tr>
</tbody>
</table>
16.2 Host Files: System Management

To provide access to host files through the Device Handler, set up device entries of type HFS.

There are three fields in an HFS device entry that act as flags for what a user must enter when they use an HFS device. The fields are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASK PARAMETERS (#5)</td>
<td>If this field is set to YES, the user must enter the correct M open parameters to open the device. This field should be set to NO if the device is accessible to non-IRM users. If it is set to YES, the default value is the current value of the OPEN PARAMETERS field (#19).</td>
</tr>
<tr>
<td>ASK HOST FILE (#5.1)</td>
<td>When this field is set to YES, the user can choose what file will be opened. If it is set to NO, the default file name built into the device entry is always used. This field should be set to NO if the HFS device is accessible to non-IRM users. Host files can proliferate if too many users are able to create many files. Also, an HFS device opens up access to the host operating system and the potential for overwriting vital files.</td>
</tr>
<tr>
<td>ASK HFS I/O OPERATION (#5.2)</td>
<td>If this field is set to YES, the user can choose in what mode the file should be opened (e.g., READ or WRITE). If it is set to NO, files are opened in WRITE mode. This should be set to NO if the device is accessible to non-IRM users, assuming that all such users would only need to WRITE host files.</td>
</tr>
</tbody>
</table>

16.2.1 Host File Server Device Edit Option

Figure 16-2. Host File Server Device Edit option

The Host File Server Device Edit option [XUDEVEDITHFS] lets you to edit Host File Server device attributes using a ScreenMan form.
16.2.2 Caché and GT.M HFS Device Setup

Caché and GT.M require the name of the host file to be part of the device $I and not part of the parameter list.

Table 16-3. HFS I/O operation modes for Caché and GT.M

<table>
<thead>
<tr>
<th>I/O Operation Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEWVERSION</td>
<td>A new file will be created (on VMS with a higher version number); this file can be used for WRITEs only.</td>
</tr>
<tr>
<td>READONLY</td>
<td>READs are allowed from the specified file; WRITEs are not allowed.</td>
</tr>
<tr>
<td>READ/WRITE</td>
<td>Both READs and WRITEs are allowed for the specified file; if a WRITE operation is performed, output is appended to the file.</td>
</tr>
</tbody>
</table>

Figure 16-3. Host File Server device for Caché and GT.M—Sample settings

Name: HFS
$I: TMP.TMP
Type: HFS
Ask Parameters: NO
Ask Host File: NO
Ask HFS I/O Operation: NO
Open Parameters: ("NWS")
17. Spooling

17.1 Spooling: User Interface

Spooling privileges can be granted by IRM to users who prepare and manage reports. By sending your output to the spooler, rather than to a printer, you can benefit in several ways. Since spooling saves the output online in a holding area, you can easily print multiple copies of the report at a later time. Spooling is also a good way to store the results of a time-consuming calculation (e.g., a complex VA FileMan report). By queuing to the spooler, a report involving intensive processing can be done at night or off hours when the system is relatively free. Output can then be printed during the day when the printer can be attended. Finally, when using the spooler, report processing can run to completion without printer problems interfering.

17.1.1 Sending Output to the Spooler

If you have been given the authority to spool, you can send output to the spooler by responding to the "DEVICE:" prompt with the name of the spool device. Devices used for spooling are commonly named SPOOL or SPOOLER.

If you do not have spooling privileges and you try to use the spool device, the spooler issues a message that authority has not been granted, as shown below:

Figure 17-1. Unable to send output to a spool device—Sample message

<table>
<thead>
<tr>
<th>DEVICE: SPOOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>You aren't an authorized SPOOLER user.</td>
</tr>
</tbody>
</table>

To send output to the spooler with a customized right margin of 96 and page length of 66, you can use the following syntax:

Figure 17-2. Specifying spooled output margin and length

| DEVICE: SPOOL: 96; 66 |
Spooling

After requesting the spool device, you are usually prompted for a spool document name, as shown below (Figure 17-3). The prompt is not issued, however, if the spool device has been set up to generate the spool document name itself.

![Figure 17-3. Spool document name prompt](image)

DEVICE: SPOOL
Select SPOOL DOCUMENT NAME:

To skip the "Select SPOOL DOCUMENT NAME:" prompt, you can specify the spool document name at the "DEVICE:" prompt by entering the name in the second semicolon piece. A name entered here is not used if the spooler is set up to generate names itself, however. Because of the format used, the Device Handler knows that a spool document name, rather than a device subtype, is being specified. Subtypes begin with one or two letters followed by a hyphen (e.g., P-DEC), while spool document names cannot (see Section #14.3.1).

![Figure 17-4. Specifying the spool device and document name](image)

DEVICE: SPOOL;MYDOC
DEVICE: SPOOL;P-OTHER80;MYDOC

If the computing environment is composed of several networked processors, you may need to specify where spooling should take place. The spooler on the current CPU should be chosen unless the output is queued.

![Figure 17-5. Spooling output to a spool device on the same CPU](image)

DEVICE: SPOOL
1 SPOOL AAA
2 SPOOL BBB
Choose 1-2>

If the output is queued, you can choose a spooler on another CPU and a time to schedule the job to run.

![Figure 17-6. Queuing output to a spool device](image)

DEVICE: Q
DEVICE: SPOOL BBB
17.1.2 Retrieving Spooled Documents

After a spool document has been created, you can retrieve the output by using options on the Spooler Menu. This menu is distributed as part of Kernel's Common menu, a menu available to all users. Specifically, the Spooler Menu is in your User's Toolbox menu.

To quickly reach the Toolbox, or any other option on the Common menu, you can enter a quotation mark plus the menu text or synonym, as shown below:

17.1.2.1 List Spool Documents Option

The List Spool Documents option [XU-SPL-LIST] lists any documents that you have created. Other users cannot read or print these documents unless you have authorized them to do so with the Allow other users access to spool documents option [XU-SPL-ALLOW], also on the Spooler menu.
17.1.2.2 **Delete A Spool Document option**

Use the Delete A Spool Document option [XU-SPL-DELETE] to delete spool documents. Since there is a limit on the amount of spool space that any one user can consume, you may need to delete old spool documents to free up space for new ones. If you attempt to create a new document when the space limits have been exceeded, the spooler issues a message about the need to delete some documents.

Old documents are deleted automatically, on a schedule as determined by IRM. IRM sets the "life span" of a spool document via the MAX SPOOL DOCUMENT LIFE-SPAN field (#31.3) in the KERNEL SYSTEM PARAMETERS File (#8989.3). IRM should inform you of the life span of spooled documents so that you are not surprised when old documents are purged.

17.1.3 **Browsing a Spool Document**

17.1.3.1 **Browse a Spool Document Option**

With the Browse a Spool Document option [XU-SPL-BROWSE], you can view spool documents with VA FileMan's Browser. The Browser allows you to view spool documents on your terminal screen, letting you scroll backward and forward through the report, and also letting you perform simple searches within the report.

REF: For more information on using the Browser, see the *VA FileMan Getting Started Manual*.

17.1.4 **Printing Spool Documents**

17.1.4.1 **Print A Spool Document Option**

Use the Print A Spool Document option [XU-SPL-PRINT] to print spool documents. Before selecting an output device, you are prompted for the number of copies to print. If you have been granted the ability to print to multiple devices, you can send your output to several devices for simultaneous printing. If this privilege has been granted to you, the device prompt is displayed again after you choose the first printer. Entering a **NULL** response to the second device prompt tells the spooler not to use any more additional printers.

To save users the time and trouble of despooing their documents, IRM can set up a spool device for auto-despooling. If you invoke such a spool device, the spool document is sent to one or more printers when the spooling process has completed. After automatic printing, the spool document remains available for reprinting as necessary (it is not automatically deleted upon despooing).
17.1.5 Making Spool Documents into Mail Messages

17.1.5.1 Make spool document into a mail message Option

If you have been granted the ability to make spool documents into mail messages, the Make spool document into a mail message option [XU-SPL-MAIL] on the Spooler Menu will be available. You can use it to make documents into regular mail messages that can then be edited, copied, or forwarded just like other VistA MailMan messages. After the text has been moved into a mail message, the spool document is deleted. The deletion is to allow space for new spool documents.

If you plan to make a document into a message, you should do the original output to the spool device with an appropriate margin and page length for a MailMan message. Since MailMan breaks incoming text lines at about the 75th character, a right margin of 75 may be desirable. Indicating that page breaks should not be inserted during the spooling process may also be desirable. Otherwise, the VA FileMan window command [TOP] is inserted into the text at the beginning of each page. While this automatic formatting is an advantage when printing spool documents, it is a disadvantage when creating a mail message. Page breaks will not be inserted when indicating a page length of 99999 lines, or a number greater than the document's total. Therefore, when you know your spool document will end up as a MailMan message, a suitable margin and page length request might be:

Figure 17-9. Formatting/Sending a document to a spool device to print as a MailMan message—Sample user dialogue

DEVICE: SPOOL;75;99999

To turn the spool document into a MailMan message, once your spool document completes, go to the Spooler Menu and select the appropriate option, as illustrated below:

Figure 17-10. Make spool document into a mail message option

Select Primary Menu Option: ^Spooler Menu
Select Spooler Menu Option: Make spool document into a mail message

If the number of lines in the document exceeds 500, you are asked whether the transfer process should be queued. This prompt is provided for your convenience since queuing of a time-consuming process is usually preferred. After using the option, you can find your messages by reviewing recently delivered mail in your MailMan IN basket.
17.2 Spooling: System Management

17.2.1 Spool Document Storage

Spool document identification is stored in the SPOOL DOCUMENT file (#3.51) in the ^XMB global. This file is for internal use by Kernel's spooler and should not be directly manipulated by IRM. It holds identifying information, such as the name of the spool document and the line count totals. The document's text is stored in the SPOOL DATA file (#3.519) in the ^XMBS global. If the spool document is made into a mail message, the text is moved into the MESSAGE file (#3.9), the ^XMB global, and the corresponding entry in the SPOOL DOCUMENT file (#3.51) is deleted.

When initially creating a spooled document, output is sent to the operating system's spooling area (as defined in the spool device). Kernel's spooler moves the output into the ^XMBS global when the operating system's spooling process is complete. The status of the document (a field in the SPOOL DOCUMENT file [#3.51]) is then changed from Active to Ready and the document can be accessed by the user. Thus, except during spooling, the operating system's spool area should be empty.

17.2.2 Overflowing Spool Document Storage

When the output is moved from the operating system's spool area into the ^XMBS global, the lines are counted. If during the count the user's maximum line limit is reached (as defined in the MAX SPOOL LINES PER USER field [#31.1] in the KERNEL SYSTEM PARAMETERS file [#8989.3]), the transfer process is halted and a notification message is appended to the transferred text. The entry in the SPOOL DOCUMENT file (#3.51) is also marked as incomplete. Thus, the ^XMBS global is protected from growth expansion that could overflow the disk storage area.

The Kernel spooler cannot, however, count the lines of output as they are sent to the operating system's spool area. If the user's line limit is not exceeded before initiating the report, Kernel permits sending of an unlimited amount of output to the operating system's spooler. IRM should consider this when granting spooling privileges. Users who are allowed to spool should be trained accordingly.

Users need to anticipate the results of a process they send to the spooler. If they are not sure what to expect, they should be instructed to test the process by sending it directly to an output device. If unexpected results should occur (e.g., an endless loop or meaningless sort), they can interrupt and cancel the process. Users should also be advised about appropriate use of processing time. Methods of efficient VA FileMan searching and sorting should be used when invoking the spooler (just as when printing directly). For example, as described in the VA FileMan documentation, the first sort-by field should be a cross-referenced field when possible and search criteria should be specified with the most likely conditions first.
17.2.3 Granting Spooling Privileges

Options on the Spool Management menu can be used to grant spooling privileges to users.

Figure 17-11. Edit User's Spooler Access option

The following spooler-related fields are user-specific and are stored in the NEW PERSON file (#200):

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOWED TO USE SPOOLER (#41)</td>
<td>If set to YES it gives the user the ability to invoke the spooler at the device prompt.</td>
</tr>
<tr>
<td>MULTI-DEVICE DESPOOLING (#41.1)</td>
<td>If set to YES it enable the user to despool a spooled document to more than one device simultaneously.</td>
</tr>
<tr>
<td>CAN MAKE INTO A MAIL MESSAGE (#41.2)</td>
<td>If set to YES it permits the conversion of a spool document into a MailMan mail message. The user will be able to use all MailMan functions, such as copying and forwarding. As a mail message, the document can no longer be manipulated with the spooler since its flag in the SPOOL DOCUMENT file (#3.51) has been deleted.</td>
</tr>
</tbody>
</table>

As mentioned earlier, the user-oriented spooler options are distributed as part of the Common menu, a menu available to all users. If IRM has chosen to lock the Spooler Menu or removed it from the Common menu, access to the options will need to be re-established for users who are allowed to spool via the Edit User's Spooler Access option [XU-SPL-USER], as shown below:

Figure 17-12. Edit User's Spooler Access—Sample user dialogue

As mentioned earlier, the user-oriented spooler options are distributed as part of the Common menu, a menu available to all users. If IRM has chosen to lock the Spooler Menu or removed it from the Common menu, access to the options will need to be re-established for users who are allowed to spool via the Edit User's Spooler Access option [XU-SPL-USER], as shown below:

Figure 17-12. Edit User's Spooler Access—Sample user dialogue

Select Spool Management Option: **Edit User's Spooler Access**

- Select NEW PERSON NAME: XUUSER,SIX
- ALLOWED TO USE SPOOLER: YES/\ <Enter>
- MULTI-DEVICE DESPOOLING: YES/\ <Enter>
- CAN MAKE INTO A MAIL MESSAGE: YES/\ <Enter>

17.2.4 Managing Spool Documents

The remaining options on the Spool Management menu [XU-SPL-MGR] are also found on the user-oriented Spooler Menu. They are provided on the Spool Management menu simply for convenience to
IRM to access any spool document on the system. Users must hold the XUMGR security key in order to access all spool documents. Together, these options along with the XUMGR security key permit IRM to view, print, or delete anyone's spooled documents.

Figure 17-13. Spool Management menu options

<table>
<thead>
<tr>
<th>SYSTEMS MANAGER MENU ... [EVE]</th>
<th>Spool Management ... [XU-SPL-MGR]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print A Spool Document [XU-SPL-PRINT]</td>
<td></td>
</tr>
</tbody>
</table>

17.2.5 Spooler Site Parameters Edit Option

Figure 17-14. Spooler Site Parameters option

<table>
<thead>
<tr>
<th>SYSTEMS MANAGER MENU ... [EVE]</th>
<th>Spool Management ... [XU-SPL-MGR]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spooler Site Parameters Edit [XU-SPL-SITE]</td>
<td></td>
</tr>
</tbody>
</table>

The Spool Management menu [XU-SPL-MGR] also has the Spooler Site Parameters Edit option [XU-SPL-SITE] for setting the spooler site parameters (system-wide defaults for the spooler). The initial settings are defined when installing Kernel but can be edited afterwards.

The spooler site parameters control the total number of documents a user can create and the total number of lines for all documents. When the limits are reached, the user cannot create new spooled documents.

The effects of the three spooler site parameter fields are as follows:

Table 17-2. Spooler site parameter fields in the KERNEL SYSTEM PARAMETERS file (#8989.3)

<table>
<thead>
<tr>
<th>Spooler Site Parameter Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX SPOOL LINES PER USER (#31.1)</td>
<td>This field holds the MAX number of lines of spooled output a user is allowed. If the user has more than this number, then they will not be permitted to spool any more until some of their spool documents are deleted. This only controls allowing the creation of new spool documents and does not terminate a job that is running that has gone over the limit. Recommended value 9999.</td>
</tr>
<tr>
<td>MAX SPOOL DOCUMENTS PER USER (#31.2)</td>
<td>This field limits the number of spool documents that any user can have on the system. Recommended value 10-100.</td>
</tr>
<tr>
<td>MAX SPOOL DOCUMENT LIFE-SPAN (#31.3)</td>
<td>This field controls the number of days that a spooled document will be allowed to remain in the spooler before deletion by the XU-SPL-PURGE option that needs to be setup to run in the background.</td>
</tr>
</tbody>
</table>
17.2.6 Purge old Spool documents Option

Figure 17-15. Purge old spool documents option

<table>
<thead>
<tr>
<th>PARENT OF QUEUABLE OPTIONS</th>
<th>[ZTMQUEUABLE OPTIONS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purge old spool documents</td>
<td>[XU-SPL-PURGE]</td>
</tr>
</tbody>
</table>

A spool document is automatically deleted when its life span (in days) is reached. The purge is carried out by the Purge old spool documents option [XU-SPL-PURGE]. This option is listed on the PARENT OF QUEUABLE OPTIONS menu [ZTMQUEUABLE OPTIONS] along with others that should not be invoked interactively but should be scheduled to run through TaskMan.

17.2.7 Defining Spool Device Types

The DEVICE file (#3.5) entries for spooler device types make use of information about the underlying operating system’s spooling mechanism. Examples for several operating systems are provided in the topics that follow.

17.2.7.1 Caché and GT.M

Caché and GT.M use an OpenVMS directory for spooling. As indicated in the VistA Cookbook for VAX sites, the directory should be established with full privileges for System, Owner, Group, and World. The directory specifications are used as the $I value.

Figure 17-16. Spool Device for Caché and GT.M

| Name: SPOOL |
|---------|------------|
| $I: | VA1$:[SPOOLER] |
| Type: SPOOL |
| Subtype: P-OTHER |

17.2.8 Spool Device Edit Option

The Spool Device Edit option [XUDEVEDITSPL] lets you edit spool device attributes using a ScreenMan form.

Figure 17-17. Spool Device Edit option

<table>
<thead>
<tr>
<th>Device Management...</th>
<th>[XUTIO]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit Devices by Specific Types...</td>
<td>[XUDEVEDIT]</td>
</tr>
<tr>
<td>Spool Device Edit</td>
<td>[XUDEVEDITSPL]</td>
</tr>
</tbody>
</table>
NOTE: The type of data entered in the $I (#1) and OPEN PARAMETERS (#19) fields depends on the type of M system you are using and the mode of access.

REF: For further details, see your M system manuals.

REF: Examples are provided in the "Defining Spool Device Types" topic.

17.2.9 Auto-despooling

For convenience, spool devices can be defined to ensure that despooling takes place automatically, without user interaction. If the AUTO DESPOOL (#31) field in the DEVICE file (#3.5) is set to YES, one copy of the spooled output is sent to each device named in the DESPOOL DEVICES field (#32, Multiple). Having the output automatically despooled saves users the time and trouble of logging on and printing a spool document that may have been created the previous evening. Documents are not deleted upon despooling; they remain available to the user for subsequent printing.

Figure 17-18. Device Edit option—Sample user dialogue

<table>
<thead>
<tr>
<th>Select Device Handler Option: Device Edit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select DEVICE NAME: SPOOL</td>
</tr>
<tr>
<td>NAME: SPOOL// ^AUTO DESPOOL</td>
</tr>
<tr>
<td>AUTO DESPOOL: 1 <Enter> YES</td>
</tr>
<tr>
<td>Select DESPOOL DEVICES:</td>
</tr>
</tbody>
</table>

17.2.10 Generating Spool Document Names

Spool devices can be set up to automatically generate the name that will identify the spool document. If the GENERATE SPL DOC NAME field (#33) in the DEVICE file (#3.5) is set to YES, users of that device will not be prompted to enter the spool document name. Also, if the flag is set, any user- or developer-defined name [in IO("DOC")]) is ignored. The generated name consists of the first 15 characters of the spool device's name, followed by an underscore ("_"), and followed by the internal entry number (IEN) of the spool document in the SPOOL DOCUMENT file (#3.51).

Figure 17-19. Generating spool document name—Sample user dialogue

| NAME: SPOOL// ^GENERATE SPL DOC NAME |
| GENERATE SPL DOC NAME: YES |
18. Special Devices

This chapter discusses the following special devices and device issues:

- Browser Device
- Form Feeds
- Hunt Groups
- Magtape (MT)
- Network Channel Devices
- Resources
- Sequential Disk Processors (Obsolete)
- Slaved Printers

18.1 Browser Device

18.1.1 User Interface

VA FileMan's Browser allows you to view reports on your terminal screen, letting you scroll backward and forward through the report, and also letting you perform simple searches within the report.

If the Browser has been installed at your site and set up as a device, you can use the Browser to view any report that asks you for an output device.

To send a report to the BROWSER device, at any device prompt, enter BROWSER as the device. You may not want to send huge reports to the BROWSER, however, since the report must complete before you can view its output in the Browser.

REF: For information on using the Browser and on Browser commands, see the VA FileMan Getting Started Manual.

Figure 18-1. Print File Entries option—Sample user dialogue when sending a report to the Browser device

Select VA FileMan Option: Print File Entries

OUTPUT FROM WHAT FILE: NEW PERSON// DOMAIN <Enter> (314 entries)
SORT BY: NAME// <Enter>
START WITH NAME: FIRST// <Enter>
FIRST PRINT FIELD: NAME
THEN PRINT FIELD: <Enter>
HEADING (S/C): DOMAIN LIST// <Enter>
DEVICE: BROWSER <Enter> BROWSER
BROWSER TITLE (optional): VA FileMan Browser// <Enter>

...one moment...
Figure 18-2. Print File Entries option—Sample Domain List report, as displayed in the Browser device

<table>
<thead>
<tr>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBANY.MED.VA.GOV</td>
</tr>
<tr>
<td>ALBUQUERQUE.MED.VA.GOV</td>
</tr>
<tr>
<td>ALEXANDRIA.MED.VA.GOV</td>
</tr>
<tr>
<td>ALTOONA.MED.VA.GOV</td>
</tr>
<tr>
<td>ANCHORAGE.MED.VA.GOV</td>
</tr>
<tr>
<td>ANN-ARBOR.MED.VA.GOV</td>
</tr>
<tr>
<td>ASHEVILLE.MED.VA.GOV</td>
</tr>
<tr>
<td>ATLANTA.MED.VA.GOV</td>
</tr>
<tr>
<td>AUGUSTA.MED.VA.GOV</td>
</tr>
<tr>
<td>B43.FO-OAKLAND.MED.VA.GOV</td>
</tr>
<tr>
<td>BALTIMORE.MED.VA.GOV</td>
</tr>
<tr>
<td>BATAVIA.MED.VA.GOV</td>
</tr>
<tr>
<td>BATH.MED.VA.GOV</td>
</tr>
<tr>
<td>BATTLE-CREEK.MED.VA.GOV</td>
</tr>
<tr>
<td>BAY-PINES.MED.VA.GOV</td>
</tr>
<tr>
<td>BDC.MED.VA.GOV</td>
</tr>
<tr>
<td>BECKLEY.MED.VA.GOV</td>
</tr>
</tbody>
</table>

JUL 28,2009 12:44 PAGE 1
18.1.2 System Management

You can set up VA FileMan's Browser as a device to which users can send their output.

When a user sends output to a Browser device, the Browser device performs the following steps:

1. Output is sent to a host file.
2. When the output completes, the host file is closed.
3. The contents of the host file are read back into a scratch global.
4. The host file is deleted.
5. The Browser is called, which displays the data in the global to the user, through the Browser interface.
6. When the user exits the Browser, the scratch global is deleted.

This provides a quick way to generate a report and view the report through the scrollable Browser, potentially saving paper and wear and tear on printers.

To support the Browser device, you need to set up a special terminal type (P-BROWSER) and a special device type (BROWSER).

REF: For sample entries of the special Browser terminal type and device entries for the Caché and GT.M operating systems, see Figure 18-3 and Figure 18-4.

The Browser device tests the current terminal to see whether it supports:

- A scrolling region.
- Reverse indexing.

If the terminal does not support these features, the Browser device issues a message saying that it is not selectable from the current terminal. Also, in order for the check ($$TEST^DDBRT) to work properly, the user must already be in the Kernel menu system or must have set up developer variables through the ^XUP entry point. Otherwise, the test will always fail.
18.1.2.1 Storing Host Files in a Specific Directory

By default, the temporary host files created by the Browser device are stored in the current default directory. You can optionally specify a path to a specific directory to store the temporary host files. Make sure the directory you specify exists on all nodes/CPUs where users can sign on. On DOS systems, do not specify the root directory, since there is a limit on the number of files a DOS root directory can hold. Finally, make sure you change both the OPEN PARAMETERS (#19) and POST-CLOSE EXECUTE (#19.8) fields in the Browser DEVICE file (#3.5) entry to specify the directory (replace DD with, for example, D:\BROW\DD).

Figure 18-3. Caché and GT.M Browser Device—TERMINAL TYPE file (#3.2) entry

<table>
<thead>
<tr>
<th>NAME: P-BROWSER</th>
<th>SELECTABLE AT SIGN-ON: NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIGHT MARGIN: 80</td>
<td>FORM FEED: #</td>
</tr>
<tr>
<td>PAGE LENGTH: 99999</td>
<td>BACK SPACE: $C(8)</td>
</tr>
<tr>
<td>OPEN EXECUTE: D OPEN^DDBRZIS</td>
<td></td>
</tr>
<tr>
<td>CLOSE EXECUTE: D CLOSE^DDBRZIS</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Browser Device</td>
<td></td>
</tr>
</tbody>
</table>

Figure 18-4. Caché and GT.M Browser Device—DEVICE file (#3.5) Entry

<table>
<thead>
<tr>
<th>NAME: BROWSER</th>
<th>$I: DDBR.TXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASK DEVICE: YES</td>
<td>ASK PARAMETERS: NO</td>
</tr>
<tr>
<td>SIGN-ON/SYSTEM DEVICE: NO</td>
<td>QUEUING: NOT ALLOWED</td>
</tr>
<tr>
<td>LOCATION OF TERMINAL: HFS/CRT</td>
<td>ASK HOST FILE: NO</td>
</tr>
<tr>
<td>ASK HFS I/O OPERATION: NO</td>
<td>MARGIN WIDTH: 80</td>
</tr>
<tr>
<td>FORM FEED: #</td>
<td>PAGE LENGTH: 99999</td>
</tr>
<tr>
<td>BACK SPACE: $C(8)</td>
<td>OPEN PARAMETERS: NEW:DELETE</td>
</tr>
<tr>
<td>POST-CLOSE EXECUTE: D POST^DDBRZIS</td>
<td></td>
</tr>
<tr>
<td>SUBTYPE: P-BROWSER</td>
<td>TYPE: HOST FILE SERVER</td>
</tr>
<tr>
<td>PRE-OPEN EXECUTE: I "$$TEST^DDBRT S %ISQUIT=1 W $C(7),!,"Browser not selectable from current terminal.",!</td>
<td></td>
</tr>
</tbody>
</table>
18.2 Form Feeds

18.2.1 User Interface

Most users would prefer to see their printouts without any extra blank pages before or after the content. Most prefer to see their reports printed on a fresh page instead of starting in the middle of the previous printout. The printing of labels should also be accomplished without unnecessary form feeds. If a printer is generating extra pages, you should contact IRM to remedy the problem.

18.2.2 System Management

If a particular device does not need a form feed between reports, IRM should set the SUPPRESS FORM FEED AT CLOSE field (#11.2) to YES in the device's DEVICE file (#3.5) entry. Label printers, for example, should have this flag set. This procedure prevents the Device Handler from issuing a form feed:

![Figure 18-5. Device Edit option—Sample user dialogue](image)

The Device Handler also checks the TERMINAL TYPE file (#3.2) to see if form feeds have been suppressed for that terminal type. It checks for the existence of the IONOFF variable. Thus, for certain terminal types (e.g., laser printers), IRM can set this "no form feed" variable in the corresponding terminal type's CLOSE EXECUTE field (#7).

NOTE: The IONOFF variable can also be set by the calling application to suppress form feeds.

![Figure 18-6. Terminal Type Edit option—Sample user dialogue](image)
18.3 Hunt Groups

18.3.1 User Interface

Hunt Groups are a set of printers that IRM can set up to share print workload. If one printer in the hunt group is busy, output is directed to another one that is free. This results in less waiting time for printouts, and helps prevent any particularly long print job on one printer from holding up other output directed to the same printer. IRM defines hunt group devices and would typically include similar printers located near each other. Users can send output to the hunt group device or to any member of the hunt group with the same effect.

Figure 18-7. Hunt groups—Sample hunt group device name

```
DEVICE: PRTGROUP
```

The Device Handler indicates which hunt group device was selected so the user knows where to look for the output. If all members of the hunt group are busy, Device Handler displays a message with this information.

18.3.2 System Management

Hunt group devices can be created and managed with options on the Device Management menu. The hunt group device type (HG type) makes use of a multiple field that holds the names of printers and other devices that can be used interchangeably.

Figure 18-8. Hunt Group Manager menu options

```
Select Systems Manager Menu Option: Device Management
Select Device Handler Option: Hunt Group Manager
Select Hunt Group Manager Option: ?
   Edit Hunt Groups [XUHGEDIT]
   Delete Hunt Groups [XUHGDEL]
   List Hunt Groups [XUHGPRT]
   Print Hunt Groups and Associated Devices [XUHGDEVPRT]
```

If the user attempts to select a hunt group device (HG type), the Device Handler uses the B cross-reference of the multiple field to find the device with the lowest internal entry number (IEN) in the DEVICE file (#3.5). If this device cannot be opened, the Device Handler finds the hunt group member with the next higher internal number and tries again. The Device Handler discontinues the search after all hunt group members have been tried.

If the user attempts to select a printer or other device that happens to be a member of a hunt group, the Device Handler attempts to open the device. If unsuccessful, the Device Handler identifies the name of
the associated hunt group device from the AHG whole-file cross-reference and proceeds as described above.

18.3.2.1 Hunt Group Device on Another CPU

If the user sends output to a device that is a member of a hunt group and is located on another CPU, the hunt group search will not succeed since the Device Handler only attempts to open devices that are on the local CPU. If the user has queued output to the device, however, TaskMan would have the Device Handler begin searching for a device on the local CPU. If the Device Handler was unsuccessful, TaskMan would send the job to the other CPU's task global to be scheduled for processing and the effort would eventually succeed.

18.3.2.2 Queuing to a Hunt Group Device

If the user had queued output to a hunt group member on the local CPU, TaskMan again calls the Device Handler to search the local CPU and, if the Device Handler is unable to open a device, it returns the job to TaskMan for processing on the local CPU.

NOTE: The Device Handler returns POP with a non-zero value, IO=",", and IO(CPU)=destination CPU. At this point, the job would be placed into the IO queue and thereafter be processed as if it was not a hunt group member.

18.3.2.3 Using a Hunt Group Device Without Using the Hunt Group

Using a device as if it was not a member of a hunt group is possible with the use of the "D" flag in the Device Handler input variable ^%ZIS.

REF: For more information about ^%ZIS, see the documentation for the ^%ZIS() API in the "Device Handler: Developer Tools" chapter in the *Kernel Developer's Guide*. Kernel and Kernel Toolkit APIs are also available in HTML format at the following VA Intranet Website:

18.4 Magtape

18.4.1 System Management

The Edit Devices by Specific Types option [XUDEVEDIT] lets you edit specific types of devices using ScreenMan.

Values entered in a Magtape (MT) device for the following fields may not be relevant to a given application:

Table 18-1. Fields in the DEVICE (#3.5) and TERMINAL TYPE (#3.2) files that may not be relevant for certain devices

<table>
<thead>
<tr>
<th>File</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICE (#3.5)</td>
<td>SUBTYPE (#3)</td>
<td>Use this field to select a default terminal type for the device. This field points to the TERMINAL TYPE file (#3.2) to retrieve a standard set of characteristics that have been defined for vendor devices (e.g., Laser printers or VT320 CRTs).</td>
</tr>
<tr>
<td></td>
<td>MARGIN WIDTH (#9)</td>
<td>Data in this field overrides the RIGHT MARGIN field value from the TERMINAL TYPE file (#3.2). Leave this field blank unless you are sure that you need to have a different RIGHT MARGIN than what is in the TERMINAL TYPE file (#3.2).</td>
</tr>
<tr>
<td>TERMINAL TYPE (#3.2)</td>
<td>FORM FEED (#2)</td>
<td>The argument of an M WRITE statement that will set the top-of-form for the use of tractor-feed paper on a printer, or will clear the screen of a video display terminal.</td>
</tr>
<tr>
<td></td>
<td>PAGE LENGTH (#3)</td>
<td>This field is the number of usable lines on the output device.</td>
</tr>
<tr>
<td></td>
<td>BACK SPACE (#4)</td>
<td>The argument of an M WRITE statement that will cause the cursor to back space.</td>
</tr>
</tbody>
</table>

The data values entered in these fields may be arbitrary for Magtape devices. However, if the application plans to copy the output to a printer, the characteristics may need to be similar to that of the printer.
If an application intends to use these fields, be cautious about the type of data that is entered. When sent to the tape unit, some control codes will initiate tape movement or cause tape markers to be written to the mounted tape.

Data entered in the $I and OPEN PARAMETERS fields depends on the type of M system you are running, the type of tape unit, and the desired format.

REF: For examples of the type of data required in these fields, see the "Device Handler: System Management" chapter in this manual.

REF: For further details on Magtape devices, see your specific M implementation manuals.
18.5 Network Channel Devices

18.5.1 System Management

Network channel devices are typically high speed channel devices (e.g., TCP/IP). Currently, this network channel device support exists under the Caché and GT.M operating system. In most cases, these devices are used for specialized purposes rather than for general output. For example, network mail could use such devices to move enormous amounts of email through high speed communication channels.

The use of network channel devices requires at least two processes on each end of the communication channel, a server and a client, which can then exchange information:

- **Server Process**—One process *must* be available at all times. It can be actively running or triggered to run at a given moment. This process is commonly known as a server. The server waits until another process makes a request to exchange information.
- **Client Process**—The other process is known as the client.

The two processes can be hosted by two CPUs using network protocols.

18.5.1.1 Network Channel Device Edit

The Network Channel Device Edit option [XUDEVEDITCHAN] allows you to edit network channel device attributes.

When editing Network Channel devices, the contents of the fields listed in Table 18-1 are not necessarily relevant for using network Channel devices. However, these fields are provided in case the application calling the Device Handler is not able to distinguish between a printer and a Network Channel device when sending output.

The timeout on the M OPEN command may not be applicable with Network Channel devices. Therefore, it may be necessary to answer **NO** to the USE TIMEOUT ON OPENS field (#2009.5) in the DEVICE file (#3.5).

REF: For more information regarding device timeout applicability, see the appropriate Caché manual.

For Network Channel devices that use TCP/IP, data is required for the OPEN PARAMETERS field (#19) in the DEVICE file (#3.5). For the client device setup, this field stores the remote Internet address to which the host connects.
The GLOBAL LOCK field (#36) in the DEVICE file (#3.5) stores a YES/NO Set of Codes. This is important, especially if the application expects that only one client at a given time is able to open the device. If this field is set to YES an M lock on ^%ZIS("lock",IO) will be obtained before the device is opened. It will remain until a call to ^%ZISC to close the device. It can be used with any type of device.
18.6 Resources

18.6.1 System Management

A Resource device is a type of device that can only be used by tasks. They cannot be used for input or output (I/O). As such, they are not available for user selection at the device prompt. The purpose of a resource is to provide a mechanism of limiting the number of concurrent jobs that can run at any one time.

When creating a task, a task can request the resource as an input variable for the ^%ZTLOAD call. The resource itself, as defined in the DEVICE file (#3.5), has a field called RESOURCE SLOTS (#35) that determines how many jobs can simultaneously own it as a resource.

The Device Handler and TaskMan work together to provide resource device functionality. The RESOURCE file (#3.54), stored in the translated ^%ZISL global, regulates processing and is for internal use only. The NAME field (#.01) holds the $I of the resource device. Other fields hold information on jobs currently using the resource, information that is cleared when the resource is closed.

The RESOURCE file (#3.54) supports processing by maintaining a count of the number of available "slots." The ability to open and close resources is accomplished by decrementing and incrementing this count.

18.6.1.1 Limiting Simultaneous Running of a Particular Task

Resources make it possible for you to control the number of a particular kind of non-I/O task that runs at any one time. If you have a particular job and you want no more than three running versions of it at any one time, you can queue the job (through the ^%ZTLOAD interface) to a resource that had a RESOURCE SLOTS (#35) setting of 3.

18.6.1.2 Running Sequences of Tasks

Resources also make it possible to run non-I/O tasks in sequential order. Non-I/O tasks ordinarily can run simultaneously because they do not compete for the ownership of I/O devices. If you instead queue such tasks to the same resource, and the resource has a RESOURCE SLOTS (#35) setting of 1, TaskMan will run the tasks one at a time and in the order queued. In this way, the results of one process can be used by another. This sequential processing might be appropriate, for example, for the processing of physician orders or other nested tasks involving code execution.

An additional enhancement to resource devices, called SYNC FLAGs, allows TaskMan to run the next task waiting for a resource only if the previous task using that resource has completed successfully. You can use SYNC FLAGs to ensure that subsequent jobs run only if previous jobs have completed successfully.
18.6.1.3 Creating Resource Devices

Figure 18-12. Resource Device Edit option

The Resource Device Edit option [XUDEVEDITRES] provides a facility for editing resource devices. Software that uses a resource should include in its installation instructions the way the new resource should be defined in the DEVICE file (#3.5). IRM can then create one or more resource-type (RES) entries.

Figure 18-13. Resource device—Sample output

The installation instructions should indicate the number of resource slots. Sequential processing should use a value of 1. The NAME and $I should probably use the same value and be namespaced according to VistA conventions.
18.7 Sequential Disk Processors (Obsolete)

Though the Sequential Disk Processors (SDP) entry is still found in the DEVICE file (#3.5), it is obsolete and users should now use Host File Server (HFS) devices.

REF: For more information on HFS devices, see Chapter 16,"Host Files," in this manual.

18.8 Slaved Printers

18.8.1 User Interface

If your terminal has an auxiliary printer port with a printer directly attached, you can send output normally destined for the CRT terminal directly to a printer. Output for the terminal is redirected from the host computer through the terminal's auxiliary port to the printer. Such printers are commonly called slaved printers or slaved devices.

If slaved printing is available from your terminal, you can send a printed report to your slaved printer, by entering the device name that corresponds to your slaved printer like this:

![Figure 18-14. Slaved Printer—Sample user dialogue](image)

DEVICE: SLAVELA50

NOTE: Consult your local IRM to find out if slaved printing devices are available.

18.8.2 System Management

There are two modes of slaved printing:

- **Auto Print Mode (a.k.a. Copy Print Mode)—**When Auto Print Mode is toggled on, output is displayed on the terminal as well as printed on the printer. Special escape sequences and control characters, such as those that are normally used to adjust fonts/pitches, are *not* passed to the printer; however, those used for actions like carriage return, line feed, and form feed are passed on to the printer.

- **Printer Controller Mode (a.k.a. Transparent Print Mode)—**When Printer Controller Mode is toggled on, output is only printed on the printer; nothing is displayed on the terminal. All escape sequences and control characters are passed to the printer. This mode is preferable to Auto Print Mode, especially when compressed mode printing is desired.
The following are the escape sequences used to toggle the slaved printing modes for DEC VT220/VT320 terminals:

Table 18-2. Escape sequences used to toggle the slaved printing modes for DEC VT220/VT320 terminals

<table>
<thead>
<tr>
<th>Mode</th>
<th>Escape Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto print mode on.</td>
<td>ESC [?5i</td>
</tr>
<tr>
<td>Auto print mode off.</td>
<td>ESC [?4i</td>
</tr>
<tr>
<td>Printer controller mode on.</td>
<td>ESC [5i</td>
</tr>
<tr>
<td>Printer controller mode off.</td>
<td>ESC [4i</td>
</tr>
</tbody>
</table>

18.8.2.1 Device and Terminal Type File Entries

To use a slaved printer through the Device Handler, two DEVICE file (#3.5) entries along with corresponding TERMINAL TYPE file (#3.2) entries must be made for the following:

- Home Device
- Slaved Printer

One pair of DEVICE/TERMINAL TYPE entries is needed to describe the home (i.e., CRT) terminal attributes including the codes to open and close the printer port. The OPEN PRINTER PORT (#110) and CLOSE PRINTER PORT (#111) fields of the TERMINAL TYPE file (#3.2) can be used to store the appropriate codes.

Another pair of DEVICE/TERMINAL TYPE entries is needed to describe the attributes of the slaved printer including escape codes to adjust fonts/pitches. The OPEN EXECUTE (#6) and CLOSE EXECUTE (#7) fields of the TERMINAL TYPE file (#3.2) can be used to hold such codes. Additionally, the device entry for the slaved printer must have a value of 0 (zero) entered into the $I field. This $I value identifies the DEVICE file (#3.5) entry as one for a slaved device.

The following examples show the setup for a home device, and the setup for slaved printers

Figure 18-15. Home Device example (VT320)—DEVICE file (#3.5) entry

NAME: TELNET DEVICE	$I: TNA
ASK DEVICE: YES	ASK PARAMETERS: NO
VOLUME SET(CPU): KDE	SIGN-ON/SYSTEM DEVICE: YES
LOCATION OF TERMINAL: Network	MARGIN WIDTH: 80
FORM FEED: 27,91,50,74,27,91,72	PAGE LENGTH: 24
BACK SPACE: $C(8)	SUBTYPE: C-VT320
TYPE: VIRTUAL TERMINAL	
TIMED READ (# OF SECONDS): 400	

Figure 18-16. Slaved Printer example (VT320)—DEVICE file (#3.5) entry

NAME: TELNET DEVICE	$I: TNA
ASK DEVICE: YES	ASK PARAMETERS: NO
VOLUME SET(CPU): KDE	SIGN-ON/SYSTEM DEVICE: YES
LOCATION OF TERMINAL: Network	MARGIN WIDTH: 80
FORM FEED: 27,91,50,74,27,91,72	PAGE LENGTH: 24
BACK SPACE: $C(8)	SUBTYPE: C-VT320
TYPE: VIRTUAL TERMINAL	
TIMED READ (# OF SECONDS): 400	
Figure 18-16. Home Device example (VT320)—TERMINAL TYPE file (#3.2) entry

NAME: C-VT320	SELECTABLE AT SIGN-ON: YES
FORM FEED: #,$(27,91,50,74,27,91,72)	RIGHT MARGIN: 80
PAGE LENGTH: 24	BACK SPACE: $(C(8))
DESCRIPTION: Digital Equipment Corporation VT-320 video	
OPEN PRINTER PORT: W *27,",][51"	
CLOSE PRINTER PORT: W *27,",][41"	

Figure 18-17. Slaved Printer example: DEC LA50—DEVICE file (#3.5) entry

| NAME: SLAVELA50 | $I: 0 |
| ASK DEVICE: YES | ASK PARAMETERS: YES |
| SLAVED FROM DEVICE: TRM |
| LOCATION OF TERMINAL: SLAVE DEVICE FOR LA50 |
| MARGIN WIDTH: 132 | FORM FEED: # |
| PAGE LENGTH: 64 | SUBTYPE: P-LA50 |
| TYPE: TERMINAL |

Figure 18-18. Slaved Printer example: DEC LA50—TERMINAL TYPE file (#3.2) entry

NAME: P-LA50	RIGHT MARGIN: 132
FORM FEED: #	PAGE LENGTH: 64
OPEN EXECUTE: W *27,",][4w"	CLOSE EXECUTE: W *27,",][0w"
DESCRIPTION: LA50 132 COL/16.5 CPI	

Figure 18-19. Slaved Printer example: Epson LQ870—DEVICE file (#3.5) entry

| NAME: SLAVELQ870 | $I: 0 |
| ASK DEVICE: YES | ASK PARAMETERS: YES |
| SLAVED FROM DEVICE: TRM |
| LOCATION OF TERMINAL: SLAVE DEVICE FOR LQ870 |
| MARGIN WIDTH: 132 | FORM FEED: # |
| PAGE LENGTH: 64 | SUBTYPE: P-LQ870 |
| TYPE: TERMINAL |

Figure 18-20. Slaved Printer example: Epson LQ870—TERMINAL TYPE file (#3.2) entry

NAME: P-LQ870	RIGHT MARGIN: 132
FORM FEED: #	PAGE LENGTH: 64
OPEN EXECUTE: W *15	CLOSE EXECUTE: W *18
DESCRIPTION: EPSON LQ870 PRINTER--CONDENSED	

18.8.2.2 Use of Slaved Printer: Processing Steps

The Device Handler manages output to slaved printers using the following steps:

1. Execute the OPEN PRINTER PORT (#110) code of the home device's terminal type.
2. Execute the OPEN EXECUTE (#6) code of the slaved printer's terminal type.
3. When the application closes the device, execute the CLOSE EXECUTE (#7) code of the slaved printer's terminal type.

4. Execute the CLOSE PRINTER PORT (#111) code of the home device's terminal type.

18.8.2.3 Queuing to Slaved Printers

If queuing to a slaved device is desired, then the SLAVE FROM DEVICE field of the DEVICE file (#3.5) **must** be used. This field is a pointer to the DEVICE file (#3.5). Data **must** be entered in this field for the entry for the slaved printer. This data should point to the home device entry unless the slaved printer is attached to a terminal on a Terminal Server (i.e., a virtual terminal).

If queuing to a slaved device is being performed from a virtual terminal, then a third device entry **must** be established that fully describes the home device with a type of TRM. This device should be entered into the SLAVE FROM DEVICE field.

NOTE: When queuing to a slaved device from a terminal on a Terminal Server, the user **must** be fully logged off the computer system and logged off the port by the time the queued task is scheduled to run.
IV. TaskMan
TaskMan
19. TaskMan: User Interface

The Kernel TaskMan (TM) software allows you to run tasks (e.g., VA FileMan prints and sorts) in the background and lets you continue working without interruption.

19.1 Creating Tasks

VistA runs in a multiprocessing environment, which means the computer can work on more than one job at a time. Each job the computer works on consumes a part of the computer's resources. Initially, you have only one job, your interactive terminal session, with which to do your work. TaskMan, however, allows you to claim more of the computer's resources by allowing you to schedule additional jobs to run in the background.

19.1.1 Background Jobs

You can queue additional tasks to run through TaskMan. Once started, these additional tasks (called background tasks) can run at the same time as the foreground jobs and without further dialogue with the people who started them. Appropriate use of background tasks can cut your frustration by reducing the amount of time you must wait for the computer to do lengthy, repetitious work that does not need human intervention. Every task queued to run in the background reduces time spent waiting and also uses the computer's resources more efficiently.

19.1.2 Queuing Output

Most users use TaskMan by queuing reports, labels, and other kinds of output. Because output involves no dialogue once it has begun and because it requires you to wait while it prints, it makes an ideal candidate for queuing. You can queue most output when the computer asks you to select a device to which the output should be sent. The series of prompts and responses to queue a job to a device usually looks something like this:

Figure 19-1. Queuing output—Sample user dialogue

After you answer this series of prompts, the output is queued for TaskMan to start at the requested time, and you can continue with other work while TaskMan prints the output. When many tasks need the same device at the same time, TaskMan runs them in order based on the time they were requested.
19.1.3 Other Sources of Tasks

An application can create other kinds of tasks without your interaction. The application might offer to queue other kinds of work like large filing or complex data analysis jobs. Sometimes applications queue tasks without asking. For example, the delivery of MailMan messages is performed by a job running as a task. If that task is not running when someone uses the MailMan options, MailMan automatically uses their foreground job to queue the task without asking them. Although people may knowingly or unknowingly queue these other kinds of tasks, output remains the most common kind of work to queue.

19.2 Working with Tasks

![Figure 19-2. TaskMan User option](image)

System Command Options ... [XUCOMMAND]
User's Toolbox ... "TBOX" [XUSERTOOLS]
TaskMan User [XUTM USER]

TaskMan also allows you to examine or modify your own tasks. You can do this by using the TaskMan User option [XUTM USER], located in the User's Toolbox menu on your Common menu. This option lets you monitor or manipulate one task at a time.
19.2.1 Selecting Tasks

When you choose the TaskMan User option, it first asks you to select a task with which to work. TaskMan displays the "Select TASK:" prompt. If you enter a single question mark ("?"), you get some general help about the option; if you enter two question marks ("??"), you can get a list of every task that you have queued to run. Typically, you would enter two question marks at this prompt so that you can get a listing of your individual tasks, listed by task number. You then choose a task from the list of tasks to work with. Using the TaskMan User option looks like the following:

![Figure 19-3. TaskMan User option—Sample user dialogue](image)

You can select tasks either by task number or list number. In the list of tasks, the list number is at the left hand side of the each task listing, and is followed by the task number for each task (in parentheses). The rest of the information helps identify where the task came from and what it will do.

19.2.2 Tasks in the Task List

You can only select tasks that are still in TaskMan's task list. When a task finishes running, it usually removes itself from the task list. Thus, you should not get a listing of every task you have run in the last year! Tasks that do not clean up their entries usually get cleaned out by TaskMan several days after they
19.2.3 Display Status of Tasks

Once you've selected a task to work with, you can ask to see the status of that task, using the Display status option ("D"). TaskMan uses a task's status to try to explain how soon the task will run and why. The possible normal statuses for a task include:

- Scheduled for <date and time>.
- Being inspected by TaskMan.
- Waiting for a partition.
- Being prepared.
- Currently running.
- Completed <date and time>.

NOTE: Please keep in mind that TaskMan can only "guess" whether a task is currently running.

One of the following messages may show up if the task needs some system resource not currently available:

- Waiting for hunt group(s) <list of hunt groups>.
- Waiting for device <name of device>.
- Waiting for the link to <name of CPU> to be restored.

When you display the status of a task waiting for a device, TaskMan shows you how many tasks are in line for that device ahead of your task. Additional statuses exist for tasks that have encountered some kind of problem. For each situation it lists a different explanation of the problem. For example, if you use the Stop task option to stop a task, its status shows up as "Stopped by you."

19.2.4 Stopping Tasks

Under certain conditions, you may want to stop a task. The TaskMan User option allows you to do this through the Stop task option ("ST"). Your ability to stop a task depends on the task's status, however. If the task has already been stopped, is finished, or it encountered a problem while running and you try to stop it, the Stop task option tells you that the task has already stopped. If the task has not yet started running, on the other hand, you can always stop it. If the task has started running, the Stop task option will succeed in stopping it only if the developer who wrote the task has designed the task to be stopped by a user. At any rate, it does not cause any problems if you try to stop a running task.

To stop a task, use the Stop task option. Once you stop a task, it remains in the TASKS file (#14.4) until you edit it to run again or until TaskMan purges it from the Task list.
19.2.5 Editing Tasks

The Edit task option ("E") lets you edit a task's output device, description, and run time.

The task must be unscheduled before it can be edited. The Edit task option asks if it's OK to unschedule the task. To edit the task, answer YES. But once the task is unscheduled, it will not run unless you reschedule it by finishing each step of editing the task.

NOTE: You cannot edit a task that is already running.

Once the task is unscheduled, you can update the following task settings:

- When the task should start.
- Which device it should use (and whether a device is needed).
- What the description of the task should be.

Once you've had a chance to modify these three settings, you're asked whether the task should be rescheduled as shown (see Figure 19-4). If you answer YES, the task is updated to reflect the changes you specified. If you answer NO, however, no settings are changed, but the task remains unscheduled (and will not run until you use Edit Task to reschedule it).

Figure 19-4. Edit Task option—Sample user dialogue

| Before you edit the task I'll make sure it's not scheduled, okay? YES//<Enter> |
| Task ready for editing. |
| Currently, this task requests output device VER$LW. Do you want to change the output device for this task? NO//Y Select Task's Output Device ("^" for none): P236 |
| When should this task run?: AUG 16, 2004@22:00//<Enter> |
| Task's purpose: DEVICE LIST//<Enter> |
| 161776: DEVICE LIST. P236. Next run time: AUG 16, 2004@22:00. |
| Shall I reschedule this task as shown? YES//<Enter> |
| Task rescheduled. |

19.2.6 Listing and Printing Tasks

You can use the List own tasks option ("L") to review your tasks. This option displays the same list as that given when you enter two question marks ("??") at the "Select Task:" prompt.

The Print task option lets you print out the description of the task that you have currently selected.
19.2.7 Selecting Another Task

Once in the TaskMan User option, you can choose to work with a different task by using the Select another task option ("SE"). Enter another task number to work with a different task. If you're not sure what task you want to work with, you can get a list of all of your tasks by entering two question marks ("??").

19.3 Summary

Most output in VistA is performed by creating tasks that run in the background. Once you become familiar with TaskMan's queuing system, you can increase productivity by using some of TaskMan's special features, including listing your future tasks, displaying a task's status, stopping a running task, and editing a future task's run time and output device.
20. TaskMan: System Management—Overview

Kernel's TaskMan module provides a standardized system for initiating and managing background processing. Since TaskMan handles all background processes, system managers have a unified set of controls that apply to all background processes on their systems.

Most of TaskMan's processing does not involve interaction with users, rendering its operation virtually invisible. The explanations that follow provide information about the operation of TaskMan.

20.1 TaskMan's Division of Labor

TaskMan uses a three-step system to start and manage background processing:

1. Queuers

Foreground jobs cannot directly start any background jobs. Instead, they call the TaskMan Application Program Interface (API) to file requests in the TASKS (#14.4) and SCHEDULE files. The program code calling the TaskMan API is called a Queuer. The TASKS file (#14.4) is VA FileMan-compatible. The SCHEDULE file is not VA FileMan compatible.

REF: For a description of the TASKS (#14.4) and SCHEDULE file structure, see the "Troubleshooting" topic in the "TaskMan: System Management—Operation" chapter in this manual.

2. Manager

A TaskMan program called the Manager runs at all times in the background. The Manager monitors the SCHEDULE file. As needed, it initiates background jobs (called Submanagers) to perform the work requested by the foreground jobs.

3. Submanagers

Each background job request is picked up by a TaskMan process called the Submanager. The Submanager is the job that actually runs each task. Submanagers handle contention for partitions and I/O devices by running the waiting tasks in order, first the oldest tasks and then the more recent ones.

20.1.1 Queuers

Tasks run by TaskMan begin with code in an software application that decides to perform some work in the background. This code is a queuer. Most applications in VistA respond to a user's request to queue some output, but other decisions may be involved. Two commonly used queuers are programs that create report output (by using the TaskMan API) and options that are scheduled through the OPTION SCHEDULING file (#19.2).
20.1.1.1 Programs that Use the TaskMan API

One commonly used queuer is an application's call to the TaskMan API to queue tasks. In this process the queuer defines the task and its environment. Applications are not allowed to do direct manipulation of the ^%ZTSCH and ^%ZTSK globals.

The TaskMan API consists of entry points that allow developers to create, manipulate, and inquire about tasks. The most widely used entry point, ^%ZTLOAD, lets developers queue tasks, which involves creating and scheduling them. First, an application sets the variables that ^%ZTLOAD needs to define the desired task. In turn, ^%ZTLOAD uses that information to create an entry in the TASKS file (#14.4). ^%ZTLOAD then sets up a simple cross-reference to the new task in the SCHEDULE file, thereby finishing the queuing process.

After queuing the task, ^%ZTLOAD quits, returning control back to the queuer and leaving the next step in the process to the Manager routines.

20.1.1.2 Option Scheduling through the OPTION SCHEDULING File (#19.2)

Another commonly used queuer is the OPTION SCHEDULING file (#19.2). Menu Manager and TaskMan work together to allow certain options to be run as TaskMan tasks. These special options can be scheduled to run just once, or they can be set up to run over and over based on a rescheduling cycle. Such cycles can even include running the task whenever the computer system boots up.

20.1.2 Manager

For tasks to run, at least one CPU in a configuration needs to run a Manager. Only one Manager process needs to run per CPU; the site determines how many CPUs should be configured to run a Manager. The Manager's job is to route the tasks created by queuers. It normally runs at all times in the manager UCIs. It repeats the same loop of code all day long; every 2 seconds it looks for overdue tasks, every 15 seconds it checks the environment and performs some cleanup.

The environment check allows the system manager to control the Manager even at its busiest. All of the commands to which the Manager responds (described later) take effect here, between every task processed.

The Manager looks for overdue tasks in the schedule list, comparing the current time to the start time of the tasks listed. If an overdue task is found, the Manager removes it from the schedule list and inspects it. If the task is defined with a complete task record, the Manager places it in a list of tasks ready to run. The Manager places a task on one of several different lists depending on whether the task needs ownership of a currently unavailable I/O device. As its final step in processing each overdue task, the Manager checks the number of Submanagers available to process tasks and starts up new submanagers, if needed. The Manager uses the JOB command (or %SPAWN if the Manager is running in a DCL context on a Caché system).

The only variation on this scheme happens when the Manager finds a task bound for a different Volume Set. Depending on the system configuration, such tasks may need to be run by the Manager running on that other Volume Set. In this case, the current Volume Set's Manager copies the task over to the Volume Set on which the task should run and marks it as moved in the current TASKS file (#14.4). In this process, the task is assigned a new task number, and the Manager on that other Volume Set handles the task from there.
If during this process the Manager discovers that the link between the two Volume Sets has dropped, it saves the task in a list of tasks waiting for that Volume Set and checks periodically to see whether it has been restored. When the link recovers, the Manager will send, in sequence, all the waiting tasks to the other Volume Set.

The Manager never actually runs the task but merely places it in a list as a task now available to be run by a Submanager.

20.1.3 Submanagers

Submanagers are the processes that actually run tasks. A Manager starts Submanagers whenever more are needed to handle the current workload of tasks, and they only last as long as they are needed. Submanagers loop back and forth between finding new tasks to run and running them.

To run each task, the Submanager first removes the task from the list of waiting tasks on which it reside (e.g., the Job or the I/O list). Then it looks up the task's entry in the TASKS file (#14.4), unloading all of the information about the task. If the task needs a device, the Submanager calls the Device Handler to get ownership of it and issues a USE command for it. Then the Submanager sets up the partition for the task and does the following:

- Sets the priority.
- Cleans out unwanted variables.
- Sets up requested variables.
- Prints a page header on the device if one was requested, etc.

Next, the Submanager starts the task running at the task's entry point. The Submanager uses a DO command and runs the task's entry point in its own partition. When the task finishes, the Submanager cleans up after the task:

- Closes the output device.
- Performs any commands left for it by the task, etc.

Running completely without user interaction, each task performs the work it was created to do and then quits, returning control to the Submanager that started it. The task may leave instructions for its Submanager, such as to requeue the task so that it runs again later or to delete the task's entry from the TASKS file (#14.4), but the task itself finishes before the Submanager continues.

After Submanagers have run all available tasks, they wait an interval before quitting. This period, called Submanager retention time, allows the Submanager to keep its partition open for new tasks for a while so that the Manager need not start a new Submanager. Every time a new task shows up during the retention time, the Submanager starts its main loop over again, returning to retention again only after all new tasks have been run. When the Submanagers eventually reach the end of their retention time, they quit.
Figure 20-1. TaskMan Manager and Submanager process flow diagram

Manager Loop

Are there enough Submanagers?

Yes

Does the task need a device?

Yes

Place task on I/O List for device.

No

Place task on Job List.

Is there an overdue task?

Yes

Job off a new Submanager.

No

Is there a task waiting to run?

Yes

Run the task.

No

Are any other tasks waiting for the same device?

Yes

Are there enough Submanagers?

No

Submanager Loop

Is it time to quit yet? (check Retention time)

Yes

Quit.

No

Is there a task waiting to run?
20.2 TaskMan's Files

The two central files that facilitate task processing are:

- TASKS file (#14.4)
- SCHEDULE file (not VA FileMan-compatible)

TaskMan is configured by three configuration Files:

- VOLUME SET (#14.5)
- UCI ASSOCIATION (#14.6)
- TASKMAN SITE PARAMETERS (#14.7)

These files and the TaskMan routines fall within TaskMan's namespace (ZTM), and numberspace. TaskMan user interface routines have been moved to the XUTM namespace beginning with Kernel 8.0 (they were previously in the ZTM namespace).

TaskMan also relies upon software components outside of its direct control. As an integral part of Kernel, TaskMan accesses several files controlled by other Kernel modules and calls many software entry points as a whole. TaskMan's main external relation, however, is with VistA software applications through the queuers and the tasks they use.

20.2.1 TaskMan Globals: ^%ZTSCH and ^%ZTSK

^%ZTSCH holds the SCHEDULE file, and ^%ZTSK the TASKS file (#14.4). Every environment controlled by a single Manager needs each of these globals in its library UCI. % globals are used to make these files accessible to all the UCIs in that environment so a single Manager's influence spans all of those UCIs. When the environment spans Volume Sets, ^%ZTSCH and ^%ZTSK are translated across the Volume Sets included. They are never replicated because TaskMan updates them so frequently.

The ^%ZTSK global is mostly defined by VA FileMan (beginning with Kernel 8.0), but the ^%ZTSCH is not. Historically these globals were not VA FileMan-compatible. Now the inquire, search, and print capabilities of VA FileMan can be used to study the TASKS file (#14.4). At present, all edit access to these globals is restricted to the TaskMan options that edit the tasks in various ways.

REF: For a description of the structure of ^%ZTSCH and ^%ZTSK, see the "Troubleshooting" topic in the "TaskMan: System Management—Operation" chapter in this manual.
20.2.2 SCHEDULE File

The SCHEDULE file holds all of the lists and nodes that TaskMan uses to manage itself and to schedule tasks. Some of these lists are:

- Schedule List (or Time Queue)
- Waiting List (or IO Queue)
- Job List
- Compute Server Job List (or C List)
- Link List
- Status List
- Run Node
- Taskman Error Log
- Error Screens

The SCHEDULE file's function is split between identifying the status of active tasks and of TaskMan itself.

REF: For more information on these lists, see the "TaskMan: System Management—Operation" chapter in this manual.

Most of the lists in the SCHEDULE file describe tasks, as follows:

- Schedule List—Sorts all scheduled tasks by time, according to when they are supposed to begin running.
- Waiting List—Stores each task whose running was delayed because its I/O device was busy.
- Job List—Holds those tasks that can begin running immediately.
- Link List—Stores tasks whose running is delayed because of a dropped link to another Volume Set.
- Task List—Describes all actively running tasks.
- Compute Server Job List—Describes all tasks waiting to start on a Compute Server (cross-CPU queuing).

The role of tracking the status of TaskMan itself is split between lists of information and individual nodes and flags. The Status List is where the Manager keeps track of its current condition; it is a list because IRM may choose to run more than one Manager in the same TaskMan environment. The RUN Node is a place where TaskMan stamps the current time; this node reveals when TaskMan stops running. The Taskman Error Log is a simple list in which TaskMan stores each error that occurs either within TaskMan itself or within the tasks that it runs. The Error Screens are screens that can be established by IRM to prevent the recording of certain errors.
These lists and nodes, as well as others not described here, are the primary data structures that TaskMan uses to schedule and run tasks.

20.2.3 TASKS File (#14.4)

The TASKS file (#14.4), unlike the SCHEDULE file, contains the tasks themselves.

Every task run by TaskMan is described by an entry in the TASKS file (#14.4). Each entry is subscripted by a unique internal number, and `^%ZTSK(-1)` always equals the number of the most recently created task. The lists and nodes in `^%ZTSCH` store the tasks' numbers that are scheduled to run. Each task's entry consists of a `^%ZTSK(task #, 0)` node that contains most of the essential information about the task, several decimal nodes (.1, .2, .25, and .26) that store the remainder of the critical information, and a number of storage nodes under `^%ZTSK(task#,3)` that store the names and values of parameters that TaskMan creates for the task. Left unchecked, this file tends to grow.

REF: For a description of the various means of controlling this growth, see the "TaskMan: System Management—Operation" chapter in this manual.

20.2.4 Other Files

The TASKS (#14.4) and SCHEDULE files, taken together, describe all the information about tasks on the system. A few more files are needed, however, to describe everything about how tasks are managed on the system.

The following three files are stored in `^%ZIS`:

- The VOLUME SET file (#14.5)—Describes the computer system's Volume Sets and how they are configured into TaskMan environments.
- The UCI ASSOCIATION file (#14.6)—Lists all the UCIs on the system and which Volume Sets they belong to. In more complicated systems, it is also used to describe how the UCIs in different environments correspond with one another.
- The TASKMAN SITE PARAMETERS file (#14.7)—Lets the system manager divide up the environments by both CPU and Volume Set. This allows a fine degree of control over such parameters as priority, partition size, and retention time.

Taken together, these files give IRM precise and powerful control over TaskMan's behavior.

Other minor pieces of information are scattered throughout other Kernel files, especially the DEVICE (#3.5) and OPTION SCHEDULING (#19.2) files.
20.3 System Configuration Terminology

TaskMan operates close to the level of the system architecture. It must be capable of starting tasks in all the environments within a computer system. This means it must know about those environments; consequently, the options, routines, files, and documentation somehow must refer to that architecture.

One problem presented by system configuration is terminology. Such system architecture features as UCIs, directories, Volume Sets, and namespaces are not part of the ANSI M standard, so different vendors use different terminology. Although it would be ideal for Kernel to use a universal terminology, none exists. For historical reasons, Kernel has settled on a terminology based on that of DSM-11 that includes the following terms:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCI</td>
<td>User Class Identifier. This is roughly equivalent to a "directory" or an "account". A UCI refers to the environment limited to a particular set of routines and globals. In Caché terms, this is a "namespace."</td>
</tr>
<tr>
<td>Manager UCI</td>
<td>Roughly equivalent to a "system UCI" or a "library UCI." This is where the vendor's system management routines are kept, and where all %-namespaced routines and globals reside. Currently, all Kernel % routines and globals are mapped back to the production account.</td>
</tr>
<tr>
<td>Volume Set</td>
<td>On current systems, we just set this to the string "ROU". This is the critical definition, since this is what affects how TaskMan starts background jobs.</td>
</tr>
<tr>
<td>CPU</td>
<td>Also known as a "node" or "computer", this designates a source of computing power and partitions. It is used both for controlling TaskMan's behavior with parameters and for sending tasks to specific CPUs.</td>
</tr>
<tr>
<td>Mounted Volume Set</td>
<td>Obsolete; no longer used.</td>
</tr>
</tbody>
</table>

NOTE: The TaskMan chapters in this section make use of this terminology.

20.4 TaskMan Security Key

The TaskMan module comes with one security key, ZTMQ. The ZTMQ security key does not completely lock any options. Instead, it affects the behavior of the following three options:

- Dequeue Tasks [XUTM DQ]
- Requeue Tasks [XUTM REQ]
- Delete Tasks [XUTM DEL]

Those who use these options without holding this security key can manipulate only their own tasks. Only the holder of the ZTMQ security key can use these options to manipulate any task on the system.
21. TaskMan: System Management—Configuration

This chapter discusses the many issues surrounding the configuration of TaskMan.

21.1 Defining TaskMan Environments

The part of configuring TaskMan for a system that requires the most creativity is deciding how to divide the system's UCIs, Volume Sets, and CPUs into TaskMan environments. A TaskMan environment is the collection of UCIs from which entries can be made directly into a given Manager's TASKS (#14.4) and SCHEDULE files and that are within that Manager's reach. This requires looking at the system in terms of queuing and starting tasks. There are a number of options available. Many different configurations are possible.

One type of configuration has CPUs sharing the same Volume Set. Since this type of environment shares a single Volume Set among multiple CPUs, they also share a single TASKS (#14.4) and SCHEDULE file. However, the reach of Managers cannot span CPUs. Therefore, you must decide which CPUs in that environment run Managers, or whether some of them should rely on the other CPUs to run their tasks for them. Alpha clusters in VA are typically configured with Managers on only one or a few CPUs.

A different configuration allows you to limit the number of places TaskMan runs. In this scenario, you pick certain CPUs to run TaskMan and give them Managers and files to do the job. To have background processing support, the remaining Volume Sets need to be able to queue to one of the Managers on the system. This entails translating the TASKS (#14.4) and SCHEDULE files of that Manager so they are visible to the unsupported Volume Set. To tell TaskMan that the one Volume Set runs no tasks but is instead supported by the other, you must configure the VOLUME SET file (#14.5) as described later in this topic.

Another possible configuration is to allow tasks to run everywhere, which requires that you place Managers within reach of every UCI and that you define your TaskMan environments accordingly. Under this configuration every CPU needs its own Manager, and its own TASKS (#14.4) and SCHEDULE files.

One other configuration to keep in mind, of course, is to have a standalone environment disconnected from the rest of the computer system. Such environments make excellent test areas for developers. They are configured the same regardless of the configuration of the main system.

21.2 Configuring TaskMan

TaskMan's three configuration files must be setup to properly reflect your system's layout. The three files are:

- TASKMAN SITE PARAMETERS (#14.7)
- VOLUME SET (#14.5)
- UCI ASSOCIATION (#14.6)
There are three options on the Edit TaskMan Parameters menu, one to edit each of the three configuration files.

Because the TASKMAN SITE PARAMETERS (#14.7) allows you to define parameters (e.g., TaskMan Job Limit) separately for each CPU on your system; you are able to optimize TaskMan's behavior individually for each CPU.

You no longer need to stop and then restart TaskMan in order to change the TASKMAN JOB LIMIT on a CPU. Cross-references on the relevant fields locate every TaskMan on your system and inform them that they need to update their TaskMan parameter information. Thus, within a minute or so of making the changes, TaskMan on that CPU should be operating with the new value.

21.2.1 TaskMan's Reach

The key issue that defines TaskMan's configuration is its "reach," those places where TaskMan can start background jobs. TaskMan's reach extends to:

- All UCIs a Submanager can access directly after using Kernel's UCI switching facilities.
- All other Managers to whose TASKS (#14.4) and SCHEDULE files a given Manager can WRITE using extended global reference.
- All UCIs on Print Servers with link access to the current Volume Set.

TaskMan's reach does not include other sites on a wide area network, because they cannot be accessed through either UCI switching or through extended global reference. There are ways to simulate such a reach through the use of server options, however. For purposes of TaskMan configuration, we generally think in terms of the reach of a single Manager, which can only run tasks in the UCIs it can reach.

21.2.2 TASKMAN SITE PARAMETERS File (#14.7)

System managers must enter one set of site parameters into the TASKMAN SITE PARAMETERS file (#14.7) for each Manager that runs in a different Volume Set/CPU. This set of parameters tells each Manager how it should process tasks. The parameters are organized both by Volume Set and by CPU. This allows two CPUs that share a Volume Set to be treated differently if one is more powerful than the other.
Table 21-1. TASKMAN SITE PARAMETERS File (#14.7)—Field entries

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOX-VOLUME PAIR (#.01)</td>
<td>The BOX-VOLUME PAIR field identifies a Volume Set and the CPU on which it is available. It contains the name of a Volume Set concatenated to the CPU ("box") name: first the Volume Set name and then the CPU name. For example, if the Volume Set name is "KRN" and the name of the CPU (e.g., box) is "ISC6A1," then the BOX-VOLUME PAIR would be "KRN:ISC6A1." For systems on which each CPU tends to have a unique Volume Set, and vice versa, you can enter just the Volume Set name (e.g., "PSA" or "AAA"). This field's value for the current process can be found by doing GETENV%ZOSV and checking the fourth ^-piece of Y. Since the Volume Set and CPU are identified, the TaskMan site parameters can be tuned for each specific Volume Set and CPU affected. Systems running Managers on more than one CPU need one entry for each CPU where a manager is running.</td>
</tr>
<tr>
<td>LOG TASKS? (#2)</td>
<td>Set the LOG TASKS? field to YES to make tasks log in and out through the signon log the way interactive users do. How to set this up is to the individual site; it does consume space and resources.</td>
</tr>
<tr>
<td>TASK PARTITION SIZE (#4)</td>
<td>The TASK PARTITION SIZE field is used to assign partition sizes for tasks. The value from this field is plugged directly into the JOB command used to create new submanagers. If this field is left blank, all tasks receive the operating system's current default value. This field should only be used by system managers who thoroughly understand how their vendor's version of M handles partition sizes with the JOB command.</td>
</tr>
<tr>
<td>SUBMANAGER RETENTION TIME (#5)</td>
<td>The SUBMANAGER RETENTION TIME number determines how many seconds submanagers should wait while looking for new tasks. The purpose of this field is to reduce the number of JOB commands needed to process a site's tasks. By keeping old Submanagers around to run new tasks, new process creation is significantly reduced.</td>
</tr>
<tr>
<td>TASKMAN JOB LIMIT (#6)</td>
<td>If there are more active processes on the system than the number stored in the TASKMAN JOB LIMIT field, TaskMan will not create new submanagers to handle tasks. Task processing will be left to existing Submanagers until the number of processes falls back below this number. This number should be slightly lower than the MAX SIGNON ALLOWED field (#41.2) of the VOLUME SET field (#41, Multiple) in the KERNEL SYSTEM PARAMETERS file (#8989.3) so that the system manager still has room to sign on when TaskMan is using its greatest number of partitions.</td>
</tr>
<tr>
<td>TASKMAN HANG BETWEEN NEW JOBS (#7)</td>
<td>The TASKMAN HANG BETWEEN NEW JOBS field sets a delay between the creation of new submanagers, in seconds. It is useful as a throttle. For systems, this delay spaces out the use of the JOB command to avoid slowing users' response time when the Manager needs to JOB off.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>many new processes in rapid succession. For systems that create new processes cheaply, this delay is unnecessary. This delay also becomes less important when a high Submanager retention time is used since higher retention times reduce the likelihood that TaskMan will need to create new processes. Be sure not to combine a high TASKMAN HANG BETWEEN NEW JOBS value with a low SUBMANAGER RETENTION TIME value, since that increases the number of jobs per day TaskMan has to start and can cause busy systems to fall behind. The number should be the lowest value that prevents the problem and can be left blank for systems with efficient JOB commands.</td>
</tr>
</tbody>
</table>

MODE OF TASKMAN (#8)

The MODE OF TASKMAN field determines how each CPU (BOX-VOLUME pair entry) should process tasks. You can set it to one of four values:

- **General Processor ("G")**: The G type should be selected when the TASKS (#14.4) and Scheduling files are seen by only one Volume Set. For example, VA's Alpha clusters have several CPUs, but each of them runs on the same Volume Set. The Manager on a G type runs tasks created on the same Volume Set, and tasks from any other Volume Set that explicitly requests the G type's Volume Set. The G type sends tasks from another Volume Set that did not explicitly request its Volume Set back to the originating Volume Set, however.

 To transfer tasks to a G type, TaskMan uses extended global references to copy the task to the destination TASKS (#14.4) and Scheduling files and then removes the task from its own side. Submanagers started on a G-type processor process tasks in the Partition Waiting List and the Busy Device Waiting List.

- **Print Server ("P")**: The P type should be selected when multiple Volume Sets map to the same TASKS (#14.4) and Scheduling files, and you want to run the Manager on the Volume Set/CPU in question.

 Like the G type, the Manager on a P type runs tasks created on the same Volume Set and tasks from any other Volume Set/CPU that explicitly request the P type's Volume Set/CPU. Unlike the G type, however, the P type also runs tasks from other Volume Sets that did not make an explicit Volume Set request. Tasks are transferred to a P type in the same way as to a G type, and Submanagers behave the same.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute Server ("C"):</td>
<td>The C type should be selected when multiple Volume Sets map to the same TASKS (#14.4) and Scheduling files (as with the P type), but when the Volume Set/CPU in question runs users (not tasks). The Manager will not start on a C type. Tasks that explicitly request to run on a C type are transferred to it by being placed in the Link Waiting List; a Submanager is then jobbed across to the C type Volume Set/CPU. Submanagers started on a C type only process tasks in the Link Waiting List for their Volume Set.</td>
</tr>
<tr>
<td>Other Non-TaskMan ("O"):</td>
<td>Neither the Manager nor the Submanager will run on O types. Tasks sent from or to an O type are rejected. Because of the field's crucial role in guiding TaskMan's behavior, the field is required.</td>
</tr>
</tbody>
</table>

VAX ENVIRONMENT FOR DCL (#9)

The VAX ENVIRONMENT FOR DCL field only has meaning to DSM for OpenVMS and Caché systems. It is set to the OpenVMS username of the DSM environment manager account. Setting it to this username causes the Manager to use %SPAWN to SUBMIT Submanagers to run. This method requires that certain DCL command files exist, along with a TASKMAN OpenVMS user account and directory.

REF: For descriptions of the needed setups, see the "Running TaskMan with a DCL Context" topic in this chapter.

If the field is empty, the Manager starts submanagers with the JOB command instead.

LOAD BALANCE ROUTINE (#21)

If you are running multiple Managers (one per node), use the LOAD BALANCE ROUTINE field to set up load balancing between the Managers on each node. It should be set to the name of an extrinsic function that returns a load rating for the node.

REF: For more information on load balancing, see the "Multiple TaskMan Managers and Load Balancing" topic in this chapter.
21.2.3 VOLUME SET File (#14.5)

TaskMan knows about a system's configuration from the values entered into the VOLUME SET file (#14.5) using the Volume Set Edit option [XUTM VOLUME]. The information stored in this file strongly affects TaskMan's behavior. If you inaccurately describe your system, you will usually notice very quickly as TaskMan begins processing tasks in a consistently incorrect way.

You need to make one entry in this file for each Volume Set that tasks can be queued to or from. These entries are only used when:

- A Manager is running on the Volume Set and must look up information about its own environment.
- The Volume Set is a required volume, in which case every Manager must check access to it when they start up.
- A task needs to run on the Volume Set, in which case the Manager must look up how to get the task there.

The following is what we have set up for FORUM:

```
VOLUME SET (14.5)

VOLUME SET: ROU                  INHIBIT LOGONS?: NO
LINK ACCESS?: NO                  TASKMAN FILES UCI: VAH
DAYS TO KEEP OLD TASKS: 1        TYPE: GENERAL PURPOSE VOLUME SET
SIGNON/PRODUCTION VOLUME SET: Yes

UCI ASSOCIATION (14.6)

Empty

TASKMAN SITE PARAMETERS (14.7)

BOX-VOLUME PAIR: ROU:FORFORUM1    LOG TASKS?: NO
SUBMANAGER RETENTION TIME: 60    TASKMAN JOB LIMIT: 400
TASKMAN HANG BETWEEN NEW JOBS: 1 MODE OF TASKMAN: GENERAL PROCESSOR
OUT OF SERVICE: NO               MIN SUBMANAGER CNT: 10
LOAD BALANCE ROUTINE: $$CACHE1() Auto Delete Tasks: Yes
Manager Startup Delay: 30
```
The value of ^%ZOSF("VOL") is "FOR".

Table 21-2. VOLUME SET File (#14.5)—Field entries

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLUME SET (#.01)</td>
<td>The VOLUME SET field should be set to the name of a Volume Set. It is used in extended global references to reach this Volume Set and can be used in UCI-switching software to move Submanagers between UCIs. If you are unsure how your Volume Sets are named, you can look at the value of ^%ZOSF("VOL") in the Volume Set in question.</td>
</tr>
<tr>
<td>TYPE (#.1)</td>
<td>The TYPE field is used to help resolve where tasks should run; it should properly identify the type of the Volume Set. Typically it should be set to the same value as the MODE OF TASKMAN field (#8) for all BOX-VOLUME PAIRs associated with this Volume Set, in the TASKMAN SITE PARAMETERS file (#14.7). This field must be filled in for all Volume Sets. This field can have the following values:</td>
</tr>
<tr>
<td></td>
<td>• G—GENERAL PURPOSE VOLUME SET</td>
</tr>
<tr>
<td></td>
<td>• P—PRINT SERVER</td>
</tr>
<tr>
<td></td>
<td>• C—COMPUTE SERVER</td>
</tr>
<tr>
<td></td>
<td>• O—OTHER NON-TASKMAN VOLUME SET</td>
</tr>
<tr>
<td></td>
<td>These values have the same meanings as the equivalent values for the MODE OF TASKMAN field (#8) in the TASKMAN SITE PARAMETERS file (#14.7), as described previously in the "Where Tasks Run" topic in this chapter. GENERAL PURPOSE VOLUME SET for Volume Sets is the rough equivalent of the MODE OF TASKMAN value GENERAL PROCESSOR for BOX-VOLUME PAIRs.</td>
</tr>
<tr>
<td></td>
<td>NOTE: The FILE SERVER value has been removed; Volume Sets for File Servers should be set to a TYPE of OTHER NON-TASKMAN VOLUME SET.</td>
</tr>
<tr>
<td>INHIBIT LOGONS? (#1)</td>
<td>Setting the INHIBIT LOGONS? field to YES causes TaskMan to notify Signon that logons are now prohibited and to enter a PAUSE state (stopping processing of tasks) until logons are allowed again. Under ordinary circumstances, system managers should leave this field as NULL or NO.</td>
</tr>
<tr>
<td>Field Description</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LINK ACCESS (#2)</td>
<td>The LINK ACCESS field should always be set to NULL or YES for the usual kinds of configurations used in VistA. Answer NO to tell TaskMan that this Volume Set cannot be accessed by other Volume Sets using the local network links. Tasks that request a Volume Set without link access are rejected by TaskMan. Such Volume Sets are usually PC workstations linked into the larger network. They can access the core computers, but cannot be accessed themselves. Some system managers may wish to have a completely isolated computer for testing. They can cut it off from the rest of the world by making entries for all the other Volume Sets and setting this field to NO for each of them. This explicitly tells TaskMan it cannot reach the other Volume Sets.</td>
</tr>
<tr>
<td>OUT OF SERVICE? (#3, Obsolete, see TYPE field)</td>
<td>The OUT OF SERVICE? field is obsolete and should only be set to NULL; use the TYPE field (#.1).</td>
</tr>
<tr>
<td>REQUIRED VOLUME SET? (#4, Obsolete)</td>
<td>The REQUIRED VOLUME SET? field is obsolete and should only be set to NULL.</td>
</tr>
<tr>
<td>TASKMAN FILES UCI (#5)</td>
<td>The TASKMAN FILES UCI field should be set to the name of the UCI that holds the <code>^%ZTSCH</code> and <code>^%ZTSK</code> globals (usually the manager UCI). The answer should not contain a comma and Volume Set name (e.g., "VAH,PSA"), just the UCI name (e.g., "VAH"). This field is required.</td>
</tr>
<tr>
<td>TASKMAN FILES VOLUME SET (#6)</td>
<td>The TASKMAN FILES VOLUME SET field should be set to the name of the Volume Set that holds <code>^%ZTSCH</code> and <code>^%ZTSK</code>. A NULL value means this Volume Set holds its own TaskMan files, which is usually the case.</td>
</tr>
<tr>
<td>REPLACEMENT VOLUME SET (#7)</td>
<td>The REPLACEMENT VOLUME SET field should be set to the name of a Volume Set to which tasks can be sent if this Volume Set is unavailable. A REPLACEMENT VOLUME SET should be essentially equivalent in features to the current one, since tasks that would normally run on the current one will be running on the REPLACEMENT VOLUME SET instead. For many Volume Sets, no other Volume Set is equivalent, and tasks should wait for the link to be restored rather than run elsewhere. If tasks that need this Volume Set should wait, leave the field blank.</td>
</tr>
<tr>
<td>DAYS TO KEEP OLD TASKS (#8)</td>
<td>The number stored in the DAYS TO KEEP OLD TASKS field is used by the XUTM QCLEAN option to decide which tasks to delete. The decision only affects inactive tasks, as explained in the discussion of the XUTM QCLEAN option. Values in this field cannot inadvertently cause TaskMan to delete scheduled or running tasks. If the field contains no value, XUTM QCLEAN keeps the last seven days' tasks. A value of 0 here keeps your file very clean.</td>
</tr>
</tbody>
</table>
21.2.4 UCI ASSOCIATION File (#14.6)

There are two different kinds of entries made into the UCI ASSOCIATION file (#14.6) using the UCI Association Table Edit option [XUTM UCI]:

- Partial File Entries
- Complete File Entries

21.2.4.1 Partial File Entries

File entries with the following first two fields filled in identify the valid UCIs on the system for TaskMan:

- FROM UCI (Table 21-3)
- FROM VOLUME SET (Table 21-3)

Every VistA site needs one entry of this type for each UCI to which tasks can be queued or from which tasks are created.

NOTE: Caché sites only need to fill in these first two fields.

REF: For a sample configuration, see the "Sample Configuration: Standardized VA Caché and GT.M Configuration" topic in this chapter.

21.2.4.2 Complete File Entries

File entries with all four fields (Table 21-3) completed collectively build a UCI ASSOCIATION TABLE.

A complete UCI ASSOCIATION TABLE tells TaskMan which UCI to use for tasks that must switch Volume Sets in order to reach an I/O device. This situation arises when an I/O device is located in a different Volume Set than the Volume Set where the task was created. In such situations, the Manager knows exactly where the task originated and knows to which Volume Set it must be moved, but it does not know in which UCI on that Volume Set it should run the task. A UCI ASSOCIATION TABLE entry supplies the missing information by linking equivalent UCIs together. When building a full UCI ASSOCIATION TABLE, you can omit entries where the UCIs on both Volume Sets have the same name because TaskMan assumes that same-named UCIs are equivalent if no entry is present.
Table 21-3. UCI ASSOCIATION file (#14.6)—Partial and complete field entries

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| FROM UCI (#.01) | The FROM UCI field should be set to the name of a UCI on your system. Enter only the UCI name (e.g., "VAH"). Do not include the Volume Set name (e.g., "VAH,ROU").
 * For entries requiring only two fields, this catalogues all the UCIs on your system (and there should be an entry for each).
 * For four-field entries, this represents a UCI from which tasks are being transferred in order to reach their I/O device. |
| FROM VOLUME SET (#1) | The FROM VOLUME SET field should be set to the name of the Volume Set that holds the UCI identified in the entry's FROM UCI field (#.01). Every Volume Set listed in this field should be described in the VOLUME SET file (#14.5).
 * For four-field entries, this represents the Volume Set from which tasks are being transferred in order to reach their I/O device. |
| TO VOLUME SET (#2) | The TO VOLUME SET field is only used for entries that build a UCI Association Table. For such entries, it should be the name of the Volume Set to which tasks are being transferred in order to reach their I/O devices. |
| TO UC (#3) | As with TO VOLUME SET(#2), the TO UCI field is only used for entries that build a UCI Association Table. For such entries, it should be the name of the UCI to which tasks will be transferred whenever they must be moved from the UCI on the first Volume Set to the second Volume Set in order to reach their I/O devices. As with the From UCI field, the Volume Set name should not be included. |

21.2.5 Sample Configuration: Standardized VA Caché and GT.M Configuration

Sites that run Managers on their satellites should make the appropriate TASKMAN SITE PARAMETERS file (#14.7) entries for each satellite and adjust their TaskMan Job Limit to reflect each satellite's individual capacity.

Figure 21-5. VOLUME SET file (#14.5) standardized VA Caché and GT.M configuration

<table>
<thead>
<tr>
<th>VOLUME SET</th>
<th>You need one entry, for ROU</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>GENERAL PURPOSE VOLUME SET</td>
</tr>
<tr>
<td>INHIBIT LOGONS?</td>
<td>Blank or NO</td>
</tr>
<tr>
<td>LINK ACCESS?</td>
<td>Blank or NO</td>
</tr>
<tr>
<td>OUT OF SERVICE?</td>
<td>Blank or NO</td>
</tr>
<tr>
<td>REQUIRED VOLUME SET?</td>
<td>Blank or NO</td>
</tr>
<tr>
<td>TASKMAN FILES UCI</td>
<td>VAH</td>
</tr>
<tr>
<td>TASKMAN FILES VOLUME SET</td>
<td>Leave this blank</td>
</tr>
<tr>
<td>REPLACEMENT VOLUME SET</td>
<td>Leave this blank</td>
</tr>
<tr>
<td>DAYS TO KEEP OLD TASKS</td>
<td>Up to you; can leave blank</td>
</tr>
<tr>
<td>SIGNON/PRODUCTION VOLUME SET</td>
<td>Yes</td>
</tr>
</tbody>
</table>
21.3 Manager Startup

You may want to configure your system so that, on CPUs where the Manager should run, a Manager starts up every time the CPU starts up. Otherwise, you will need to manually start up the Manager each time you start up those nodes that should run the Manager.

For most sites, only one Manager is needed to cover each environment. Therefore, this topic focuses on starting up only a single Manager.

Neither the Manager nor the Submanagers will start up on a BOX-VOLUME PAIR pair of the wrong type, so pay attention to how you fill in the MODE OF TASKMAN field of the TASKMAN SITE PARAMETERS file (#14.7). If you want the Manager to start, you must make sure this field is set to either a Print Server or a General Processor.

Getting the Manager to start up when the system does is accomplished in the VA by the ZSTU routine in the “%SYS” namespace. This routine is provided by Enterprise Product Support (EPS).

NOTE: You can leave this empty.
21.4 Multiple TaskMan Managers and Load Balancing

TaskMan supports the running of multiple Manager processes (but only one Manager process should run per CPU). Running multiple Managers is probably useful only at large sites; at a large site, doing this can enable tasks to be processed more quickly than if only one CPU runs a Manager. An added bonus with multiple Managers is that if one CPU running a Manager becomes unavailable, Manager(s) will still run on the other CPU(s), with no further re-configuration required.

21.4.1 Configuration for Multiple Managers

Each node that runs a TaskMan Manager must have its own entry (BOX-VOLUME PAIR) in the TASKMAN SITE PARAMETERS file (#14.7).

Each CPU must share access to a common ^%ZTSK and ^%ZTSCH global, and have access to the same devices. Because of this, all CPUs must run the same M implementation.

21.4.2 Starting Up, Pausing, and Stopping Multiple Managers

You will need to start a Manager on each CPU where a Manager should run. Whatever steps you follow to start a single Manager, you will need to repeat for any additional nodes on which you want to run additional Managers.

The options that place TaskMan in a WAIT state and stop TaskMan are not CPU-specific; they will affect all running Managers across the system.

21.4.3 Load Balancing

The LOAD BALANCE ROUTINE field in the TASKMAN SITE PARAMETERS file (#14.7) holds the name of a function that returns a CPU's load rating. This field is only useful if you are running multiple TaskMan Managers.

To use load balancing, enter a routine name in the LOAD BALANCE ROUTINE field for each participating CPU's BOX-VOLUME PAIR entry. Kernel Patch XU*8.0*355 added the following routine for TaskMan load balancing in Caché:

```
$$CACHE2(@com-file,logical-name) in ^ZTM6
```

If the com-file value is set, that com-file will be run each time TaskMan gets the balance value. The logical-name defaults to "VISTASMETRIC" or uses the value entered. The normal way would be to have $$CACHE2() in the field and use the following two scripts:

- GET_METRIC.COM—This script sets the logical "VISTASMETRIC." It can be run by TaskMan or from the TMS<node> batch queue with the METRIC_SCHEDULE.COM script.
- METRIC_SCHEDULE.COM—This script takes a parameter of the number of seconds to reschedule itself. It defaults to 15 seconds and runs under the "SYSTEM" user.
NOTE: These scripts are located in the same directory as the TaskMan in DCL files. Use of TaskMan in DCL is optional.

It is all right to run multiple TaskMan Managers without using load balancing; it is also all right if load balancing is set up and only one Manager is running (that Manager automatically takes all jobs itself). If one Manager's CPU has the LOAD BALANCE ROUTINE field filled in, and another running Manager's CPU does not, the Managers acts as if no load balancing is taking place. In short, the only ramification from various combinations of Managers with the LOAD BALANCE ROUTINE field filled in or not is that load balancing might not take place.

The load balancing routine must be an extrinsic function that returns a positive value. The CPU with the highest value is the one that will run new tasks.

Cache Algorithms:
- $\text{Cache2}()$—Returns the TCPIP metric.
- $\text{Cache1}()$—Returns the Available jobs.

Each CPU performing load balancing compares its current CPU capacity with that of the other nodes running Managers. If the current CPU has a lower rating than the other CPUs, it puts itself in a BALANCE state and waits to let the other CPUs take up the load before running more jobs itself.

Submanagers will try and wait until there node is running before testing if they should exit.

21.4.4 Monitor Taskman Option

On a system where multiple managers are running, the Monitor Taskman option [XUTM ZTMON] shows a combined view of the operation of multiple managers.

If the current node (the one where you are running the Monitor Taskman option) has a lower rating than other nodes, Monitor TaskMan will show that the current node is in a BALANCE state.

21.5 Device Handler's Influence on TaskMan

Certain DEVICE file (#3.5) fields strongly affect TaskMan's behavior. System managers should keep these effects in mind as they configure their systems' devices.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLUME SET(CPU) (#1.9)</td>
<td>If the VOLUME SET(CPU) field is not filled in, TaskMan considers this device to be available from all Volume Sets. If it is filled in, TaskMan makes sure all tasks that need this device start on the designated Volume Set.</td>
</tr>
<tr>
<td>TYPE (#2)</td>
<td>Any tasks that must wait for HFS- or SPL-type devices are rescheduled for ten minutes in the future, instead of</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Field</td>
<td>being placed in a list of waiting tasks. This is because these lists are checked through repeated opens, which may contaminate the output of these two special types of devices.</td>
</tr>
<tr>
<td>PRIORITY AT RUN TIME (#25)</td>
<td>The PRIORITY AT RUN TIME field overrides the default priority that system managers can establish for tasks using the Site Parameters Edit option on the Edit TaskMan Parameters menu.</td>
</tr>
</tbody>
</table>
| TASKMAN PRINT A HEADER PAGE? (#26) | If the TASKMAN PRINT A HEADER PAGE? field is set to YES for the device being opened by the Submanager, a header page is printed. The header page distributed with TaskMan is very simple, and system managers can substitute their own locally written header pages. To do this, you must rename your header page routine as ^%ZTMSH, the name of the one distributed with TaskMan. Whenever you install new versions of Kernel, it overwrites ^%ZTMSH with the default copy, so you should maintain your local version by doing the following:
 • Keep your local header page routine saved somewhere under a local name.
 • After each Kernel install, re-save the locally named copy as ^%ZTMSH. |

The following example shows an alternative to the default header page distributed with Kernel:

Figure 21-8. Customized Header Page routine

```plaintext
%ZZTMSH ;SEA/RDS-Local: Sample Header Page ;3/9/92 11:17 ;
;;1.0;Local;;
;
LOCAL ;Print The Local Header Page
;
B ;build text lines
S X1=$P($G(^VA(200,DUZ,0)),U) I X1="" S X1="name unknown"
S X2=$P($G(^VA(200,DUZ,5)),U,2) I X2="" S X2="unlisted mail stop"
S X3=$P($G(^VA(200,DUZ,.13)),U,2) I X3="" S X3="unlisted phone number"
S ZZLINE1=$$FORMAT(" _X1_  (_X2_)  _X3_",IOM)
S ZZLINE2=$$FORMAT(" _ZTDESC_ ",IOM)
S ZZLINE3=$$FORMAT(" _ION_  _$$HTE\'XLFDT($H)_",IOM)
;
D ;display each line three times
F X=1:1:3 W !,ZZLINE1
W ! F X=1:1:3 W !,ZZLINE2
W ! F X=1:1:3 W !,ZZLINE3
Q
;
FORMAT(ZZTEXT,ZZIOM) ;local extrinsic function
;input: text to be formatted, and margin width
;output: text filled out to margin width -3 with *characters
N ZZ1,ZZFILLED
S ZZ1=ZZIOM-3-$L(ZZTEXT)\2
S $P(ZZFILLED," ",ZZ1*2+1)="
S $P(ZZFILLED,"*",ZZ1+1)=ZZTEXT
I $L(ZZFILLED)+3-ZZIOM S ZZFILLED=ZZFILLED_**
Q ZZFILLED
```

Figure 21-9. Customized Header Page

```
************ XUUSER,ONE (OIFO) FTS 555-5555 ************
************ XUUSER,ONE (OIFO) FTS 555-5555 ************
************ XUUSER,ONE (OIFO) FTS 555-5555 ************

******************** SAMPLE TASK ********************
******************** SAMPLE TASK ********************
******************** SAMPLE TASK ********************

************ LAT DEVICE Jun 30, 1992@14:34:01 ************
************ LAT DEVICE Jun 30, 1992@14:34:01 ************
************ LAT DEVICE Jun 30, 1992@14:34:01 ************
```
21.6 Running TaskMan with a DCL Context

When run from a DCL context, TaskMan runs as an OpenVMS user. The Manager runs as a job that originates from a node-specific OpenVMS batch queue and, by default, submits new Submanagers to the same queue as needed.

One advantage to running TaskMan from a DCL context is that it allows jobs to be queued to specific CPUs. When a program calls ^%ZTLOAD, it can request that the job run on a specific CPU/node in your cluster (via the ZTCPU input variable). Unless you are running TaskMan in a DCL context (on Caché systems only), this request will probably fail (and possibly cause the task not to run). When TaskMan runs with a DCL context, however, the Manager can submit the job as a new submanager to a given CPU's TaskMan batch queue.

Depending on the %ZTSK and %ZTSCH mapping, multiple Cache environments on the same CPU can each run TaskMan in a DCL context. Although TaskMan in each Cache environment shares the same account, directory, DCL command files, and batch queue, jobs will run in the environment specified in each environment's VAX ENVIRONMENT FOR DCL site parameter.

NOTE: Kernel Patch XU*8.0*355 added the $$CACHE2 routine for TaskMan load balancing and provides support for DCL context in Caché.

21.6.1 Setup for Running TaskMan in a DCL Context in a Cache/VMS Environment

The following steps show you how to set up TaskMan to run in a DCL context in Cache/VMS (see Kernel Patch XU*8.0*355).

NOTE: The following is just an example and will have to be modified for your site. You will need to adjust the UIC [100,20] to match your system and indicate the location of the TaskMan directory.

1. Create TASKMAN that runs the TaskMan jobs:

   ```plaintext
   ADD TASKMAN/OWNER="SYSTEM MANAGER" -
   /ACCOUNT=CACHE -
   /PRIV=(NETMBX,TMPMBX) -
   /DEFPRIV=(NETMBX,TMPMBX) -
   /DEVICE=USER$/DIR=[TASKMAN]/LGICMD=LOGIN.COM -
   /FLAGS=(DisCtlY,DisWelcome,DisReport,DisForce_Pwd_Change,DisPwdDic,DisPwdHis) -
   /PASS=TASK$MAN/UIC=[100,20]
   ```
2. Create the TASKMAN directory:

 Figure 21-11. Create the TASKMAN directory

 Define/SYSTEM DHCP$TASKMAN USER$:[TASKMAN]

3. Create the system logical name for the directory with the COM files.

 NOTE: Be sure to also add to the STARTUPSLOGICALS.COM file

 Figure 21-12. Create system logical name for the directory with the COM files

 Define/SYSTEM DHCP$TASKMAN USER$:[TASKMAN]

4. Create the queues, as explained in this manual.

 NOTE: Be sure to also add to the STARTUP$DEFINE_QUEUES.COM file.

 TaskMan will submit jobs to the queue TM$<node>. Because we use "run loginout" to detach the
 execution, we do not need a large JOB limit here.

 Figure 21-13. Create system logical name for the directory with the COM files

 INIT/QUEUE/BATCH/OWNER=[TASKMAN] -
 /prot=(S:M,O:D,G:R,W:S)/JOB=5/AUTOSTART_ON=isfva2:: TM$isfva2

5. Load the following DCL command files into the [TASKMAN] directory:

 - GET_METRIC.COM
 - LOGIN.COM
 - METRIC_SCHEDULE.COM
 - ZTM2WDCL.COM
 - ZTMS2WDCL.COM
These command files are located in the cache-taskman subdirectory in the Anonymous FTP site.

NOTE: Get the files in ASCII mode.

Figure 21-14. Sample user dialogue to retrieve DCL command files

```
ISC6A2$ SET DEF USER$:[TASKMAN]
ISC6A2$ ftp ftp.fo-oakland.med.va.gov
220 ISC6A2.ISC-SF.MED.VA.GOV FTP Server (Version 5.3) Ready.
Connected to FTP.FO-OAKLAND.MED.VA.GOV.
Name (FTP.FO-OAKLAND.MED.VA.GOV:fort): anonymous
331 Guest login OK, send ident as password.
Password: xxxxxxxxxxx
230 Guest login OK, access restrictions apply.
FTP> cd cache-taskman
FTP> ls
150 Opening data connection for USR$:[ANONYMOUS.CACHE-TASKMAN]*.*;
GET_METRIC.COM
LOGIN.COM
METRIC_SCHEDULE.COM
ZTM2WDCL.COM
ZTMS2WDCL.COM
FTP> ascii
200 TYPE set to ASCII.
FTP> get get_metric.com
FTP> get login.com
FTP> get metric_schedule.com
FTP> get ztm2wdcl.com
FTP> get ztms2wdcl.com
FTP> bye
221 Goodbye.
```

NOTE: Repeat for each node in the TASKMAN SITE PARAMETERS file (#14.7).

6. **Edit TaskMan Parameters:**

Figure 21-15. Sample user dialogue to edit TaskMan parameters

```
Select Edit Taskman Parameters Option: SIT <Enter> e Parameters Edit
Select TASKMAN SITE PARAMETERS BOX-VOLUME PAIR: ISC
  1  ISC:ISCISC6A1
  2  ISC:ISCISC6A2
CHOOSE 1-2: 1 <Enter> ISC:ISCISC6A1
 namespace:configname
... node name
VAX ENVIROMENT FOR DCL: ISC6A1
... Balance Interval: 30// <Enter>
LOAD BALANCE ROUTINE: $$CACHE2("@DHCP$TASKMAN:GET_METRIC.COM")
LOAD BALANCE ROUTINE: $$CACHE2() Submit the METRIC_SCHEDULE.COM file
```
21.6.2 How to Restart TaskMan when Running in a DCL Context

To manually restart TaskMan when TaskMan is running in a DCL context, you can either:

- Sign in as OpenVMS user TASKMAN and DO RESTART^ZTMB.
- Sign in from an OpenVMS account that has the OPER and SYSPRV privileges and DO RESTART^ZTMB. This submits the Manager to run under the username TASKMAN.

In either case, however, do not use the Restart TaskMan option in the Kernel menus; it is not compatible with TaskMan in a DCL context.

Figure 21-16. ZTM2WDCL.COM Command File

```plaintext
$!-----------------------------------------------------------------------
$! ZTM2WDCL.COM - Cache Run Taskman in a DCL Context
$! * KERNEL 8 *
$!
$! P1 is the Cache config that taskman should start in.
$! P2 is the namespace that taskman should start in.
$! P3 = null to START and 1 to RESTART
$!
$! This file is submitted to the queue to run and it
$! builds and runs the TMP_pid.* files
$!
$! Build the file to run, can't pass arguments with RUN
$ pid = F$GETJPI("","PID")
$ infile="TMP_" + pid + ".ZTM"
$ outfile = "TMP_" + pid + ".log"
$ SAY = "write output"
$!
$ entry="START"
$ if p3 .eq. 1 then entry="RESTART"
$!
$! open and build the input file
$ OPEN/write output 'infile'
$ SAY "$! Taskman temp file to run the Manager"
$ SAY "$! Delete this file if it is not open."
$ SAY "$ set verify"
$ SAY "$ csession "'p1'" "'-U'" "'p2'" "'entry'"^%ZTM0""
$ SAY "$ exit"
$ Close output
$!
$! If a log file is needed change _NLA0: to 'outfile
$ name = "ZTMS_" + pid
$ run sys$system:loginout.exe -
    /input='infile -
    /output=_NLA0: -
    /detach /process='name
$!
$! Wait for loginout to run it then delete the file.
$ wait 00:01
$!
$ del TMP_*.ZTM;1
$ exit
```
Figure 21-17. ZTMS2WDCL.COM Command File

```bash
!/-----------------------------------------------------------------------
!/ ZTMS2WDCL.COM - Cache Start Submanager with a DCL Context
!/ * KERNEL 8 *
!/ p1 is the Cache config name
!/ p2 is the namespace to start.
!/ p3 is NOT used. (VOL for DSM)
!/
!/ This file is submitted to the queue to run and it
!/ builds and runs the TMP_pid file
!/ Build the file to run, can't pass arguments with RUN
!/ pid = F$GETJPI("","PID")
!/ infile = "TMP_" + pid + ".ZTMS"
!/ outfile = "TMP_" + pid + ".log"
!/ SAY = "write output"
!/ open and build the input file
!/ OPEN/write output 'infile'
!/ SAY "$! Taskman temp file to run a submanager"
!/ SAY "$! Delete this file if it is not open."
!/ SAY "$ set verify"
!/ SAY "$! 'p1' and 'p2'"
!/ SAY "$ csession ""'p1'"" ""-U"" ""'p2'"" ""START^%ZTMS"
!/ SAY "$ exit"
!/ Close output
!/ If a log file is needed change _NLA0: to 'outfile
!/ name = "ZTMS_" + pid
!/ run sys$system:loginout.exe -
!/ /input='infile -
!/ /output=_NLA0: -
!/ /detach /process='name
!/ Wait for loginout to run it then delete the file.
!/ wait 00:01
!/ del TMP_*.ZTMS;1
!/ exit
```
Figure 21-18. Example of OpenVMS User TASKMAN on ALPHA AXP Systems

Username: TASKMAN
Owner: [50,20] ([DEV,TASKMAN])
Account: DCL
UIC: Tables: DCLTABLES
CLI: DCL
Default: USER$:[TASKMAN]
LGICMD: LOGIN
Flags: DisCtlY Restricted DisWelcome DisReport
Primary days: Mon Tue Wed Thu Fri
Secondary days: Sat Sun
No access restrictions
Expiration: (none) Pwdminimum: 6 Login Fails: 0
Pwdlifetime: 180 00:00 Pwdchange: 19-NOV-1992 14:12
Maxjobs: 0 Fillm: 300 Bytlm: 64000
interactive)
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 300 JTquota: 4096
Prclm: 14 DIOlm: 900 WSdef: 2048
Prio: 4 ASTlm: 600 WSquo: 4096
Quepio: 0 TQEElm: 10 WSextent: 16384
CPU: (none) Enqlm: 4096 Pqflquo: 100000
Authorized Privileges:
CMKRNL TMPMBX OPER NETMBX
Default Privileges:
CMKRNL TMPMBX OPER NETMBX

Figure 21-19. Example of OpenVMS TASKMAN Queue

ISC6A1$ SH QUE/FULL TM$ISC6A1

Batch queue TM$ISC6A1, available, on ISC6A1:
 /BASE_PRIORITY=4 /JOB_LIMIT=50 /OWNER=[DEV,TASKMAN]
 /PROTECTION=(S:E,O:D,G:R,W:W)

ISC6A1$
22. TaskMan: System Management—Operation

This chapter describes how to operate TaskMan. This chapter discusses the following:

- TaskMan Management Menu
- Taskman Management Utilities
- Scheduling Options
- Taskman Error Log Menu
- Troubleshooting

22.1 TaskMan Management Menu

The Taskman Management menu [XUTMGR] is the main point of entry into the TaskMan options. It contains the following options:

- Schedule/Unschedule Options
- One-time Option Queue
- Taskman Management Utilities ...
- List Tasks
- Dequeue Tasks
- Requeue Tasks
- Delete Tasks
- Print Options that are Scheduled to run
- Cleanup Task List
- Print Options Recommended for Queueing

The TaskMan Management Utilities submenu and the scheduling-related options are discussed later in this chapter. The options for listing, dequeuing, requeuing, deleting, and cleaning up tasks are discussed first.
22.1.1 List Tasks Option

Figure 22-1. List Tasks Option

Beginning with Kernel 8.0, the TASKS file (#14.4) (in ^%ZTSK) is VA FileMan compatible (i.e., you can use VA FileMan to print out information about a task). However, the List Tasks option [XUTM INQ] also provides a way to examine tasks in the TASKS file (#14.4). The List Tasks option allows you to choose between several useful ways of selecting tasks. When you choose this option, it presents you with the following menu:

Figure 22-2. List Tasks option submenu options

Several choices only appear on the list when there are tasks in those collections to be displayed. Remember, the TASKS file (#14.4) can be Volume Set/CPU-specific. This means that the option can only display tasks from the TASKS file (#14.4) on the current Volume Set/CPU.

Holders of the ZTMQ security key see a slightly different list of selections. Instead of "All your tasks" and "Your future tasks" they see "All of one user's tasks" and "One user's future tasks." These two selections are generic versions of those available to normal users. They allow the holder to see any user's tasks and start by prompting the holder for the user whose tasks should be shown. Other than that, they are identical to the selections used by normal users.
Although each submenu option choice shows a different set of tasks, the format for the output is the same. Here is a sample display from the All your tasks suboption:

Figure 22-3. All your tasks suboption—Sample of TaskMan tasks running

```
All tasks that you created...

2572: ALIVE^XINDEX, XINDEX of 1 routine. Device QMS-17P. VAH,KXX.
    From TODAY at 10:55, By you. Scheduled for TODAY at 12:05

End of listing. Press RETURN to continue:
```

In the upper left-hand corner of each entry is the task number. What follows the task number is either an option name (e.g., XUTM QCLEAN) or a routine entry point (e.g., ERROR^ZTMZT) depending on whether the task was a queued routine or a queued option. This is generally followed by a description of the task. The device to which the task was queued (if any), along with the account in which the task was/is scheduled to run, complete the first line. The next line contains the time the task was created followed by an identification of the creator. In the case of tasks that requeue themselves, this date and time represents when the task was last requeued.

When the creator's DUZ number is not listed in the NEW PERSON file (#200), the phrase "USER #" followed by the DUZ is substituted. Finally, the status of the task is shown.

i REF: For a list and description of the status messages, see the "Troubleshooting" topic in this chapter.

Each of these submenu options are described in the topics that follow.

22.1.1.1 All your tasks Option

The All your tasks option (see Figure 22-3) displays every task in the TASKS file (#14.4) on the current Volume Set/CPU that you created. If you have no tasks scheduled, the option gives you the message "You have no tasks in this Volume Set's TASKS file."

22.1.1.2 Your future tasks Option

The Your future tasks option displays those tasks you created that are currently scheduled to run. If there are none, the option tells you.

"Every task" lists every task in the TASKS file (#14.4).

22.1.1.3 List of tasks Option

The List of tasks option allows you to list one or more tasks by task number. You can specify individual tasks separated by commas along with ranges of tasks using a hyphen.
22.1.1.4 Unsuccessful tasks Option

The Unsuccessful tasks option lists three kinds of tasks:

- Rejected by the Manager's validation process.
- Encountered an error while they were running.
- Unscheduled through the Dequeue Tasks option.

22.1.1.5 Future tasks Option

The Future tasks option shows all tasks that are in the Schedule List or the Waiting List. It does not show the tasks that are in the Job List. In other words, it shows all tasks that are scheduled to run but not those that are currently being run or those that are ready to be run. "Future Tasks" is not offered by the List Tasks option if the Schedule List and Waiting List are empty (an unlikely occurrence at most sites).

22.1.1.6 Tasks waiting for a device Option

The Tasks waiting for a device option shows just the Waiting List, which can be a useful way of isolating problem printers. If there are no tasks currently waiting for output devices to become available, the List Tasks option will not show this choice.

22.1.1.7 Running tasks Option

The Running tasks option shows tasks that are currently running.

REF: For a discussion of how TaskMan knows a task is running, see the "Troubleshooting" topic in this chapter.

22.1.2 Dequeue Tasks Option

Figure 22-4. Dequeue Tasks option

```
SYSTEMS MANAGER MENU ... [EVE]
Taskman Management ... [XUTM MGR]
Dequeue Tasks [XUTM DQ]
```

The Dequeue Tasks option [XUTM DQ] allows you to unschedule a task so that the task still exists in the TASKS file (#14.4) but is no longer in the Schedule, Waiting, or Job List. The process of unscheduling a task is called "dequeuing". This option allows you to dequeue any one task or range of tasks. A task that you dequeue has a status of NOT QUEUED in a List Tasks display.
The option first prompts you for the task number. Entering one question mark ("?") gets you a short explanatory message, but entering two question marks ("??") puts you in the List Tasks option to find the task you are interested in dequeuing. When you leave the List Tasks option, you automatically return to the task number prompt.

If you enter the number of a nonexistent task, List Tasks tells you and then prompts you for another task number. If you enter the number of a task that does exist, the option displays the task and asks you if you are sure. Answering NO returns you to the task number prompt, whereas a YES dequeues the task and then returns you to the task number prompt.

You can also enter a list of tasks to be dequeued. The list can include single tasks separated by commas and ranges of tasks consisting of two numbers separated by a hyphen. After you enter the list, you are asked if you want to know the actual number of tasks in the list. You are then asked if you want a display of the actual tasks that are about to be dequeued.

Only holders of the ZTMQ security key can dequeue any task. Others can only dequeue their own tasks as identified by their DUZ.

22.1.3 Requeue Tasks Option

A benefit of the Dequeue Tasks option is that it is completely non-destructive. If you dequeue a task and subsequently change your mind, you can use the Requeue Tasks option [XUTM REQ] to requeue the task exactly the way that it was. You can also use this option to change some of the details of a task that is already queued.

As with XUTM DQ, you are first prompted for a Task Number with the same help available. Here, you can only enter a single task, not a range. The task is then displayed, and you are asked for a new run time with the default being either the original or current run time (whichever applies). The next question is "Do you wish to requeue this task to a device?", with the default depending on whether the task originally requested an output device. If you answer YES, the option asks you to specify an output device using the original output device (if there was one) as a default. The option also allows you to adjust the task's priority.

The task is requeued according to your specifications. Requeuing involves completely dequeuing the task so that your task does not run twice, making the changes you requested, and placing the task back on the Schedule List. Notice that the task is not dequeued until after you specify the changes you want to make. If you want to modify a task that may start running soon, it is usually a good idea to dequeue it first.

The ZTMQ security key affects this option in two ways

- Users who do not hold the security key are limited to requeuing only their own tasks.
- Users are not prompted to change the priority.
22.1.4 Delete Tasks Option

The Delete Tasks option [XUTM DEL] has the same structure as the Dequeue Tasks option. The only difference is that where dequeuing a task just removes it from the lists (unschedules it), the Delete Tasks option also deletes the task from the TASKS file (#14.4). When you have deleted a task, there is no reference to that task anywhere in TaskMan's files.

Only holders of the ZTMQ security key can delete any task. Others can only delete their own tasks as identified by their DUZ.

22.1.5 Cleanup Task List Option

You can use the Cleanup Task List option [XUTM TL CLEAN] to remove a task entry from a task list for a job that is no longer running. This might happen when a process is forcibly exited, but TaskMan still believes the task is running. You can use this option to tell TaskMan which tasks you forcibly exited. TaskMan then removes those tasks from its list of running tasks.
22.2 Taskman Management Utilities

A submenu on the Taskman Management menu, called TaskMan Management Utilities menu [XUTM UTIL], provides several options to set up, monitor, and modify the TaskMan environment.

The Taskman Management Utilities menu contains the following options:

- Monitor Taskman
- Check Taskman's Environment
- Edit Taskman Parameters ...
- Restart Task Manager
- Place Taskman in a WAIT State
- Remove Taskman from WAIT State
- Stop Task Manager
- Taskman Error Log ...
- Clean Task File
- SYNC flag file control

These options are discussed in the topics that follow.

22.2.1 Monitor Taskman Option

Figure 22-8. Monitor Taskman option

The Monitor Taskman option [XUTM ZTMON] gives you a screen of information about the current state of TaskMan and offers you several ways to get more information. The monitor focuses on the current state of the Manager itself and on the contents of the SCHEDULE file.

As you use this option, you will acquire an intuitive understanding of how these lists should look and behave when your system is healthy. Spending the time using this option to get that intuition will save you troubleshooting time by helping you to notice problems sooner.
22.2.1.1 RUN Node

The first section of the Monitor TaskMan screen reports whether the Manager is currently running on your machine, and if so, whether or not it is being delayed. This is accomplished by comparing TaskMan’s RUN Node to the M $HOROLOG variable. Under normal circumstances they should be within 15 seconds of each other, though certain conditions can cause a difference of up to two minutes. Any difference greater than that, however, is a sign that the Manager is being delayed, typically by a problematic device or a recurring error. Of course, the Manager is also likely to fall behind if the system is saturated to the point where all of the jobs on the system are slow. The last line of the first section evaluates the difference and guesses at the Manager’s current condition. The $HOROLOG values are translated into an external format for your convenience in understanding the values.

Figure 22-9. Sample Monitor TaskMan screen

| Checking TaskMan. Current $H=54180,45147 (MAY 04, 1989 @12:32:27) |
| RUN NODE=54180,45145 (MAY 04, 1989 @12:32:25) |
| TaskMan is current. |
| Checking the Status List: |
| TaskMan job 4 status 54180,45145^RUN^Main Loop. |
| There are 3 idle submanagers |
| Checking the Schedule List: |
| TaskMan has 29 tasks in the Schedule List. |
| None of them are overdue. |
| Checking the IO Lists: Last TM scan: 54180,45146^TNA9995: |
| Device: _TNA9995: is not available, and there are 7 tasks waiting. |
| Checking the Job List: |
| There are no tasks waiting for partitions. |
| For KDE:ISC6V2 there are 2 tasks. Not responding |
| Checking the Task List: |
| There are 5 tasks currently running. |
| Enter monitor action: UPDATE// |
22.2.1.2 Status List

The Status List is where each Manager periodically reports its current status. The job number of the Manager is reported both for ease of location on a system status report and also to distinguish between multiple Managers (if there are more than one). Under normal circumstances, the Manager removes its entry from the Status List when it shuts down, but if a Manager stops abnormally (e.g., RJD or FORCEX) its entry is usually left on the list. The list is updated and cleaned out whenever a new Manager is started or restarted.

The status of a Manager consists of three parts:

- Date and time—This date and time should equal the RUN node's date and time, and like that node, it should be close to the current $HOROLOG.
- Manager's state.
- Description of special circumstances.

The Manager can be in one of five states at any given time:

- BALANCE
- ERROR
- PAUSE
- RUN
- WAIT

RUN is the normal state, with a description of "Main Loop."

The Manager's status is the most important piece of information the monitor gives, and it should always be the first thing checked when troubleshooting problems.

REF: For a detailed list and description of the possible state messages, see the "Troubleshooting" topic in this chapter.

22.2.1.3 Schedule List

The Schedule List always shows the number of tasks currently scheduled to run and checks the times for which they are scheduled to determine whether any of them should already have started. When many tasks are queued to run at the same time, it is not unusual for the Manager to be a little late in sending off the last few.

When most of the tasks on the Schedule List are overdue, however, the Manager is probably having problems keeping up. This is *not* a normal condition. If the problem is not a recurring error or a difficult output device, the most likely culprit is your default setup in the TASKMAN SITE PARAMETERS file (#14.7). Another possible problem is that TaskMan is trapping many errors or trying to access a very slow link between Volume Sets. If the problem is error trapping, the Status List should regularly show the Manager in an Error state. Also, remember that if the machine is saturated, all of the jobs on the system, including the Manager, will run slowly.
22.2.1.4 IO List

The IO List first shows the last time (H) a Submanager checked the list and the last device checked. The check generally shows how many tasks are waiting for each device in the IO List. The occasional remark "Allocated" means that a Submanager has already noticed that the device is available and has allocated the device to a task using the Device Allocation List. Devices should only be allocated for a short time before the Submanager opens the device, making it unavailable.

Understanding how the IO List works can make this particular check very useful. Submanagers handle the Device IO Lists. Unusual behavior in these lists usually points to device or Submanager problems.

There are three fundamental things to look for with this check:

- **When a device becomes available**—The Submanagers should notice and start a task running on that device. If the Submanagers do not do this, it is probably time to start looking for problems with the Submanagers.
- **When a device is allocated**—A Submanager should quickly make it unavailable. If this fails to occur, the Submanagers may be having problems. There can be extenuating circumstances (e.g., the system being very slow) that explain these occurrences.
- **When many tasks are backed up waiting for the same device**—Sometimes it is just because that device is busy. However, sometimes the device is off-line or out of paper.

22.2.1.5 Job List

The Job List is where tasks wait for partitions, so if many tasks are backed up here you know the Submanagers are not picking them up. This can be caused by any of the following:

- A slow system.
- TaskMan reaching its job limit.
- TaskMan assigning tasks a priority that is too low for them to run.

Systems that are too busy will back up in this list, not the Schedule List. The Compute Server Job List is checked here and will let you know about tasks waiting to run on other CPUs and if the Submanagers are not starting.

22.2.1.6 Task List

The Task List is where TaskMan keeps track of the tasks it has started running. Entries are set into this list when the Submanagers start their tasks and are cleared when the tasks quit or cause errors to be trapped. KILLing a task by forcing its process to exit in the middle of execution (using such vendor-specific tools as RJD, RESJOB, FORCEX, KILLJOB, etc.) does not give the Submanager a chance to clear the task from the Task list, so the Task List can become inaccurate. If you frequently KILL jobs but want to keep your Task List accurate, you will need to manually remove the obsolete entries. The exit action of the KILL off a users' job option [XURESJOB] will help you identify and remove from the list of running tasks those you have forcibly exited.
22.2.1.7 Monitor Action Prompt

After summarizing the status of the Manager and the principal lists of the SCHEDULE file, the monitor offers you a choice of actions. They are displayed if you enter a single question mark ("?") at the "Enter monitor action:" prompt:

![Figure 22-10. TaskMan monitor actions](image)

Enter <RET> to update the monitor screen.
Enter ^ to exit the monitor.
Enter E to inspect the TaskMan Error File.
Enter S to see a system status listing.
Enter ? to see this message.
Enter ?? to inspect the tasks in the monitor's lists.

These actions (see Figure 22-10) attempt to bring together those utilities used most often in response to seeing a monitor screen. Updating is the most commonly used choice since you often want to watch how the lists change over time. The TASKMAN ERROR file needs to be easily accessible, not only in case the Manager enters an Error state, but also if a task that should take a long time to run leaves the Job List but never shows up in the Task List. This usually means the task hit an error and quit, which can be confirmed or disproved by a quick glance at the Taskman Error Log. The System Status Report can be used to verify that tasks, Submanagers, and the Manager are indeed running as the monitor suggests.

Some actions at the Monitor Action prompt are not accessible when monitoring TaskMan from the manager's account (using the direct-mode utility D ^ZTMON).

22.2.1.8 Inspecting the Tasks in the Monitor's Lists

If you are in a non-library account, you can directly inspect the contents of the various lists. Do this by entering two question marks ("??") at the "Enter monitor action:" prompt. You get the following list of choices:

![Figure 22-11. Options for inspecting tasks in the TaskMan Monitor's Lists](image)

Help For Monitor Taskman Option

Schedule List.
Waiting Lists.
One Waiting List.
Job List.
Task List.
Link Lists.

Select Type Of Listing:

These listings use the same format as that of the List Tasks option, and show you the contents of the lists at the time you look at them. The One Waiting List listing prompts you to select a device, and the help for
that prompt lets you see those devices that have tasks waiting. Many of these lists change very quickly. Thus, it is not unusual to enter the help with the intention of seeing the task that was shown by the main screen to be in the Job List, only to be informed by the help software that the Job List is now empty. These kinds of experiences are simply part of troubleshooting TaskMan.

While these monitor actions are useful, there are still times when you must leave the monitor to follow up on information you saw there. For example, you may want to check the list of unsuccessful tasks or to list a specific task; both these actions require using the List Tasks option.

Taken as a whole, the checks that make up the monitor can save you a lot of time in trying to evaluate TaskMan's status. The example shown in Figure 22-9 is of a healthy, and not very busy, Manager. Monitors at sites usually show considerably more activity, especially in the Waiting Lists.
22.2.2 Check Taskman's Environment Option

The Check Taskman's Environment option [XUTM CHECK ENV] presents two screens of information about TaskMan's environment on the current CPU. The first screen (see Figure 22-13) performs all of the checks that the Manager does whenever it starts, restarts, or encounters an error. The second screen (see Figure 22-14) shows what values the Manager is using for its definition variables. This information can be very useful in pinpointing startup problems, in verifying that the Manager is using the information you want it to use and in getting a general feel for how you have defined your system's task management.

Checking TaskManager's Environment.
Checking TaskMan's globals...
%^ZTSCH is defined!
%^ZTSK is defined!
%^ZTSK(0) is defined!
%^ZIS(14.5,0) is defined!
%^ZIS(14.6,0) is defined!
%^ZIS(14.7,0) is defined!

Checking the ^%ZOSF nodes required by TaskMan...
All ^%ZOSF nodes required by TaskMan are defined!

Checking the links to the required volume sets...
There are no volume sets whose links are required!

Checks completed...TaskMan's environment is okay!

Press RETURN to continue or '^' to exit:

This first screen (see Figure 22-13) goes through each step that the Manager goes through when it starts or restarts and reports the results. If your Manager is failing to start, this screen should identify any problem with the environment.
Figure 22-14. Check TaskMan's Environment option—Second screen

Here is the information that TaskMan has:
Operating System: OpenM-NT
Volume Set: ROU
Cpu-volume Pair: ROU:KDAISC6A2
TaskMan Files UCI and Volume Set: VAH,ROU

Log Tasks? N
Submanager Retention Time: 30
Min Submanager Count: 10
TaskMan Hang Between New Jobs: 1
TaskMan running as a type: GENERAL
TaskMan is using VAX DSM environment: ISC6A2
TaskMan is using '$$CACHE@()' for load balancing
Balance Interval: 10

Logons Inhibited?: N
Taskman Job Limit: 35
Max sign-ons: 40
Current number of active jobs: 25
End of listing. Press RETURN to continue:

The second screen (see Figure 22-14) reports more information about the current TaskMan environment. The first group of four items identifies the current TaskMan operating environment. The next group of items reports the values of some Kernel site parameters that are important to TaskMan.

REF: These parameters, as well as all the other parameters that TaskMan uses, are described in detail in the "TASKMAN SITE PARAMETERS File (#14.7)" topic in the "TaskMan: System Management—Configuration" chapter in this manual.

The last four items show if logons are being inhibited and how many partitions TaskMan currently has to work with. These values show how busy your system is, as well as how busy it can become. Their importance is also described in the discussion of parameters.

22.2.3 Restart Task Manager Option

Figure 22-15. Restart Task Manager option

The Manager generally starts automatically when your system comes up. If the Manager crashes or is stopped, you can use the Restart Task Manager option [XUTM RESTART] to restart it. The option first checks the RUN node and calculates whether it thinks the Manager is currently running. If this option believes the Manager is running, it will ask you if you are sure you want to restart another TaskMan; you must answer YES to start the Manager. If XUTM RESTART thinks the Manager has stopped, it will ask...
you for confirmation before jobbing out a new Manager. If XUTM RESTART believes the Manager to be active when you know for sure that it has failed, you can invoke XUTM STOP to prove to XUTM RESTART that the Manager really has stopped. Then you will be able to restart it.

22.2.4 Place Taskman in a WAIT State Option

The WAIT state (as described in the "Troubleshooting" topic in this chapter) is a condition in which the Manager does nothing but wait for you to release it. Putting a stop to the Manager's activities without actually shutting down the Manager can often be very useful. For example, with the Manager in a WAIT state, you can look at the tasks after they are queued but before the Manager has a chance to validate them. This can help you isolate problems caused by the queuing process from those caused by the validation process. Another time you may want to create a WAIT state is before restarting a manager that has stopped. This prevents the Manager from processing any tasks when it first starts up; the Manager will check out its environment and then WAIT for your command to continue. The Place Taskman in a WAIT State option [XUTM WAIT] gives you a way to switch the Manager's activities on and off without having to completely shut down and restart the Manager.

When you select the XUTM WAIT option, you are also prompted with the question "Should active submanagers shut down after finishing their current tasks?". If you answer **YES**, the Submanagers on the current Volume Set/CPU will quit when they finish a task instead of recycling. If you answer **NO**, the Manager enters a WAIT state and the Submanagers continue with their business. If you also want to keep the Submanagers from searching the Waiting List and the Job List for tasks, you need to explicitly say so at this prompt. This inhibition of the Submanagers' recycling remains in effect either until you remove the WAIT state or until a new Manager starts or restarts, whichever comes first.

22.2.5 Remove Taskman from WAIT State Option

The Remove Taskman from WAIT State option [XUTM RUN] simply undoes the effects of XUTM WAIT, allowing the Manager to process tasks and allowing the Submanagers to recycle (if recycling had been inhibited).
22.2.6 Stop Task Manager Option

The Stop Task Manager option [XUTM STOP] gives you a clean way to stop the Manager from within the menu system. This option also asks if you want the Submanagers to shut down when they finish what they are doing.

NOTE: The WAIT state takes precedence. While the Manager is in a WAIT state, not even XUTM STOP affects it until after you invoke XUTM RUN to release it from the WAIT state; after it is released, it shuts down.

This option should always be used to shut down TaskMan, rather than simply KILLing the TaskMan process, which can leave the TaskMan globals in an improper state and even lose tasks.

22.2.7 SYNC flag file control Option

With the SYNC flag file control option [XUTM SYNC], for any SYNC FLAG entry, you can remove it from the file and delete all waiting tasks with the same SYNC FLAG. You can also choose START NEXT, which resumes running the series of tasks associated with that SYNC FLAG. This is useful when one task in a series of tasks that is synchronized with SYNC FLAG fails.
22.2.8 Clean Task File Option

The TASKS file (#14.4) grows every time a new task is queued. While the SAC requires applications to delete their tasks' entries when they complete, it is possible that older applications may not do this. Other tasks abort with errors; still others are rejected. The result is that ^%ZTSK is always growing. Options are available that clean up the ^%ZTSK global.

In unusual circumstances, you may need to clean the ^%ZTSK global manually. Kernel provides the called Queuable Task Log Clean Up option to regularly clean up the TASKS file (#14.4) in the background.

Only rarely will you not be able to rely on the queued cleanup to perform this function. However, when necessary, you can use the interactive Clean Task File option [XUTM CLEAN]. First, XUTM CLEAN asks you if you are sure you want to clean out the old entries from the TASKS file (#14.4). If you respond that you are, the option asks you how far back you want to keep old entries. The default is to keep old entries going back a week and to delete the older ones. After you provide this value, the option queues a task to do the cleanup. XUTM CLEAN cannot be queued.

22.2.9 Queuable Task Log Clean Up Option

The Queuable Task Log Clean Up option [XUTM QCLEAN], resides on the ZTMQUEUABLE OPTIONS menu. This option allows you to purge all of the entries for tasks that are no longer queued (for whatever reason) and to purge the Taskman Error Log. It is very useful to be able to queue the cleanup to run automatically each night; XUTM QCLEAN has been distributed to provide this feature. XUTM QCLEAN should not be run interactively; indeed, it is not available from any of TaskMan's menus. To queue this option, use Schedule/Unschedule Options to queue it to run.

The date XUTM QCLEAN starts purging the TASKS file (#14.4) is controlled by the DAYS TO KEEP OLD TASKS parameter in the VOLUME SET file (#14.5). A value of seven days is recommended. XUTM QCLEAN does not need an output device; therefore, you can leave that field blank. Once set up, the task automatically runs periodically, cleaning out inactive task entries that are older than the time period specified in the DAYS TO KEEP OLD TASKS parameter. If you want to run this on all of your machines, create an entry in the OPTION SCHEDULING file (#19.2) for each machine on which you want to run it.
22.3 Scheduling Options

TaskMan lets you, the site manager, schedule options that run regularly as tasks. Menu Manager and TaskMan work together to give you this ability. All you have to do is tell TaskMan which option you want to queue and how you want to queue it.

22.3.1 Which Options to Queue

The first requirement for queuing regards the option type. Only the run, print, and action types of options can be queued. The second requirement is that the option (if a run or action type) must not involve user input! There is nothing to prevent you from queuing an option of the wrong type or from queuing one that prompts the user for input, but doing so results in a failed task. You must be conscious of the nature of the task when you consider creating one that performs an option. If the option itself will not run in the background, then queuing it is pointless. Even options that themselves queue tasks probably cannot be queued, because most of these ask the user for an output device or a run time.

Software applications can make recommendations for scheduling of options. This is a great help to site managers.

REF: Recommendations for scheduling Kernel options can be found in the *Kernel Installation Guide* and the *Kernel Technical Manual*.

22.3.1.1 PARENT OF QUEUABLE OPTIONS Menu

Some options that are intended to be queued are not intended to be run interactively, so placing such options on a user menu could cause problems. The PARENT OF QUEUABLE OPTIONS menu [ZTMQUEUABLE OPTIONS], a menu-type option, has no parent in the menu tree and is intended to be used as the parent of all such options.

22.3.1.2 Printing Options Recommended to Run and Scheduled to Run

Figure 22-21. Print Options Recommended for Queueing and Print Options that are Scheduled to run options

<table>
<thead>
<tr>
<th>SYSTEMS MANAGER MENU ...</th>
<th>[EVE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taskman Management ...</td>
<td>[XUTM MGR]</td>
</tr>
<tr>
<td>Print Options Recommended for Queueing</td>
<td>[XUTM BACKGROUND RECOMMENDED]</td>
</tr>
<tr>
<td>Print Options that are Scheduled to run</td>
<td>[XUTM BACKGROUND PRINT]</td>
</tr>
</tbody>
</table>

The Print Options Recommended for Queueing option [XUTM BACKGROUND RECOMMENDED] displays all options in the OPTION SCHEDULING file (#19.2) that are recommended for scheduling by the option's developer.

The Print Options that are Scheduled to run option [XUTM BACKGROUND PRINT] lists all currently scheduled options on your system. By comparing these two reports, you can see if any options recommended for scheduling are not scheduled on your system (and vice-versa).
22.3.1.3 Schedule/Unschedule Options

The Schedule/Unschedule Options option [XUTM SCHEDULE] is a straightforward VA ScreenMan edit option, and allows you to schedule and unschedule options. After you select the option to schedule, you are prompted for information about the task you want to set up. You can edit the following fields in the OPTION SCHEDULING file (#19.2):

- QUEUED TO RUN AT WHAT TIME (#2) (see Section 22.3.1.4)
- DEVICE FOR QUEUED JOB OUTPUT (#3) (see Section 22.3.1.7)
- QUEUED TO RUN ON VOLUME SET (#5) (see Section 22.3.1.8)
- RESCHEDULE FREQUENCY (#6) (see Section 22.3.1.9)
- SPECIAL QUEUEING (#9) (see Section 22.3.1.11)
- TASK PARAMETERS (#15) (see Section 22.3.1.10)

The cross-references on these fields make calls to TaskMan's API to update the TASKS file (#14.4) and ^%ZTSCH.

NOTE: In order to queue a task, its SCHEDULING RECOMMENDED field (#209) in the OPTION file (#19) must be set to YES.

22.3.1.4 Queued to Run At What Time

To queue an option, select the option and enter a time at least two minutes in the future into the QUEUED TO RUN AT WHAT TIME field (#2) in the OPTION SCHEDULING file (#19.2). When you enter a time (and date) for the task to run, the task is immediately put on the Schedule List for that time.

22.3.1.5 How to Delete a Regularly Scheduled Task

Deleting a scheduled task is as simple as entering the at-sign ("@") at the QUEUED TO RUN AT WHAT TIME field (#2). TaskMan then searches the current TASKS file (#14.4) for the task that corresponds to the entry in the OPTION SCHEDULING file (#19.2) and deletes it.

If your system has multiple copies of the TaskMan globals, you must use Schedule/Unschedule Options on the same Volume Set/CPU where your task originated, when you delete the task. Otherwise, the future...
task in the TASKS file (#14.4) will not be found (and deleted) when you enter an at-sign ("@") in the QUEUED TO RUN AT WHAT TIME field (#2).

22.3.1.6 How to Requeue a Regularly Scheduled Task

Requeuing merely involves placing a new value in the QUEUED TO RUN AT WHAT TIME field (#2). When you do this, the currently scheduled task is deleted (exactly as described above when deleting a scheduled task). Then, a new task is created at the new time to replace the previously scheduled task.

If your system has multiple copies of the TaskMan globals, you must use Schedule/Unschedule Options on the same Volume Set/CPU where your task originated, when you requeue the task. Otherwise, the existing future task in the TASKS file (#14.4) will not be found (and deleted) when you enter a new time in the QUEUED TO RUN AT WHAT TIME field (#2).

22.3.1.7 Device For Queued Job Output

The DEVICE FOR QUEUED JOB OUTPUT field (#3) in the OPTION SCHEDULING file (#19.2) is where you can give the task an output device. For print (Report) type options this is obviously mandatory; for run or action types you need to consider if the option needs an output device. Modifying this value for an already-scheduled task merely causes a direct change to the currently scheduled task.

Tasks with an output device are assigned a process name of "Task ####" where "####" is the task number; tasks with no output device are assigned a process name of "BTask ####" (with B meaning background).

22.3.1.8 Queued To Run On Volume Set

Use the QUEUED TO RUN ON VOLUME SET field (#5) in the OPTION SCHEDULING file (#19.2) to designate a Volume Set or CPU for the task other than your current one. This field is only useful for options that do not have a device selected because most devices are tied to a CPU, and thus, the task must run on the CPU that has that device.

Modifying this value for an already-scheduled task merely causes a direct change to the currently scheduled task.

Running a task on each CPU for a given option may at times be useful (e.g., XQBUILDTREEQUE option). In such cases, make multiple entries in the OPTION SCHEDULING file (#19.2), and use the QUEUED TO RUN ON VOLUME SET field (#5) to specify the Volume Set/CPU where each scheduled task should run.

If you leave the DEVICE FOR QUEUED JOB OUTPUT field (#3) blank, the task that performs the option runs without a device (or tries to). If you also leave the QUEUED TO RUN ON VOLUME SET field (#5) blank, the task runs on the current CPU without a device. If you fill in both fields, TaskMan uses the value of the QUEUED TO RUN ON VOLUME SET field (#5), unless overridden by the VOLUME SET(CPU) field (#1.9) in the DEVICE file (#3.5) entry of the selected device.
22.3.1.9 Reschedule Frequency

Whenever a task starts running an option, it looks to see what is in the RESCHEDULE FREQUENCY field (#6) in the OPTION SCHEDULING file (#19.2). If the field is blank, the option does not reschedule itself. If you have filled in this field, the task uses the value you placed in the field to figure out when you want it to run next. Then it updates the QUEUED TO RUN AT WHAT TIME field (#2) to reflect the new scheduled time. When this field is updated, the next task in the sequence is scheduled.

If you change the existing value in the RESCHEDULE FREQUENCY field (#6), the new increment is used beginning after the next time the option runs.

There are several formats you can use in this field:

- Every "n" seconds.
- Hours.
- Days.
- months (incremental).
- A particular day of the month.
- A list of times every "n" months.

REF: For a list of the code formats for the RESCHEDULE FREQUENCY field (#6), see the "SPECIAL QUEUEING" topic that follows.

For the incremental scheduling frequencies (every n seconds, hours, days, or months), the increment is added to the scheduled date and time in the QUEUED TO RUN AT WHAT TIME field (#2) to determine when the task should run next. As of Kernel 8.0, if the incremented time is in the past, however, TaskMan keeps adding the increment until a future time is reached, only then does it reschedule the task.

22.3.1.10 Task Parameters

Use the TASK PARAMETERS field (#15) in the OPTION SCHEDULING file (#19.2) to pass data to a scheduled option. TASK PARAMETERS holds a string that is passed to scheduled jobs through the ZTQPARAM variable. Ideally, the developer of an option that uses the TASK PARAMETERS string should describe the format and meaning of the string in the option's DESCRIPTION field.
22.3.1.11 Special Queueing

Use the SPECIAL QUEUEING field (#9) in the OPTION SCHEDULING file (#19.2) to designate which option is scheduled to be run by TaskMan.

NOTE: In order to queue a task, its SCHEDULING RECOMMENDED field (#209) in the OPTION file (#19) must be set to YES.

Valid values are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Option Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>STARTUP—TaskMan will queue the job to run whenever the TaskMan/computer is started (i.e., at System Boot). If you want to run the startup option on multiple CPUs, make multiple entries in the OPTION SCHEDULING file (#19.2), and use the QUEUED TO RUN ON VOLUME SET field (#5) to specify on what Volume Set/CPU each should run.</td>
</tr>
<tr>
<td>SP</td>
<td>STARTUP/PERSISTENT—TaskMan will queue the job as it does for "STARTUP. It will mark it as a "PERSISTENT" task to be restarted if it stops unexpectedly.</td>
</tr>
<tr>
<td>P</td>
<td>PERSISTENT—TaskMan will run it on its normal schedule, marking it as Persistent. TaskMan will restart the task if it stops unexpectedly. If the task completes in a normal fashion it is treated like any other regularly scheduled task and it is rescheduled based on the value in the RESCHEDULING FREQUENCY field (#6) in the OPTION SCHEDULING file (#19.2).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>nS</td>
<td>Every n seconds.</td>
</tr>
<tr>
<td>nH</td>
<td>Every n hours.</td>
</tr>
<tr>
<td>nD</td>
<td>Every n days.</td>
</tr>
<tr>
<td>nM</td>
<td>Every n months.</td>
</tr>
<tr>
<td>day[@time]</td>
<td>Day of week (for Day codes, see Table 22-3).</td>
</tr>
<tr>
<td>D[@time]</td>
<td>Every weekday.</td>
</tr>
<tr>
<td>E[@time]</td>
<td>Every weekend day (Sat,Sun).</td>
</tr>
<tr>
<td>nM(entry[,entry,...])</td>
<td>Every n months, at each entry in the parameter list; the entries in the parameter list (for every n months only) can be:</td>
</tr>
<tr>
<td>Entry Format</td>
<td>Frequency</td>
</tr>
<tr>
<td>ddf[@time]</td>
<td>Day of month (e.g., 15).</td>
</tr>
<tr>
<td>nnday[@time]</td>
<td>Nth day of week in month (e.g., 1W,3W).</td>
</tr>
<tr>
<td>L[@time]</td>
<td>Last day of month.</td>
</tr>
<tr>
<td>Lday[@time]</td>
<td>Last specific DAY in month, (e.g., LM,LT,LW...).</td>
</tr>
</tbody>
</table>
Table 22-3. Day codes used in Option Scheduling frequency code formats

<table>
<thead>
<tr>
<th>Day Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Monday</td>
</tr>
<tr>
<td>T</td>
<td>Tuesday</td>
</tr>
<tr>
<td>W</td>
<td>Wednesday</td>
</tr>
<tr>
<td>R</td>
<td>Thursday</td>
</tr>
<tr>
<td>F</td>
<td>Friday</td>
</tr>
<tr>
<td>S</td>
<td>Saturday</td>
</tr>
<tr>
<td>U</td>
<td>Sunday</td>
</tr>
</tbody>
</table>

Table 22-4. Examples of Option Scheduling frequency code formats

<table>
<thead>
<tr>
<th>Code</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>12H</td>
<td>Every 12 hours.</td>
</tr>
<tr>
<td>14D</td>
<td>Every 14 days.</td>
</tr>
<tr>
<td>1M(1,15)</td>
<td>First and 15th of the month.</td>
</tr>
<tr>
<td>1M(L@23:45)</td>
<td>Last day of the month at 11:45 pm.</td>
</tr>
<tr>
<td>1M(LS)</td>
<td>The last Saturday of the month.</td>
</tr>
<tr>
<td>3M(15@12:00,L@12:00)</td>
<td>Noon (on the 15th and last days), every 3 months.</td>
</tr>
<tr>
<td>W@4pm</td>
<td>Each Wednesday at 4 pm.</td>
</tr>
<tr>
<td>D</td>
<td>Each weekday.</td>
</tr>
</tbody>
</table>

22.3.1.12 Problems With Scheduled Options

Once an option has been put on a schedule, it stays on that schedule unless one of the following happens:

- You delete the task.
- The running task aborts while setting up the next task in the sequence; the schedule sequence is broken.
- You dequeue the task that is scheduled to run the option. You must either requeue the task or use the Schedule/Unschedule Options option to start the cycle over.
- You change the value in the RESCHEDULING FREQUENCY field (#6) in the OPTION SCHEDULING file (#19.2). The new increment is used beginning after the next time the option runs.
- You change the value in the QUEUED TO RUN AT WHAT TIME (#2). The currently scheduled task will be unscheduled and a new one will be scheduled for the time you specify.
Another peculiarity in this process involves using a monthly scheduling frequency. What should happen if on January 31st you queue an option and give it a monthly scheduling frequency? Other months lack a 31st day. In this situation, the task pretends there is a 31st day in every month. To avoid this, you can use the RESCHEDULING FREQUENCY field (#6) in the OPTION SCHEDULING file (#19.2) code 1M(L@time).

22.3.1.13 One-time Option Queue Option

To run the One-time Option Queue option [XU OPTION QUEUE] at a special time one day without affecting its established schedule, use the One-time Option Queue option. It queues a task to run once, without affecting the option's normal schedule in any way. This lets you handle the condition where you have an option queued to run periodically and you would like to queue it once to run at an irregular time without affecting its normal periodic schedule.

22.4 Taskman Error Log Menu

The Manager and Submanagers keep track of all errors caused by their own software or by the tasks they start. They log their own errors in two places:

- ERROR LOG file (#3.075)
- Taskman Error Log

Those errors caused by tasks are also recorded in the entries of the tasks themselves and can be seen with any of the various task listing options (List Tasks, TaskMan User, etc.). Just as there are options to display and purge the ERROR LOG file (#3.075), there are options to do the same for the Taskman Error Log.

When the XUTM QCLEAN option cleans tasks from the TASKS file (#14.4), it also cleans any corresponding entries in the Taskman Error Log since it is hard to make sense of an error log entry without the task data.

Kernel strongly recommends that you report new errors to your OIFOS and follow up to ensure expeditious patching. If you do this, over time the number of errors occurring on your system will diminish. This also improves the value of the various error logging systems as indicators of significant events deserving investigation.

Allocation and store errors are often not logged in Kernel's ERROR LOG file (#3.075) because the process of logging errors is complicated and usually requires the use of local variables. Local variables take up space and there is no excess space when these errors occur. However, TaskMan makes its simple entries in the Taskman Error Log prior to calling the Kernel error logging utility. Thus, these errors are
often recorded in the Taskman Error Log, but not Kernel's. You are encouraged to carefully monitor both places.

22.4.1 Show Error Log Option

The Show Error Log option [XUTM ERROR SHOW] displays the errors currently stored in the Taskman Error Log, showing the date and time that the error occurred in a readable format and showing the error message. After the listing, the option gives the number of errors in the error log.

Errors stored in the Taskman Error Log historically are also cross-referenced to the TASKS file (#14.4), linking tasks to the errors they cause.

22.4.2 Clean Error Log Over Range Of Dates Option

After prompting for a "First date to purge:" and a "Final date to purge:," the Clean Error Log Over Range Of Dates option [XUTM ERROR LOG CLEAN RANGE] removes the entries for all errors that occurred on and between the two dates. It prints the number of entries removed. If the first date is not earlier than the final date, no entries are removed.

Use this option to delete all but recent errors that deserve your attention. It is better to resolve specific kinds of errors as you encounter them. However, if there is a period during which you cannot resolve them fast enough to keep the log clean, this option will help you focus on the recent ones.
22.4.3 Purge Error Log Of Type Of Error Option

With the Purge Error Log Of Type Of Error option [XUTM ERROR PURGE TYPE] you can delete from the Taskman Error Log all entries for an error of a specific type. In fact, this option uses the M contains operator ("|"); therefore, it removes every error whose message contains your input as a substring. For example, you can remove every error that occurred in a certain routine or even every error whose message contains a "Q." After performing the purge, the option shows you how many entries were removed.

This option is the best way to keep the log clean. As you resolve certain kinds of errors and prevent them from happening again, you can remove all errors of that kind from the log. This leaves behind only those errors you have not resolved, helping you focus on the problems that remain.

22.4.4 Delete Error Log Option

The Delete Error Log option [XUTM ERROR DELETE] completely deletes all errors in the Taskman Error Log. If the error log is cleaned and purged as described above, you will rarely need to use this option.
22.5 Troubleshooting

The information given in this topic cannot be used by application developers in their code. It is provided to help site managers troubleshoot problems with tasks and TaskMan. Consider this topic a reference to TaskMan's global structure and messages.

22.5.1 SCHEDULE File

^%ZTSCH holds the non-VA FileMan-compatible SCHEDULE file, which consists of independent lists and nodes. This is where TaskMan processes tasks. This structure is not supported for use by application software. All task manipulation must be done through approved options and entry points. These structures must be free to change from version to version to easily adapt and meet the changing needs of VistA. On the following pages is an example of a global that contains one of each type of node used by TaskMan:

The initial node was used to create ^%ZTSCH before TaskMan was active, so that the global type and protection could be assigned.

Table 22-5. ^%ZTSCH (SCHEDULE File) nodes

<table>
<thead>
<tr>
<th>^%ZTSCH Node</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>^%ZTSCH(next run time, task #)</td>
<td>This node stores the Schedule List. The task # corresponds to an entry in the TASKS file (#14.4), and the next run time is computed from the value in the sixth ^-piece of the entry's 0 node (and is the total number of seconds contained in the next run time's $H translation). If the Schedule List entry equals a device name, the entry was not created through the Program Interface.</td>
</tr>
<tr>
<td>^%ZTSCH("C")</td>
<td>This node stores the Compute Server Job List (C list). This list holds tasks that are ready to be run by Submanagers on specific Compute Servers. A Submanager cross-Volume Set jobbed to a Compute Server only runs tasks under this list for the Compute Server on which it is running, and does not process the Device Waiting List or the Job List. The Volume Set, next run time, task #, and device $IO are stored here.</td>
</tr>
<tr>
<td>^%ZTSCH("DEV")</td>
<td>This node stores the Device Allocation List. This list is used by TaskMan to coordinate its allocation of devices to tasks. The presence of a node indicates that TaskMan has already allocated this device to a specific task that has not yet gained ownership of it. It tells TaskMan not to give the device to another task. When the task for whom the allocation node was established gains ownership of the device or fails due to possession by some interactive job, the node is KILLED off. The $H value is used in case the task fails to remove its own node for some reason; after two minutes TaskMan KILLS the node on its next idle loop.</td>
</tr>
<tr>
<td>^%ZTSCH("ER")</td>
<td>This node stores the Taskman Error Log.</td>
</tr>
<tr>
<td>^%ZTSCH Node</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>^%ZTSCH("ES")</td>
<td>This node stores the Error Screens.</td>
</tr>
<tr>
<td>^%ZTSCH("IDLE")</td>
<td>This node is used to ensure that the Manager's idle loop activities are spaced out correctly in case multiple Managers are being run in the same environment.</td>
</tr>
<tr>
<td>^%ZTSCH("IO")</td>
<td>This node stores the Device Waiting List. The device $IO value is the value for the task's device and should not be the $IO of a spool or host file device. The run time subscript (the total number of seconds contained in the run time's $H translation) prioritizes the tasks that should have started the longest time ago. The Submanagers use the top node to space out access to the list, and the last device so that only one Submanager at a time is checking the list, and so that checks that find all devices still busy are followed by a short waiting period before the list is checked again.</td>
</tr>
<tr>
<td>^%ZTSCH("JOB")</td>
<td>This node stores the Job List. This list holds tasks that are ready to be run by Submanagers. The run time is the total number of seconds contained in the run time's $H translation, and task # and device $IO are what you would expect.</td>
</tr>
<tr>
<td>^%ZTSCH("LINK")</td>
<td>This node stores the Link Lists. The LINK node itself is only present when a link is down. It is used to time the checks that occur every fifteen minutes. The second level nodes should always be present with the current information on each of the CPUs and Volume Sets.</td>
</tr>
<tr>
<td>^%ZTSCH("LOAD", load rating)</td>
<td>This node is used to balance the CPU load among the various Managers that work out of the current TASKS and Schedule files. It identifies the CPU that most recently checked its rating and decided to run. Managers more loaded (a lower rating) than this one wait to allow this Manager to pick up more of its share of the load.</td>
</tr>
<tr>
<td>^%ZTSCH("LOADA")</td>
<td>This node stores the Load List. This list records the ratings for all the CPUs with Managers processing this TASKS file. The first ^-piece, which flags the Managers that decide to wait to balance the load, is used to tell the Submanagers on those CPUs that they, too, should wait.</td>
</tr>
<tr>
<td>^%ZTSCH("LOGRSRC")</td>
<td>This node flags whether Submanagers should log resources for the capacity management software. This node is set for every Volume Set whenever the LOG RESOURCE USAGE? field of the KERNEL SYSTEM PARAMETERS file (#8989.3) is edited. A cross-reference keeps the ^%ZTSCH("LOGRSRC") node in synchronization with the LOG RESOURCE USAGE? field.</td>
</tr>
<tr>
<td>^%ZTSCH("NO-OPTION")</td>
<td>if set, this node stops the Submanagers from running any scheduled options. This is for the KIDS install process.</td>
</tr>
<tr>
<td>^%ZTSCH Node</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>^%ZTSCH("RUN")</td>
<td>This node is where the Manager periodically stamps the current time, leaving a way to determine whether it is currently active. Invoking the XUTM STOP option removes this node (see Figure 22-28).</td>
</tr>
<tr>
<td>^%ZTSCH("STARTUP", UCI, option #)</td>
<td>This node holds the Startup List. This list holds the internal number of all options that are specially queued to run every time the Manager starts up. The $HOROLOG value reflects when the option was placed on this list.</td>
</tr>
<tr>
<td>^%ZTSCH("STATUS", $J of Manager)</td>
<td>This node holds the Status List. This list holds the periodically updated entries for each Manager active on your machine and reflects each Manager's own perception of its current state.</td>
</tr>
<tr>
<td>^%ZTSCH("STOP")</td>
<td>This node prevents Submanagers from running. While it is present, Managers will not start new Submanagers, Submanagers waiting for tasks quit immediately, and those currently running tasks quit as soon as the tasks finish.</td>
</tr>
<tr>
<td>^%ZTSCH("SUB")</td>
<td>This node counts the number of Submanagers waiting for new tasks. It is updated regularly by Submanagers as they run tasks. The Manager uses this value to decide whether to JOB out new Submanagers and adjusts its value during the idle loop whenever it believes it to be inaccurate.</td>
</tr>
<tr>
<td>^%ZTSCH("TASK", task #)</td>
<td>This node holds the tasks TaskMan believes are currently running. Since entries are cleaned up when tasks quit or encounter errors, those that are forcibly exited by the system manager are left on the list even though they are not running. The Manager clears the list whenever the system starts up, and the system manager can manually remove inaccurate entries by using the exit action of the KILL off a users' job option [XURESJOB]. The task data stored at each node allows TaskMan to list the tasks even when they clean out their TASKS file (#14.4) records when they start instead of when they quit.</td>
</tr>
<tr>
<td>^%ZTSCH("UPDATE", $J of Manager)</td>
<td>This node, records when the Manager last updated its local information about the site parameters. This node is KILLed whenever the Manager should update (e.g., site parameters are changed).</td>
</tr>
<tr>
<td>^%ZTSCH("WAIT")</td>
<td>This node, puts the Manager into a WAIT state.</td>
</tr>
</tbody>
</table>
Figure 22-28. ^%ZTSCH Global Structure

%^ZTSCH= ""
%^ZTSCH (next run time, task #)= ""
%^ZTSCH (next run time, task #)= (D1) device IOP value
%^ZTSCH(“C”, volume set)= count
%^ZTSCH(“C”, volume set, next run time, task #)= device $IO
%^ZTSCH(“DEV”, device $IO)= $H when device was allocated for a specific
 ==> task
%^ZTSCH(“ER”)= “A1” or ""
%^ZTSCH(“ER”, $H when error happened)= error message
%^ZTSCH(“ER”, $H when error happened, 0)= context of error
%^ZTSCH(“ES”, error screen, 0)= ""
%^ZTSCH(“ES”, error screen, 1)= screened errors count
%^ZTSCH(“IDLE”)= $H when the Manager's idle loop checks were last performed
%^ZTSCH(“IO”)= $H when device waiting list was last checked without finding
 ==> an available device^ $IO of last device tried
%^ZTSCH(“IO”, device $IO)= device type
%^ZTSCH(“JOB”, device $IO, run time, task #)= ""
%^ZTSCH(“LINK”)= "" or $H when dropped link was last checked
%^ZTSCH(“LINK”, volume set)= 1 if link has dropped
%^ZTSCH(“LINK”, volume set, next run time, task #)= ""
%^ZTSCH(“LOAD”, load rating)= cpu ^ $H when rating was checked
%^ZTSCH(“LOADA”, cpu)= whether TM should wait ^ load rating ^ $H
 ==> when rating was checked ^ $J of Manager
%^ZTSCH(“LOGRSRC”) = ""
%^ZTSCH(“NO-OPTION”)= ""
%^ZTSCH(“RUN”)= $H when Manager last checked in
%^ZTSCH(“STARTUP”, UCI, option #)= $H when option was first queued for
 ==> startup
%^ZTSCH(“STATUS”, $J of Manager)= $H when Manager last checked in [1] ^
%^ZTSCH(“STOP”)= ""
%^ZTSCH(“SUB”)= count of Submanagers waiting for tasks
%^ZTSCH(“TASK”, task #)= (A2) entry point [1] ^ (A3) routine [2] ^ (A4)
 ==> (C3) creation time [8] ^ (C1) creator DUZ or (C2)
 ==> when task actually started running [11]
%^ZTSCH(“UPDATE”, $J of Manager)= $H when the Manager last updated its
 ==> parameters
%^ZTSCH(“WAIT”)= ""

22.5.2 TASKS File (#14.4)

%^ZTSK holds this partially-VA FileMan-compatible file of tasks. It is structured with a descriptor node
followed by sequential entries. The data dictionary for this file is 14.4, TASKS. It is a read-only file. The
TASKS file (#14.4) has no cross-references, not even a top-level B cross-reference, and its descriptor
node is updated by the purge option (XUTM QCLEAN).

Each entry itself contains a zero node and several decimal nodes followed by a number of storage nodes.
Like the SCHEDULE file, the TASKS file (#14.4) is not available for direct manipulation or examination
by application software. Site managers, however, can print out information on entries in the TASKS file
(#14.4) using VA FileMan.
The following diagram (Figure 22-29) describes the nodes 0 through .26 for each entry in the TASKS file (#14.4):

Figure 22-29. TASKS File (#14.4) nodes (1 of 2)

|^ZTSK(task #, 0)= (#01) Entry Point [1F] ^ (#2) Routine Name [2F] ^ (#3) User
==>[5F] ^ (#6) Scheduled Run Time ($H) [6F] ^ (#7) Type of Task
==>Creator Name [10F] ^
==>Priority [15N] ^ (#16) Original Create date ($H) [16F]
|^ZTSK(task #, .01)= (#21) Original Destination UCI [1F] ^ (#22) Original
===>Destination Volume [2F] ^
|^ZTSK(task #, .02)= (#31) Current Destination UCI [1F] ^ (#32) Current
===>Destination Volume Set [2F] ^ (#33) Hop Count [3N] ^
|^ZTSK(task #, .03)= (#41) Task Description [E1,240F]^|ZTSK(D0,.04)= (#42) Schedule
Time Seconds [1N] ^
|^ZTSK(task #, .1)= (#51) Status Code [1F] ^ (#52) Last Update $H [2F] ^ (#53)
===>Status Notes [3F] ^ (#54) Job [4N] ^ ^ ^ ^ (#59.8) Remember
==>Untill [8F] ^ ^ (#59.1) Stop Flag [10F]^
===>Message [3F] ^
|^ZTSK(task #, .2)= (#81) Device IOP value [1F] ^ (#82) $IO value [2F] ^ (#83)
===>Device Type [3F] ^ (#84) Device Sub-Type [4F] ^ (#85) Device
==>%IS modifier [5F] ^ (#86) Host File Address [6F] ^ (#87) Sync Flag
[7F] ^ (#88) IO
===>Reschedule Count [8N] ^
|^ZTSK(task #, .21)= (D8) device file entry # [1] ^
|^ZTSK(task #, .25)= (D7) device parameters [1] ^
|^ZTSK(task #, .26)= (D10) hunt group name [1] ^
|^ZTSK(task #, .26, $IO values of hunt group members)= ""

The remaining nodes of each entry are used to pass variables to the task. If the task has been manipulated
only using TaskMan's Program Interface, then the entries look like this:

Figure 22-30. TASKS File (#14.4) nodes (2 of 2)

|^ZTSK(task #, .3, "name")= (F2) value of saved variable
|^ZTSK(task #, .3, "array", node #)= (F2) value of saved variable
|^ZTSK(task #, .3, "array", node #)= (F2) value of saved variable

The distinguishing characteristic here is the fact that the variables to be passed are all subscripted under
the .3-node.
22.5.3 Task Status Codes

This topic lists the various codes that may be found in the first ^-piece of the .1 node, the text displayed for that code by the List Tasks option, and the meaning of that code. These codes are set into the tasks at every point in processing where the status changes, along with a time stamp and an explanation where necessary.

Several of the codes correspond to the status of the SCHEDULE file entry for the task. If all applications used the Program Interface, the status code would always agree with the task's real status. In fact, many applications still directly manipulate ^%ZTSCH and ^%ZTSK, and they often neglect to update the status codes. Whenever the SCHEDULE file disagrees with the status code, the SCHEDULE file is correct. This is the reason many of the codes listed in Table 22-6 have multiple meanings.

Status codes 1 through 6 represent one of two common paths a task takes through TaskMan. The other common path replaces code 3 with A, where the task's device is not immediately available.

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Incomplete or still being created.</td>
</tr>
<tr>
<td>1</td>
<td>Scheduled for <date and time>. TaskMan uses this status in every option and entry point that schedules a task. If the task fails or errors out and TaskMan cannot trap the error, this status has a different meaning: "Stopped irregularly while scheduled."</td>
</tr>
<tr>
<td>2</td>
<td>Being inspected by TaskMan. The Manager sets this status when the time comes for a task to run. As it removes the task from the SCHEDULE file, it sets this code into the task.</td>
</tr>
<tr>
<td>3</td>
<td>Waiting for a partition. When the Manager places a task in the Job list of the SCHEDULE file, it gives the task this code. If the task fails or errors out, and TaskMan cannot trap the error, this status has a different meaning: "Stopped irregularly while waiting for a partition."</td>
</tr>
<tr>
<td>4</td>
<td>Being prepared. The Submanager gives a task this code when it removes the task from the Job list or Busy Device Waiting list in order to run it.</td>
</tr>
<tr>
<td>5</td>
<td>Currently running. The Submanager gives a task this status just before it starts the task at its entry point. If the task fails or errors out, and TaskMan cannot trap the error, this status has a different meaning: "Started running <date & time> and stopped irregularly."</td>
</tr>
<tr>
<td>6</td>
<td>Completed <date and time>. The Submanager gives a task this status after the task quits.</td>
</tr>
<tr>
<td>Status Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| A | Waiting for device `<device name or $I>` or hunt group `<hunt group name>`. The Manager or the Submanager gives a task this status when it places the task in the Busy Device Waiting list.
If the task fails or errors out and TaskMan cannot trap the error, this status has a different meaning: "Stopped irregularly while waiting for a device." |
| B | Rejected. `<rejection message>`.
The Manager or the Submanager gives a task this status if it fails one of the basic validation tests. (The rejection messages are contained in the next topic.) |
| C | Error `<date and time>`. `<error message>`.
The Submanager gives a task this status if it traps an error after starting the task. The error message records the vendor-specific $ZE text. |
| D | Stopped by user.
The Manager or the Submanager gives a task this status if, when TaskMan removes the task from the SCHEDULE file for processing, it finds that the user has asked the task to stop. The Submanager also assigns this status if, just before starting the task, it finds the stop request has been made. Finally, the Submanager gives a task this status if the task uses the ZTSTOP output variable to report that it stopped in response to a user's request. |
| E | Interrupted while running.
At startup, the Manager gives this status to any task listed in the Task list of the SCHEDULE file as still running. |
| F | Unscheduled by `<user name or "you">`.
The Dequeue Tasks [XUTM DQ] and TaskMan User [XUTM USER] options and the DQ^%ZTLOAD entry point use this status for tasks they unschedule. |
| G | Waiting for the link to `<volume set name> to be restored.
The Manager uses this status for tasks that would have been transferred to a different TaskMan environment and deleted from this one, if the local area network link to the remote environment were functioning properly.
If the task fails or errors out, and TaskMan cannot trap the error, this status has a different meaning: "Stopped irregularly while waiting for a link." |
| H | Edited without being scheduled.
The Requeue Tasks [XUTM REQ] and TaskMan User [XUTM USER] options and the REQ^%ZTLOAD entry point use this status when edited tasks are not subsequently rescheduled. |
<table>
<thead>
<tr>
<th>Status Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Discarded by TaskMan because its record was incomplete. The Manager or the Submanager uses this status for tasks listed in the SCHEDULE file that lack critical information in the corresponding TASKS file (#14.4) entries.</td>
</tr>
<tr>
<td>J</td>
<td>Currently being edited. This status has been set aside for possible use in future versions of TaskMan.</td>
</tr>
<tr>
<td>K</td>
<td>Created without being scheduled. The ^%ZTLOAD entry point uses this status for tasks when the application passes ZTDTH="@". Kernel Toolkit utility ^%ZTMOVE uses this value for the tasks it creates to transfer routines between Volume Sets manually.</td>
</tr>
<tr>
<td>L</td>
<td>Preparing this task caused the Submanager an error <date and time>. <error msg>. The Submanager uses this status when it traps an error after claiming a task but before starting it. The Manager does not yet record a corresponding status for the analogous situation. Tasks that never start, that are left with a status of 2, have usually caused the Manager an error while it tried to examine them.</td>
</tr>
<tr>
<td>M</td>
<td>Waiting for a partition on a Compute Server. The Manager gives a task this code when it places the task in the Compute Server Job List. If the task fails or errors out, and TaskMan cannot trap the error, this status has a different meaning: "Stopped irregularly while waiting for a partition on a Compute Server.”</td>
</tr>
</tbody>
</table>

22.5.4 Task Rejection Messages

Under certain conditions TaskMan can avoid trapping obvious errors by checking the tasks themselves for internal consistency. Whenever it finds tasks with bad data, it rejects them. This involves unscheduling them, setting their status codes to "B", and adding a brief explanatory message. These messages can help identify bugs in application queuing software, in the local system configuration, or in TaskMan itself.

Table 22-7. TaskMan rejection messages

<table>
<thead>
<tr>
<th>TaskMan Rejection Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAD DESTINATION UCI</td>
<td>The Manager rejects a task for this reason under three different conditions:</td>
</tr>
<tr>
<td></td>
<td>• If the task is bound for the Manager’s own Volume Set, whatever value has been passed for the destination UCI must be a valid UCI on the current Volume Set. If ^%ZOSF("UCICHECK") rejects the UCI, TaskMan rejects the task.</td>
</tr>
<tr>
<td></td>
<td>• If the task is bound for a different Volume Set and the destination UCI is not listed in the UCI ASSOCIATION file (#14.6) under that Volume Set, the UCI must be</td>
</tr>
</tbody>
</table>
TaskMan Rejection Message

<table>
<thead>
<tr>
<th>TaskMan Rejection Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accepted as a valid UCI on the current Volume Set so TaskMan can use File #14.6 to determine where the task should run. If ^%ZOSF("UCICHECK") rejects the UCI, TaskMan rejects the task.</td>
<td></td>
</tr>
<tr>
<td>• If the task is bound for a different Volume Set and that Volume Set's link is down and its REPLACEMENT VOLUME SET is the current Volume Set, TaskMan rejects the task.</td>
<td></td>
</tr>
<tr>
<td>BAD DESTINATION VOLUME SET</td>
<td>Every task's destination Volume Set must be listed in the VOLUME SET file (#14.5).</td>
</tr>
<tr>
<td>BAD IO DEVICE <$I></td>
<td>If a port goes bad while many tasks wait for it in the Busy Device Waiting list, TaskMan traps an error whenever the port is tested for availability. When the Submanager traps such an error, it rejects every task waiting for that device.</td>
</tr>
<tr>
<td>INVALID OUTPUT DEVICE</td>
<td>The Manager performs a lookup on the devices that tasks request. If the ^%ZIS call indicates that the device does not exist, then TaskMan rejects the task.</td>
</tr>
<tr>
<td>INVALID ROUTINE NAME</td>
<td>If a task's entry point is in a %-routine, the Manager tests for that routine's existence in the library UCI. If the routine does not exist there, TaskMan rejects the task.</td>
</tr>
<tr>
<td>NO DESTINATION UCI</td>
<td>When older applications bypassed the Program Interface, they sometimes scheduled tasks without specifying the destination UCI. The Manager rejects all such tasks.</td>
</tr>
<tr>
<td>NO LINK ACCESS TO VOLUME SET</td>
<td>If the VOLUME SET file (#14.5) entry for a task's destination Volume Set indicates there is no link access to that Volume Set, the task is rejected.</td>
</tr>
<tr>
<td>NO ROUTINE AT DESTINATION</td>
<td>If a task's entry point is in a non-%-routine, then the check for the routine's existence is done by the Submanager prior to starting the task.</td>
</tr>
</tbody>
</table>

22.5.5 TaskMan State Messages

When the Manager does not run, all background processing grinds to a halt. For this reason, the Manager's condition is of vital importance to system managers. When problems are detected with background processing at a site, checking the Manager's condition should be the first step. The Manager periodically records its state in the Status List. The Monitor TaskMan option [XUTM ZTMON] displays this list near the top of the screen. The various states and their meanings are described in the topics that follow.
22.5.5.1 BALANCE State

The Manager lists itself in this state if other Managers (that are processing the same files) appear to have more CPU capacity available than the current Manager. While in the BALANCE state, the Manager does not process any tasks or start any new Submanagers. The Manager removes itself from the BALANCE state when it appears to have at least as much CPU capacity as the active Manager. In general, when many Managers are working out of the same TASKS (#14.4) and SCHEDULE files, most of them will be in the BALANCE state at any given time, with only the one or two least loaded Managers actually processing tasks.

REF: For more information about TaskMan load balancing, see the "Multiple TaskMan Managers and Load Balancing" topic in the "TaskMan: System Management—Configuration" chapter in this manual.

22.5.5.2 ERROR State

The Manager lists itself in this state after trapping errors. On some systems the process of recording an error is slow, so the presence of a distinct state helps identify the source of delay to the system manager. A troubleshooter who sees this state for TaskMan should immediately check the TaskMan Error list to see what kind of error is being recorded. Because TaskMan's code is structured as a series of nested loops, it can very easily generate thousands of errors a day under certain conditions.
22.5.5.3 PAUSE State

The PAUSE state means that some external condition is preventing the Manager from processing tasks. The description always indicates the cause. While in the PAUSE state, the Manager waits until the problem is resolved, checking once every 60 seconds. The pause states are as follows:

Table 22-8. TaskMan PAUSE states

<table>
<thead>
<tr>
<th>PAUSE State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following required ^%ZOSF nodes are undefined, <list of nodes></td>
<td>When the Manager starts, restarts, or recovers from a trapped error, its first order of business is to drop through some setup code that checks TaskMan's environment. If any critical ^%ZOSF nodes are missing, it enters a PAUSE state and waits until the system manager restores the nodes.</td>
</tr>
<tr>
<td>Required link to <volume set name> is down</td>
<td>The other key check in the setup code is to ensure that all Volume Sets listed in the VOLUME SET file (#14.5) as required can actually be reached. The Manager tests each required link and enters the PAUSE state if any tests cause an error. The Manager remains in the PAUSE state, periodically testing the links, until they are restored.</td>
</tr>
<tr>
<td>Logons Inhibited</td>
<td>When the system manager sets the INHIBIT LOGONS? field of the VOLUME SET file (#14.5), TaskMan enters a PAUSE state and waits until the flag is cleared.</td>
</tr>
<tr>
<td>No Signons Allowed</td>
<td>The system manager can use the software switch to stop logons, which places TaskMan in the PAUSE state.</td>
</tr>
</tbody>
</table>

22.5.5.4 RUN State

The RUN state indicates that the Manager is going about its business in a relatively normal manner, managing background tasks on your system.

Table 22-9. TaskMan RUN states

<table>
<thead>
<tr>
<th>RUN State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>The Manager sets this value before and after executing the setup code at system startup.</td>
</tr>
<tr>
<td>Setup</td>
<td>The Manager identifies when it executes the setup code to test its environment.</td>
</tr>
<tr>
<td>Restart</td>
<td>The Manager sets this value after executing the setup code during a restart.</td>
</tr>
<tr>
<td>Main Loop</td>
<td>This should be the Manager's usual state. This indicates the Manager is executing the main loop that checks the environment, processes the Schedule list, and performs idle loop activities when appropriate.</td>
</tr>
<tr>
<td>TaskMan Job Limit</td>
<td>When the total number of processes on the Manager's CPU exceeds the TaskMan Job Limit given in the VOLUME SET file (#14.5), the Manager</td>
</tr>
</tbody>
</table>
RUN State

<table>
<thead>
<tr>
<th>RUN State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reached</td>
<td>can continue to process the Schedule list but cannot start any new Submanagers.</td>
</tr>
</tbody>
</table>

22.5.5.5 WAIT State

While in the WAIT state, the Manager does not react to changes in its environment. It does not process tasks, enter PAUSE states, or even stop after the Stop TaskMan option has been used.

You have two options (described above) that let you create or undo the WAIT state. TaskMan *cannot* enter this state on its own; it can only be initiated manually. This is essentially a tool for you to tightly control the processing of tasks on your machines. The description for this state always reads "TaskMan Waiting".
V. Kernel Installation and Distribution System
23. KIDS: System Management—Installations

Kernel Installation and Distribution System (KIDS) was introduced with Kernel 8.0. Previously, software was exported using a utility called DIFROM, and installed by running INIT routines that the DIFROM utility created. KIDS is the replacement for DIFROM, and introduces significant revisions to the software distribution and installation processes. This chapter introduces KIDS, and describes some of the changes to the software export process.

The following definitions apply throughout the KIDS documentation:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Global</td>
<td>An exported software application, stored in a global. KIDS exports software (i.e., package) based on its definition in a build entry. The transport global also contains the build entry and the PACKAGE file (#9.4) entry (if any) for a given software application.</td>
</tr>
<tr>
<td>Build Entry</td>
<td>An entry in the BUILD file (#9.6) that defines the parts of a software application to export. Also known as a build.</td>
</tr>
<tr>
<td>Component</td>
<td>An element of one of the following types: template (PRINT, SORT, and INPUT); form; function; bulletin; help frame; routine; option; security key; and protocol.</td>
</tr>
<tr>
<td>Distribution</td>
<td>A Host File Server (HFS) file containing transport global(s). If a distribution contains multiple transport globals, KIDS treats them as a single installation when installing from the distribution.</td>
</tr>
<tr>
<td>Package</td>
<td>A cohesive set of files, data, and components that together form a set of computing activities related to a functional area (i.e., software).</td>
</tr>
</tbody>
</table>
23.1 KIDS Options

To get to the KIDS: Kernel Installation & Distribution System menu [XPD MAIN] (locked with the XUPROG security key) choose the Programmer Options menu option [XUPROG] on the Kernel Systems Manager Menu [EVE], as shown below:

As indicated by its name (i.e., KIDS = Kernel Installation and Distribution System), KIDS supports two major functions:

- Distributions
- Installations

REF: In addition, KIDS also provides other utilities. For more information on KIDS utilities, see the "KIDS: System Management—Utilities" chapter in this manual.

23.1.1 Distributions

The distribution related options are located on the Edits and Distribution menu [XPD DISTRIBUTION MENU] (see Figure 23-2). The distribution portion of KIDS allows developers to:

- Define the contents of a software application in a build entry.
- Create transport globals from build entries.
- Export transport globals by creating distributions.
Figure 23-2. Edits and Distribution menu options

<table>
<thead>
<tr>
<th>Select Kernel Installation & Distribution System Option: Edits and Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a Build Using Namespace</td>
</tr>
<tr>
<td>Copy Build to Build</td>
</tr>
<tr>
<td>Edit a Build</td>
</tr>
<tr>
<td>Transport a Distribution</td>
</tr>
<tr>
<td>Old Checksum Update from Build</td>
</tr>
<tr>
<td>Old Checksum Edit</td>
</tr>
<tr>
<td>Routine Summary List</td>
</tr>
<tr>
<td>Version Number Update</td>
</tr>
</tbody>
</table>

Select Edits and Distribution Option:

REF: For a description on how application developers use the KIDS build and distribution options, see the "KIDS: Developer Tools" chapter in the *Kernel Developer's Guide.*

23.1.2 Installations

The installation related options are located on the Installation menu [XPD INSTALLATION MENU] (see Figure 23-3). The installation portion of KIDS allows sites to:

- Load transport globals from KIDS distributions.
- Load transport globals from KIDS PackMan messages.
- Print out the contents of loaded transport globals before installing them.
- Compare the contents of loaded transport globals to the current system before installing them.
- Install loaded transport globals.

Figure 23-3. Installation menu options

<table>
<thead>
<tr>
<th>Select Kernel Installation & Distribution System Option: Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Load a Distribution</td>
</tr>
<tr>
<td>2 Verify Checksums in Transport Global</td>
</tr>
<tr>
<td>3 Print Transport Global</td>
</tr>
<tr>
<td>4 Compare Transport Global to Current System</td>
</tr>
<tr>
<td>5 Backup a Transport Global</td>
</tr>
<tr>
<td>6 Install Package(s)</td>
</tr>
<tr>
<td>Restart Install of Package(s)</td>
</tr>
<tr>
<td>Unload a Distribution</td>
</tr>
</tbody>
</table>

Select Installation Option:
KIDS introduced two files into Kernel:

- BUILD file (#9.6)
- INSTALL file (#9.7)

KIDS also makes use of the existing PACKAGE file (#9.4), but its role in exporting and installing software is diminished.

23.2 Build Entries and the BUILD File (#9.6)

Build entries, stored in the BUILD file (#9.6), are where developers define a software application. This build entry defines the set of files, data, components, installation questions, national software information, pre- and post-install routines, and other settings that comprise the exported software.

Software components are no longer tied to namespace, as they were previously with DIFROM and the PACKAGE file (#9.4). Developers can select any components available on the current system and include them in their build entries as software components.

The format of the NAME field (#.01) of a build entry must be the software name concatenated with a space, and then a version number. This means that there is a separate entry for every version of a software application that a developer exports.

Also, a software application's build entry is sent to installing sites as part of the software; after an installation, the site can examine the build entry to see the software definition.

Figure 23-4. KIDS file diagram

![KIDS file diagram]

- PACKAGE file (#9.4)
- BUILD file (#9.6)
- INSTALL file (#9.7)
23.3 INSTALL File (#9.7)

The INSTALL file (#9.7) stores a record of each installation a site performs. The INSTALL file (#9.7) allows KIDS to store a separate installation entry for each installation. A new version of software no longer overwrites the installation information of a previous version, and developers' installation history no longer overwrites the sites' installation history. The national PACKAGE file (#9.4) is now static at its top level.

The three main items recorded in the INSTALL file (#9.7) for each installation are the installing site's answers to installation questions, any installation output, and the installation's timing information.

23.4 Changes in the Role of the PACKAGE File (#9.4)

The PACKAGE file (#9.4) still plays a role in installations with KIDS, albeit a diminished one. KIDS provides a link from the build entry of a package to the PACKAGE file, so that developers can link a package to a PACKAGE file (#9.4) entry.

The top level of a PACKAGE file (#9.4) entry for a package now stores static package information. The only part of the PACKAGE file (#9.4) entry that installations update automatically now is the VERSION field (Multiple). A patch sent with KIDS does not transport the entire PACKAGE file (#9.4) entry. It only sends the information that is needed to update the PACKAGE file (#9.4). Patch installations will update the PATCH APPLICATION HISTORY field (Multiple), which is within the VERSION field (Multiple). KIDS saves patch names along with their sequence numbers in this multiple. Most other fields have been designated for removal at the top level of the PACKAGE file (#9.4). The PACKAGE file (#9.4) now stores mainly static software information that is not version specific, as well as the patch history of the software.

23.5 Transport Mechanism: Distributions

Distributions are the mechanism KIDS uses to export software. They are more flexible than the previous mechanism (INIT routines).

Distributions are usually in the form of an HFS file. The developer creates transport globals from build entries. KIDS stores transport globals in a global. KIDS can WRITE the global (in a format readable only by KIDS) to an HFS file; the HFS file is the distribution. The HFS file can then be distributed by a variety of methods, including FTP (file transfer protocol), diskette, and tape. For example, if your system is a PC, you can also move the Transport Global to a new medium (i.e., to multiple floppy disks so you can install on other PCs):

- Select the Load a Distribution option (Do not run the Environment Check routine).
- Under the Utilities Menu, select the Convert Loaded Package for Redistribution option.
- Under the Edits and Distribution Menu, select the Transport a Distribution option.
- When you are prompted to "Enter a Host File:" , enter the floppy drive and file name. For example:

 Enter a Host File: A:\KRN8.KID)
One advantage to using distributions over INIT routines is that there is no limit to the size of a software application you can export. Another advantage is that during installations, you no longer have to overwrite a software application's existing routines with the new routines before running the installation.

Alternatively, a KIDS distribution can be sent via a PackMan message in MailMan. But transporting software as host files, especially large ones, avoids slowing down MailMan.

23.5.1 Two Kinds of Distributions

KIDS supports two kinds of distributions:

- **Standard Distribution**—This type of distribution contains transport globals for what are traditionally thought of as software applications, including files, data, and all components. A standard distribution can contain one or more transport globals. If there is more than one transport global, KIDS treats each one as a single installation unit.

- **Global Distribution**—This type of distribution contains one transport global only, and that transport global can export M globals only.

The transport globals in both types of distributions also contain the corresponding build entry, and (if linked to a PACKAGE file [#9.4] entry) the corresponding PACKAGE file (#9.4) entry. However, a patch sent with KIDS does not transport the entire PACKAGE file (#9.4) entry. It only sends the information that is needed to update the PACKAGE file (#9.4).

23.6 What Happens to DIFROM?

Developers should no longer use the DIFROM entry point to export software. Developers should use KIDS. The DIFROM method is still supported, but only for the support of sites that use standalone VA FileMan (VA FileMan without Kernel).

REF: For more information on using DIFROM, see the *VA FileMan Programmer Manual*.

23.7 Installing Standard Distributions

As noted previously, KIDS supports two types of distributions:

- Standard
- Global

This topic describes how KIDS installations work when installing standard distributions.
23.7.1 Installation Sequence

KIDS installs standard distributions in three phases:

1. Loading transport globals from the distribution.
2. Answering installation questions for each transport global.
3. Installing each transport global in the distribution.

23.7.1.1 Phase 1: Loading Transport Globals from a Distribution or PackMan Message

1. Using the Load a Distribution option, the installer chooses the HFS file from which to load distributions. If loading from a PackMan message, choose the message and invoke the INSTALL/CHECK MESSAGE PackMan option.
2. For each transport global, KIDS makes an entry in the INSTALL file (#9.7) for the transport global.
3. KIDS loads transport globals from distribution into ^XTMP.
4. KIDS prompts the user to see if they want to run the environment check for each transport global (if unsuccessful, the process quits here; the developer may or may not KILL INSTALL file (#9.7) entries and transport globals from ^XTMP.)
5. The installer can print the contents of the transport global, compare the contents to the current system, and verify checksums of the transport global.

23.7.1.2 Phase 2: Answering Installation Questions for Transport Globals in a Distribution

1. Using the Install Package(s) option, the installer selects a distribution to install by choosing an entry from the INSTALL file (#9.7).
2. KIDS runs the environment check for the first transport global; the environment check can allow KIDS to install the transport global, cancel installation of the transport global, or cancel installation of all transport globals in the distribution.
3. The installer answers pre-installation questions for the first transport global.
4. The installer answers standard KIDS questions for the first transport global.
5. The installer answers post-installation questions for the first transport global.
6. The installer repeats Steps #2-5 for the remaining transport globals, if there are any more transport globals to process.
7. The installer chooses a device for the installation to run on. The installer can queue the installation or run it directly; entering a caret ("^") aborts the installation.
23.7.1.3 Phase 3: KIDS Installation of Software

1. KIDS disables any options and protocols the site has asked to be disabled for this install. However, KIDS does not disable options and protocols which have an Action of USE AS LINK FOR MENU ITEMS.

2. KIDS waits for the time period (from 0 to 60 minutes) the site specifies, if they chose to disable options and protocols.

3. KIDS suspends the running of queued options by TaskMan for this install, if the site chooses to do so.

4. The pre-install routine is run for the first transport global.

5. All components are installed for the first transport global.

6. The post-install routine is run for the first transport global.

7. KIDS repeats Steps 4-6 for any remaining transport globals to install in the distribution.

8. Options and protocols that were disabled for this install (if any) are re-enabled.

9. Queued options are removed from suspense (if the site chose to suspend queued options).

23.7.2 Installation Menu

The KIDS Installation Menu [XPD INSTALLATION MENU] contains the following options:

Figure 23-5. KIDS Installation menu options

| Select Kernel Installation & Distribution System Option: Installation |
| --- | --- |
| 1 | Load a Distribution [XPD LOAD DISTRIBUTION] |
| 2 | Verify Checksums in Transport Global [XPD PRINT CHECKSUM] |
| 3 | Print Transport Global [XPD PRINT INSTALL] |
| 4 | Compare Transport Global to Current System [XPD COMPARE TO SYSTEM] |
| 5 | Backup a Transport Global [XPD BACKUP] |
| 6 | Install Package(s) [XPD INSTALL BUILD] |
| | Restart Install of Package(s) [XPD RESTART INSTALL] |
| | Unload a Distribution [XPD UNLOAD DISTRIBUTION] |

The number next to the options indicates the order of the option entries you should follow when performing a KIDS installation.
23.7.3 Loading a Standard Distribution

The first step in installing a standard distribution is to load the transport globals from the Distribution. The Load a Distribution option [XPD LOAD DISTRIBUTION] does the following:

- Lists what transport globals are contained in the distribution and asks you if you want to continue.
- Creates entries in the INSTALL file (#9.7) for each transport global in the distribution that passed its environment check.
- Loads transport globals from the distribution (HFS file) into the ^XTMP global (if you answer YES to continue).
- Prompts the user to see if they want to run the environment check for each transport global. If a transport global does not pass its environment check, KIDS may purge it from ^XTMP; otherwise, the transport global stays in ^XTMP. KIDS tells you the result of each environment check.
- Checks the version number of the incoming software against any existing software of the same name at the site. If the incoming version number is not greater than the existing version, KIDS aborts the installation for the transport global in question.
- Echoes the name of the first transport global to pass environment check (i.e., "Use transport global name to install this Distribution"). The name of the first transport global to pass its environment check is the name you use to install the distribution, in the next phase.

Loading a distribution is the first of three phases to install VistA software. The second phase is answering installation questions, including scheduling the installation; the third and final phase is the actual running of the installation.

When loading from a PackMan message, load the distribution using the INSTALL/CHECK MESSAGE PackMan option in MailMan. For KIDS PackMan messages, this option through MailMan is equivalent to the Load a Distribution option [XPD LOAD DISTRIBUTION].

Figure 23-6. Load a Distribution option—Sample user dialogue

```
Select Installation Option: Load a Distribution
Enter a Host File: ZXG_EXPT.DAT
Distribution saved on Oct 13, 2004@09:29:08
Comment: TEST PKGS
This Distribution contains Transport Globals for the following Package(s):
    TEST 2.1
Want to Continue with Load? YES\ <Enter>
Loading Distribution...
Want to RUN the Environment Check Routine? YES\ <Enter>
    TEST 2.1
Use INSTALL NAME: TEST 2.1 to install this Distribution.
Select Installation Option:
```
23.7.3.1 When the Distribution is Split Across Diskettes

Distributions can come in a single host file (see Figure 23-6); alternatively, they can come on diskettes, with the host file split up among the diskettes. If you are installing from a distribution that is spread across diskettes, the Load a Distribution option [XPD LOAD DISTRIBUTION] will ask you for subsequent diskettes (e.g., "Insert the next diskette, #2, and Press the return key", etc.). Insert the appropriate disk and press the <Enter> key, and continue until the distribution is loaded.
23.7.4 Loading Transport Globals from a Distribution

Figure 23-7. Loading transport globals from a distribution—Flowchart

Select a distribution to load (choose an HFS file). KIDS lists build(s) exported in distribution.

Question: continue with load of build(s)?

Yes
KIDS loads builds into ^XTMP.

KIDS starts processing first build.

No

Package's environment check OK?

Yes
KIDS starts processing next build.

No

KIDS removes build's install data from ^XTMP install global.

Any more builds to process?

Yes

KIDS creates INSTALL File entry for build; it also links INSTALL entry to other packages if distribution contains multiple builds.

No

Exit

KIDS's environment check routine for build and runs it.

Check version # Greater than current?

Yes

No

Question: Run the Environment check?

Yes

No
23.7.5 Verifying Checksums in a Transport Global

You can verify the checksums for a loaded transport global in advance of installing from it, using the Verify Checksums in Transport Global option [XPD PRINT CHECKSUM]. This option verifies all checksums of routines in the transport global, reporting any discrepancies. In the future, the ability to verify checksums will be extended to other KIDS components besides routines.

As of Kernel Patch XU*8.0*369, the integrity checking CHECK1^XTSUMBLD routine supports the Compare local/national checksums report option [XU CHECKSUM REPORT].

As of Kernel Patch XU*8.0*393, KIDS was modified to send a message to a server on FORUM when a KIDS build is sent to a Host File Server (HFS) device. This message contains the checksums for the routines in the patch. The server on FORUM matches the message with a patch if the sending domain is authorized on FORUM. There is no longer a need for developers to manually include routine checksums (either CHECK^XTSUMBLD or CHECK1^XTSUMBLD routines) in the patch description. The patch module will include the before and after CHECK1^XTSUMBLD values in the Routine Information section at the end of the patch document.

With changes in the National Patch Module (NPM) on FORUM, when the patch is released the checksums for the routines are moved to the ROUTINE file (#9.8) on FORUM. The checksum "before" values will come from the FORUM ROUTINE file (#9.8) and are considered the GOLD standard for released checksums. The local site's Compare local/national checksums report option [XU CHECKSUM REPORT] uses the FORUM ROUTINE file (#9.8) as its source to create reports showing any routines that do not match.

This patch also modified the KIDS BUILD file (#9.6) by adding the TRANSPORT BUILD NUMBER field (#63) used to store a build number that is incremented each time a build is made. This build number is added to the second line of each routine in the 7th ";" piece. This makes it easy to tell if a site is running the current release during testing and afterword. The leading "B" found in the checksum tells the code what checksum routine to use.

23.7.6 Printing Loaded Transport Globals

Once you have loaded transport globals from a standard distribution onto your system, you can print out the definitions of the transport globals, using the Print Transport Global option [XPD PRINT INSTALL]. This way, you can see every component exported in each transport global, before you install them.
23.7.7 Comparing Loaded Transport Globals to the Current System

When you have loaded transport global(s) from a standard distribution onto your system, you can also compare a transport global to the matching software already installed on your system (if any), using the Compare Transport Global to Current System option [XPD COMPARE TO SYSTEM]. This way, you can compare the software you are about to install with the current version of the software on your system.

When this option finds differences, it notes the change by displaying the differences between the current software and the transport global on two lines, one line labeled * OLD * and the other * NEW *.

NOTE: Pointers are converted to FREE TEXT when exporting VA FileMan entries, so these converted free pointers show up as differences when using the compare feature.
Figure 23-9. Compare Transport Global to Current System option—Sample comparison output

Compare ZXP 1.0 to current site

Routine: ZUVXD

File # 3.2 Data Dictionary

File # 3.2 Data

* OLD * ^%ZIS(2,9,8) = $C(27)_"^[A"^SC(27) _^[B"^SC(27) _^[C"^SC(27) _^[D"^3^^SC(27) _^[L"
* NEW * ^%ZIS(2,9,8) = $C(27)_"^[A"^SC(27) _^[B"^SC(27) _^[C"^SC(27) _^[D"^3"
* OLD * ^%ZIS(2,44,13) = ^$C(26)^^^^$J("",X)_SC(27,93,($X+32-X))
* NEW * ^%ZIS(2,44,13) = ^$C(26)^^^^
* OLD * ^%ZIS(2,60,8) = $C(27)_"^[A"^SC(27) _^[B"^SC(27) _^[C"^SC(27) _^[D"^3^^SC(27) _^[L"
* NEW * ^%ZIS(2,60,8) = $C(27)_"^[A"^SC(27) _^[B"^SC(27) _^[C"^SC(27) _^[D"^3"
* ADD * ^%ZIS(2,93,21) = ^

HELP FRAME

BULLETIN
This option was updated with Kernel Patch XU*8.0*393 to add a side-by-side comparison in columnar format, which only works if Kernel Toolkit Patch XT*7.3*93 has also been installed, as shown below:

Figure 23-10. Compare Transport Global to Current System option—Sample comparison output in columnar format

<table>
<thead>
<tr>
<th>Select Kernel Installation & Distribution System Option:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Load a Distribution</td>
</tr>
<tr>
<td>2 Verify Checksums in Transport Global</td>
</tr>
<tr>
<td>3 Print Transport Global</td>
</tr>
<tr>
<td>4 Compare Transport Global to Current System</td>
</tr>
<tr>
<td>5 Backup a Transport Global</td>
</tr>
<tr>
<td>6 Install Package(s)</td>
</tr>
<tr>
<td>Restart Install of Package(s)</td>
</tr>
<tr>
<td>Unload a Distribution</td>
</tr>
</tbody>
</table>

Select Installation Option: 4 <Enter> Compare Transport Global to Current System

Select INSTALL NAME: XU*8.0*381 <Enter> Loaded from Distribution

Loaded from Distribution 9/14/06@12:39:52

=> DEMO COMPARE ;Created on Sep 14, 2006@12:39:17

This Distribution was loaded on Sep 14, 2006@12:39:52 with header of

DEMO COMPARE ;Created on Sep 14, 2006@12:39:17

It consisted of the following Install(s): XU*8.0*381

Select one of the following:

1 Full Comparison
2 Second line of Routines only
3 Routines only
4 Columnar Routine compare

Type of Compare: 4 <Enter> Columnar Routine compare

DEVICE: HOME// <Enter> Telnet terminal

Compare XU*8.0*381 to current site Routines Only

Compare of routines from KIDS XU*8.0*381, and disk

Routine XU8P381 not on disk

Routine XUTMTP

<table>
<thead>
<tr>
<th>KIDS</th>
<th>Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1{XUTMTP ;SEA/RDS - TaskMan:ToolKit}</td>
<td>1{XUTMTP ;SEA/RDS - TaskMan: ToolKit}</td>
</tr>
<tr>
<td>{}, Print, Part 1 ;04/18/2006 16:19</td>
<td>{}, Print, Part 1 ;04/24/2003 11:06</td>
</tr>
<tr>
<td>2{ ;;8.0;KERNEL;*20,86,169,242,381}</td>
<td>2{ ;;8.0;KERNEL;20,86,169,242;Ju}</td>
</tr>
</tbody>
</table>

23.7.8 Backing Up Transport Globals

The Backup a Transport Global option [XPD BACKUP] creates a MailMan message that will back up all current routines on your system that would be replaced by a KIDS patch. This option is under the
Installation menu of the KIDS menu. It works on a patch that has been loaded on your system, but not installed.

23.7.9 Running Installations

Once you've loaded the transport global(s) from a standard distribution, you can install them. Do this using the Install Package(s) option [XPD INSTALL BUILD].

When you load a distribution, KIDS tells you which transport global name to use to install the distribution (e.g., "Use PACKAGE 1.0 to install this Distribution"). This will always be the first transport global to successfully load from the distribution. When you use the Install Package(s) option [XPD INSTALL BUILD], select the transport global name reported when you loaded the original distribution. Once you've done that, you can answer the installation questions for each transport global in the distribution.

23.7.9.1 Processing Each Transport Global

When you select a distribution to install, the Install Package(s) option processes the installation questions for each transport global in the distribution. For each transport global, you're asked:

- Pre-Install questions.
- Standard KIDS Questions.
- Post-Install Questions.
- Whether to disable any options or protocols. By typing three question marks ("???") at this prompt KIDS will list all of the options and protocols it will disable. If you answer YES, all incoming options and protocols are disabled. You are also prompted to add to or delete from the list of options and protocols to disable. However, KIDS does not disable options and protocols which have an Action of USE AS LINK FOR MENU ITEMS. All scheduled options on the system are also disabled. Finally, you are asked a time period for installation:

```
Delay Install(Minutes): (0-60): 0//
```

You can delay before starting the installation after disabling options and protocols from 0 to 60 minutes. This is to allow users already in (disabled) options time to exit the options before the installation starts.

23.7.9.2 Scheduling Installations

The final question you are asked when using the Install Package(s) option to load software is upon what device to run the installation. Your choices at the "DEVICE: " prompt are:

- Run the installation directly by selecting a device without queueing. The installation runs immediately, on the device you specify.
- Queue the installation.
- Abort the installation of the distribution by entering a caret ("^").
23.7.10 When the Installation is Queued

If you queued the installation, you can look up the installation task in TaskMan. A KIDS installation task looks like:

![Figure 23-11. Queued KIDS installation—Sample installation task](image)

You can cancel a queued installation (before it has started) by deleting the task. KIDS also allows you to restart an install if the install is queued and you get an error during the installation.

23.7.11 Re-answering Installation Questions

If you queued an installation, you can re-answer installation questions, if you so choose, using the Install Package(s) option. To be able to re-answer the questions, however, you need to locate the task that was queued for the installation and delete it first. Once you delete the installation's queued task, you can re-answer the install questions. When you re-answer questions, your answers from the previous time come up as default responses.

Also, if you abort an installation after answering its installation questions (i.e., by entering a caret ["^"]), your responses will again be used as the defaults the next time you try to install.

23.7.12 Information Stored in the INSTALL File (#9.7)

KIDS exports the definition of a software application in the BUILD file (#9.6). KIDS records installations of software in the INSTALL file (#9.7). The installation records in the INSTALL file (#9.7) provide a record of the start time, timing for each checkpoint, and completion time (if any) for an installation.

When an installation aborts, the contents of the INSTALL file (#9.7) determine where the install will start up again when you use the Restart Install of Package(s) option (checkpoint information is stored in the INSTALL file [#9.7]).

As well as being sent to the installation's principal device, all output from the installation is also stored in the INSTALL file (#9.7), in the MESSAGES word-processing-type field.

The installation questions (and your answers to them) are stored in the INSTALL ANSWERS field (Multiple) of the INSTALL file (#9.7).

You can print entries from the INSTALL file (#9.7) with the Install File Print option.
23.7.13 Answering Installation Questions for a Distribution

Figure 23-12. Answering installation questions for a distribution—Flowchart

Select a distribution to install by choosing INSTALL File entry for the first transport global in the distribution.

KIDS starts processing first transport global.

Any more transport globals to process?

Answer pre-install questions (if developer needs any answers for pre-install phase of installation).

Answer Data Dictionary (DD) and Data questions (if developer is exporting DDs or data).

Answer post-install questions (if developer needs any answers for post-install phase of installation).

Queue job

Run job directly

Installation task created, at time you specify.

Abort Installation.

Installation runs immediately, using the current device.

Remove transport global(s) from ^XTMP?

KIDS removes transport global(s) from ^XTMP

Exit

Experiment

Any more transport globals to process?

Question:
Remove transport
(global(s) from
^XTMP?)

Yes

No

Question:
Move routines
to other CPUs?

Yes

Select CPUs to install routines on.

No

Queue job

Up-arrow out

Install
Task
created, at time you specify.

Abort Installation.

Installation runs immediately, using the current device.

Question:
Disable options and protocols during install?

Yes

Edit/select set of options and protocols to disable during install. If you select anything to disable, TaskMan will also be suspended (from running scheduled options only), during install.

No

Question:
Device for Installation?

Abort Installation.

Installation runs immediately, using the current device.

Yes

No

Question:
Move routines to other CPUs?

Select CPUs to install routines on.

Yes

No

Queue job

Run job directly

Exit
23.7.14 Installation Progress

If the device selected for output is a VT100-compatible (or higher) terminal, KIDS displays the installation output in a virtual window on the terminal. Below the virtual window, a progress bar graphically illustrates the percentage complete that the current part of the installation has reached. KIDS is able to report progress for the installation of files and for all components (PRINT templates, forms, help frames, routines, options, etc.) KIDS lists those compiled cross-references, INPUT templates, and PRINT templates that were created during the install process. KIDS does not show progress for installing data, nor for pre- and post-install tasks.

On all other devices, progress is reported using dots.

Figure 23-13. Installation progress—Sample output

```
TEST 1.1

Installing Routines:
  Oct 07, 2004@15:00:02

Installing PACKAGE COMPONENTS:

Installing PRINT TEMPLATE
  Oct 07, 2004@15:00:04

Updating Routine file...

The following Routines were created during this install:
  ZZR4

Updating KIDS files...

TEST 1.1 Installed.
  Oct 07, 2004@15:00:05

100%
Complete 25 50 75
```

23.7.15 Once the Installation Finishes

When the installation runs, its output is sent to the device you specified when you answered the installation questions. If, for example, you queued the installation to a printer, the output is sent to the printer.

You can find out whether an installation finished by looking up the entry in the INSTALL file (#9.7) for that installation (use the Install File Print option). You should check whether an installation completed successfully or not. If the install completed successfully, the STATUS field in the INSTALL file (#9.7) entry will be set to "Install Completed." If the install errored out, the STATUS field in the INSTALL file
If you disabled scheduled options, options, and protocols, KIDS should have re-enabled those (unless the install errored out).

You should refer to the instructions that came with the software you installed to see what post-installation tasks, if any, you should perform.

23.7.16 Restarting Aborted Installations

A feature of KIDS is the ability to restart an aborted installation. KIDS uses a checkpoint system to keep track of how many phases of an installation it completed. When an installation aborts for some reason, you can restart the installation (using the Restart Install of Package(s) option [XPD RESTART INSTALL]). KIDS does not automatically re-run the entire installation from the beginning; instead, it re-runs the installation only from the last completed checkpoint.

As well as some standard checkpoints built into KIDS (e.g., completion of pre-install, completion of each component type, and completion of post-install), KIDS lets developers create checkpoints for use within their pre- and post-install routines. So depending on how the developer has designed a pre- or post-install, it is possible that, when re-started, the pre- or post-install does not have to be re-run in its entirety either (if the error occurred there). Instead, KIDS only re-runs the pre- or post-install from the last completed developer checkpoint (if any) within the pre- or post-install.

Before restarting an installation, you should try to determine what caused the installation to abort. If an error occurred, any error messages will be in the INSTALL file (#9.7) entry, in the MESSAGES word-processing-type field. Once you've fixed the problem, you can use the Restart Install Of Package(s) option [XPD RESTART INSTALL] to continue with the installation. KIDS also allows you to restart an install if the install is queued and you get an error during the installation.

23.7.17 Recovering from an Aborted Distribution Load

If you encounter an error while loading a distribution (using the KIDS option to load a distribution from the export medium into the ^XTMP global), you will be unable to re-load the distribution until you clear out what was stored during the aborted load attempt.

To clear out the previously loaded distribution, use the Unload a Distribution option [XPD UNLOAD DISTRIBUTION]. To unload a distribution, enter the name of the first transport global that was loaded when you loaded the distribution. The entries in the INSTALL file (#9.7) for all transport globals in the distribution will be removed, and the transport globals themselves will be purged from the ^XTMP global.

Once you delete entries in the INSTALL file (#9.7) and entries in the ^XTMP global with the Unload a Distribution option [XPD UNLOAD DISTRIBUTION], you should be able to reload the distribution in question. If the install was already started and you choose to unload the distribution, you first must edit...
the INSTALL file (#9.7) and set the STATUS field to Load From Distribution (i.e., 0) prior to using the Unload a Distribution option [XPD UNLOAD DISTRIBUTION].

23.8 Installing Global Distributions

The second type of distribution supported by KIDS is called a global distribution. This type of distribution, unlike standard distributions, is used to only export globals.

You still use the Load a Distribution option to install global distributions. Unlike loading a standard distribution, however, KIDS installs global distributions immediately from the Load a Distribution option. Also, there is no queueing of the installation.

A global distribution can only contain one transport global, and the transport global can only export globals. You know that the distribution you're installing is a global distribution rather than a standard distribution, because when you load it with the Load a Distribution option, KIDS will indicate the following:

![Figure 23-14. KIDS Global distribution—Sample message](image)

This is a Global Distribution. It contains Global(s) that will update your system at this time. The following Global(s) will be installed:

The Load a Distribution option lists each global that will be installed from the distribution. Each global in the list is marked OVERWRITE or REPLACE:

- OVERWRITE—Load the global without purging the site's version of the global beforehand.
- REPLACE—Purge the site's version of the global first, and then load the global.

You are given two chances to abort the installation of the global distribution. If you answer YES to both questions, the globals in the global distribution are installed immediately.

23.9 Purging the BUILD and INSTALL Files

Each KIDS installation adds one entry to the BUILD (#9.6) and INSTALL (#9.7) files for every transport global installed from the distribution.

REF: For information about purging these files, see the discussion of the Purge Build or Install Files option in the "Purge Build or Install Files" topic in the "KIDS: System Management—Utilities" chapter in this manual.
Figure 23-15. Installation of a global distribution—Load a Distribution option

Select Installation Option: Load a Distribution
Enter a Host File: [DMANAGER]XGGLOBAL.DAT

KIDS Distribution save on Jan 26, 2004@12:58:25
Comment: GLOBAL PACKAGE

This Distribution contains the following Transport global(s):
GLOBAL PACKAGE 1.0

This is a Global Distribution. It contains Global(s) that will update your system at this time. The following Global(s) will be installed:
^XGRON(l) Overwrite
^XGRON("PX") Replace
^XGRON("TX") Overwrite

If you continue with the Load, the Global(s) will be Installed at this time.

Want to Continue with Load? YES// <Enter>
Loading Distribution...

Globals will now be installed, OK? YES// <Enter>
Installing Globals...
 Jan 26, 2004@13:04:16

GLOBAL PACKAGE 1.0 Installed.
 Jan 26, 2004@13:04:17

Select Installation Option:
23.10 Alpha/Beta Tracking

Kernel provides a mechanism for tracking and monitoring installation and option usage during the alpha and beta testing phases of VistA software applications. This tool is primarily intended for application developers to use in monitoring the testing process at local test sites.

NOTE: In VA terminology "Alpha" and "Beta" testing are defined as follows:
- Alpha Testing—VistA test software application is running in a site's Test account.
- Beta Testing—VistA test software application is running in a site's Production account.

Alpha/Beta Tracking provides the following services to both developers and IRM personnel:
- Notification when a new alpha or beta software version is installed at a site.
- Periodic option usage reports for alpha or beta options being tracked.
- Periodic listings of errors in the software's namespace that are currently in alpha or beta test at the site.

The following options are provided on the Alpha/Beta Test Option Usage Menu [XQAB MENU], which is located on the Operations Management menu [XUSITEMGR]. These options allow developers and IRM personnel to monitor Alpha/Beta Tracking at a site:
- ErrorsLoggedinAlpha/BetaTest(QUEUED)option[XQABERRORLOGXMIT]
- ActualUsageofAlpha/BetaTestOptionsoption[XQABACTUALOPTIONUSAGE]
- LowUsageofAlpha/BetaTestOptionsoption[XQABLISTLOWUSAGEOPTS]
- PrintAlpha/BetaErrors(Date/Site/Num/Rou/Err)option[XQABERRDATE/SITE/NUM/ROU/ERR]
- SendAlpha/BetaUsagetoProgrammersoption[XQABAUTOSEND]

REF: For more detailed information about and description of the Alpha/Beta Tracking functionality (e.g., starting, stopping, and monitoring options), see the "Alpha/Beta Tracking" topic in Chapter 14, "KIDS: Developer Tools," in the Kernel Developer's Guide.
24. KIDS: System Management—Utilities

KIDS provides the following utility options:

Figure 24-1. KIDS Utilities menu options

<table>
<thead>
<tr>
<th>Function</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel Installation and Distribution System...</td>
<td>[XPD MAIN]</td>
</tr>
<tr>
<td>Utilities...</td>
<td>[XPD UTILITY]</td>
</tr>
<tr>
<td>Build File Print</td>
<td>[XPD PRINT BUILD]</td>
</tr>
<tr>
<td>Install File Print</td>
<td>[XPD PRINT INSTALL FILE]</td>
</tr>
<tr>
<td>Edit Install Status</td>
<td>[XPD EDIT INSTALL]</td>
</tr>
<tr>
<td>Convert Loaded Package for Redistribution</td>
<td>[XPD CONVERT PACKAGE]</td>
</tr>
<tr>
<td>Display Patches for a Package</td>
<td>[XPD PRINT PACKAGE PATCHES]</td>
</tr>
<tr>
<td>Purge Build or Install Files</td>
<td>[XPD PURGE FILE]</td>
</tr>
<tr>
<td>Rollup Patches into a Build</td>
<td>[XPD ROLLUP PATCHES]</td>
</tr>
<tr>
<td>Update Routine File</td>
<td>[XPD ROUTINE UPDATE]</td>
</tr>
<tr>
<td>Verify a Build</td>
<td>[XPD VERIFY BUILD]</td>
</tr>
<tr>
<td>Verify Package Integrity</td>
<td>[XPD VERIFY INTEGRITY]</td>
</tr>
</tbody>
</table>

These utilities can be used both by developers and by sites who install software created by KIDS.
24.1 Build File Print Option

The Build File Print option [XPD PRINT BUILD] prints out the build entry for a software application. It lists the complete definition of the software, including all files, components, install questions, and the environment, pre-install, and post-install routines.

Figure 24-2. Build File Print option—Sample output

```
PACKAGE: ZXG DEMO 1.0
----------------------------------------------------------------------------
NATIONAL PACKAGE:
DESCRIPTION:
Package containing demonstration of ZXG* functions.
ENVIRONMENT CHECK : ZXGENV
PRE-INIT ROUTINE : ZXGPRE
POST-INIT ROUTINE: ZXGPOS

FILE #     NAME       UP SEND DATA USER
           DATE SEC. COMES SITE RSLV OVER
----------------------------------------------------------------------------
662105     ZXG DEMO   YES YES NO

PRINT TEMPLATE:
ZXG PRINT    FILE #662105 SEND TO SITE

ROUTINE:
ZXGC00 SEND TO SITE
ZXGC01 SEND TO SITE
ZXGC02 SEND TO SITE
ZXGC03 SEND TO SITE
ZXGC04 SEND TO SITE
ZXGC05 SEND TO SITE
ZXGC06 SEND TO SITE
ZXGC07 SEND TO SITE
ZXGC08 SEND TO SITE

OPTION:
ZXG TEST SEND TO SITE

INSTALL QUESTIONS:
```
24.2 Install File Print Option

The Install File Print option [XPD PRINT INSTALL FILE] prints out the results of an installation, as stored in the INSTALL file (#9.7). Use this option to check on the status of an installation in progress or to print out the results of a completed installation.

Figure 24-3. Install File Print option—Sample output

<table>
<thead>
<tr>
<th>PACKAGE: ZXG DEMO 1.0</th>
<th>COMPLETED</th>
<th>ELAPSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATUS: Install Completed</td>
<td>DATE LOADED: FEB 07, 2004@07:51:59</td>
<td></td>
</tr>
<tr>
<td>NATIONAL PACKAGE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALL STARTED: FEB 07, 2004@07:52:14</td>
<td>07:52:23</td>
<td>0:00:09</td>
</tr>
<tr>
<td>ROUTINES:</td>
<td>07:52:15</td>
<td>0:00:01</td>
</tr>
<tr>
<td>PRE-INIT CHECK POINTS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XPD PREINSTALL STARTED</td>
<td>07:52:15</td>
<td></td>
</tr>
<tr>
<td>XPD PREINSTALL COMPLETED</td>
<td>07:52:15</td>
<td></td>
</tr>
<tr>
<td>FILES:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZXG DEMO</td>
<td>07:52:16</td>
<td>0:00:01</td>
</tr>
<tr>
<td>PRINT TEMPLATE</td>
<td>07:52:17</td>
<td>0:00:03</td>
</tr>
<tr>
<td>OPTION</td>
<td>07:52:21</td>
<td>0:00:02</td>
</tr>
<tr>
<td>POST-INIT CHECK POINTS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XPD POSTINSTALL STARTED</td>
<td>07:52:21</td>
<td></td>
</tr>
<tr>
<td>XPD POSTINSTALL COMPLETED</td>
<td>07:52:21</td>
<td></td>
</tr>
<tr>
<td>INSTALL QUESTION PROMPT</td>
<td>ANSWER</td>
<td></td>
</tr>
<tr>
<td>XPZ1 Want to DISABLE Scheduled Options, Options and Protocols</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>MESSAGES:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install Started for ZXG DEMO 1.0 :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb 07, 2004@07:52:14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installing Routines:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb 07, 2004@07:52:15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Running Pre-Install Routine: ^ZXGPRE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installing Data Dictionaries:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb 07, 2004@07:52:16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installing PACKAGE COMPONENTS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installing PRINT TEMPLATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installing OPTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb 07, 2004@07:52:21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Running Post-Install Routine: ^ZXGPOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Updating Routine file...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
24.3 Edit Install Status Option

The Edit Install Status option [XPD EDIT INSTALL], released with Kernel Patch XU*8.0*539, lets you edit the STATUS (#.02) and the INSTALL COMPLETE TIME (#17) fields in the INSTALL file (#9.7). Use this option to change the status of a patch that was de-installed.

Figure 24-4 Edit Install Status option—Sample user dialogue

```
Select Utilities Option: edit install <Enter> Status

Select INSTALL NAME: user test
1 USER TEST 1.0 Install Completed 5/14/08@11:21:04
  => TEST ;Created on May 14, 2008@11:03:58
2 USER TEST 1.0 Loaded from Distribution 7/8/09@10:33:16
  => TEST ;Created on Jul 08, 2009@10:31:50
CHOOSE 1-2: 1 <Enter> USER TEST 1.0 Install Completed 5/14/08@11:21:04
  => TEST ;Created on May 14, 2008@11:03:58
STATUS: Install Completed// ???
This is the status of this package at this site.
Choose from:
  0 Loaded from Distribution
  1 Queued for Install
  2 Start of Install
  3 Install Completed
  4 De-Installed
STATUS: Install Completed// <Enter>
INSTALL COMPLETE TIME: MAY 14, 2008@11:21:04//
```

24.4 Convert Loaded Package for Redistribution Option

Use the Convert Loaded Package for Redistribution option [XPD CONVERT PACKAGE] to add software to an existing distribution.

A KIDS distribution can transport one or more software applications. What if you want to add additional software to an existing distribution? For example, suppose you have a distribution for a software application. Further suppose that patches are transported as individual KIDS software, and you want to add all existing patches to the software's distribution? The Convert Loaded Package for Redistribution option [XPD CONVERT PACKAGE] lets you do this.

In Figure 24-5 and Figure 24-6, distributions for a software application (i.e., ZXG 1.0) and a patch (i.e., ZXG*1.0*1) are both loaded. The Convert Loaded Package for Redistribution option is used to build a new distribution combining both original distributions.
Follow these steps to create a new distribution from existing distributions:

1. Load the original distributions (there is no need to install them, however).

 In this example, we would load the distributions for ZXG 1.0 and ZXG*1.0*1 (but we would not install them).

2. Use the Convert Loaded Package for Redistribution option. It lets you choose loaded transport globals, and transfers them into a format ready for export. Also, it creates build entries for each software application contained in the distributions. This allows you to create a new distribution containing the transport globals from the existing distributions. Patch XU*8.0*44 added the "Want to make the Transport Globals Permanent? NO/" YES prompt, answering YES to this prompt flags the global so that it is not deleted after the transportation. This provides a "Gold" account or library of software and patches that are included in a Transport Global.

 In this example, we would first convert the loaded distribution ZXG 1.0 into a form ready to re-distribute:

 ** Figure 24-5. Convert Loaded Package for Redistribution—Sample user dialogue (1 of 2) **

 Select Utilities Option: Convert Loaded Package for Redistribution
 Select INSTALL NAME: ZXG 1.0 <Enter> Loaded from Distribution

 This distribution was loaded on Feb 28, 2004@08:15:05 with header of
 It consisted of the following Install(s):
 ZXG 1.0

 Want to make the Transport Globals Permanent? NO/YES
 Want to continue with the conversion of the package(s)? NO/YES
 ** DONE **

 Select Utilities Option:

 Then we would convert the patch distribution, ZXG*1.0*1, into a form ready to re-distribute:

 ** Figure 24-6. Convert Loaded Package for Redistribution—Sample user dialogue (2 of 2) **

 Select Utilities Option: Convert Loaded Package for Redistribution
 Select INSTALL NAME: ZXG*1.0*1 <Enter> Loaded from Distribution

 This distribution was loaded on Feb 28, 2004@08:15:35 with header of
 It consisted of the following Install(s):
 ZXG*1.0*1

 Want to make the Transport Globals Permanent? NO/YES
 Want to continue with the conversion of the package(s)? NO/YES
 ** DONE **
3. Create the new distribution with the Transport a Distribution option. Select each build from the original distributions that you want to be part of the new distribution. For each build that you select, you should be told that the transport global already exists and be asked if you want to use this transport global. Answer **YES** in each case to use the current transport global.

Once you have selected all of the builds for the new distribution, go ahead and create the new distribution.

In this example, we create a new distribution containing both ZXG 1.0 (the original software application) and ZXG*1.0*1 (an added software application):

Figure 24-7. Transport a Distribution—Sample user dialogue

Select Edits and Distribution Option: **Transport a Distribution**

Enter the Package Names to be transported. The order in which they are entered will be the order in which they are installed.

First Package Name: **ZXG 1.0 <Enter>** **Transport Global exists**
Use this Transport Global? **YES**
Another Package Name: **ZXG*1.0*1 <Enter>** **Transport Global exists**
Use this Transport Global? **YES**
Another Package Name: <Enter>

Order
1. **ZXG 1.0** **will use current Transport Global**
2. **ZXG*1.0*1** **will use current Transport Global**

OK to continue? **NO**//**YES**

Enter a Host File: **ZXG1.KID**
Header Comment: **PATCHED DISTRIBUTION ZXG 1.0**

 ZXG 1.0...
 ZXG*1.0*1...

Package Transported Successfully

NOTE: Changing a distribution's build entries before redistributing is **not** recommended.
24.5 Display Patches for a Package Option

The Display Patches for a Package option [XPD PRINT PACKAGE PATCHES] prints all patches installed for a software application. It displays the Date Installed and who installed the patches. It optionally will print the description of the patch. All the displayed information comes from the PACKAGE file (#9.4).

Figure 24-8. Display Patches for a Package option—Sample user dialogue

Select Utilities Option: Display Patches for a Package	PACKAGE: KERNEL
Select PACKAGE NAME: KERNEL	Oct 09, 2004 1:32 pm
Select VERSION: 8.0// <Enter> 07-29-95	INSTALLED BY
Do you want to see the Descriptions? NO// <Enter>	XUUSER,TEN
DEVICE: HOME// <Enter> SYSTEM	
VERSION: 8.0	JUL 29, 2004
PATCH #	INSTALLED
28	APR 25, 2004
20 SEQ #23	FEB 09, 2004
32 SEQ #24	MAY 15, 2004
23 SEQ #25	MAY 17, 2004
39 SEQ #26	JUL 19, 2004
26 SEQ #27	JUN 01, 2004
27 SEQ #28	JUN 13, 2004
24 SEQ #29	JUN 30, 2004
40 SEQ #30	AUG 28, 2004
41 SEQ #31	AUG 29, 2004
29 SEQ #32	AUG 30, 2004

24.6 Purge Build or Install Files Option

Each KIDS installation adds one entry to the BUILD (#9.6) and INSTALL (#9.7) files for every transport global installed from the distribution. You can use the Purge Build or Install Files option [XPD PURGE FILE] to purge entries in these files.

The first question the option asks is which file to purge, the BUILD (#9.6) or INSTALL file (#9.7). Choose one of these files.

The next question asked is the number of versions to retain.
24.6.1 Versions to Retain

When you choose to retain some number entries for a software application, the option must decide which entries are most recent. The Purge Install or Build Files option uses numeric order based on software version number to decide which entries are the most recent. When there are multiple entries for the same version number (for example, alpha or beta installs took place), the following order of precedence is used:

1. Released Version is the most recent (version number contains no letters, such as 8.0)
2. Beta Test Version (version number contains V, such as 8.0V10)
3. Alpha Test Version (version number contains T, such as 8.0T10)

24.6.2 Selecting Software Names for Purging

After versions to retain, the next prompt is "Package Name." You can enter a partial or full software application name. You will continue to be prompted for additional software names until you simply press the <Enter> key without making any further entries at the "Package Name" prompt.

- **Packages (Software)**—To select software entries for purging, at the "Package Name" prompt, enter a partial or full software application name. You can optionally enter partial or full version numbers. The list of candidates for purging will contain all entries (excluding patch entries) whose first characters match all characters in the software name that you specify. If you enter "ALL", all software (but not patches) will be selected for purging.

- **Patches**—Patches are a special case. To select patch entries for purging, you must enter the full namespace of the patch, the full version number, and an asterisk. You can optionally add a partial or full patch number after the asterisk. The list of candidates for purging will contain all entries whose first characters match all characters in the string you specify.

Figure 24-9. Purge or Install Files option—Sample user dialogue
24.6.3 Purging Selected Entries

Based on the software name you enter and the number of entries you ask to retain, the option lists the software it finds to purge. If you answer YES to the "OK to DELETE these entries? NO/" prompt, the option purges the listed entries.

24.6.4 Reasons to Retain BUILD and INSTALL File Entries

- **BUILD file**—Entries in the BUILD file (#9.6) are created by the software developers and identify every component in the software. BUILD file (#9.6) entries also contain the checksums for a software application's components. You may want to retain the build entry for the most recent versions of installed software, so that you can verify the checksums of the loaded software against its original checksums.

- **INSTALL file**—Each entry in the INSTALL file (#9.7) contains a record of the installation for a given software application. This information is useful as a record of each installation.
24.7 Rollup Patches into a Build Option

The Rollup Patches into a Build option [XPD ROLLUP PATCHES] finds all the patches for a software application and add their individual BUILD file (#9.6) definitions to the software's BUILD file (#9.6) definition. This will enable you to create a single BUILD file (#9.6) entry that contains the definition for the patched software.

KIDS checks the BUILD file (#9.6) and lists all KIDS patches with a matching software name and version number. The list of patches is not necessarily displayed in patch sequence number.

This list only includes KIDS patches. Also, it does not include any pre- or post-install routines. You can use the Edit a Build option to further modify the build and add any additional patches.

Figure 24-10. Rollup Patches into a Build option—Sample user dialogue

Select Utilities Option: Rollup Patches into a Build

Rollup patches into Build: KERNEL 8.0T20 <Enter> KERNEL
This package already contains the following patches:
XU*8.0T20*4

The following patches can be rolled into Package RON 8.0T20
XU*8.0T20*5
XU*8.0T20*6
XU*8.0T20*7
XU*8.0T20*8
XU*8.0T20*11

OK to continue? YES// <Enter>
...SORRY, HOLD ON...
................Done.

24.8 Update Routine File Option

The Update Routine File option [XPD ROUTINE UPDATE] updates the ROUTINE file (#9.8) to match the routine set stored on the current system.

Ideally, the ROUTINE file (#9.8) would contain an entry for every routine on the current system. However, the ROUTINE file (#9.8) does not get updated automatically when routines are added to or deleted from the system. But KIDS needs the ROUTINE file (#9.8) so that it can store the list of routines in a software application as pointers to the ROUTINE file (#9.8) (rather than relying on namespace alone).

Developers should use this option to update the ROUTINE file (#9.8) before editing the routine component in a build entry, to ensure that all the routines they want to include in a software application can be selected by the routines' matching entries in the ROUTINE file (#9.8).

If you answer YES to the question "Want me to clean up the Routine file before updating?", the option goes through the ROUTINE file (#9.8) and deletes any entries across all namespaces that have no matches with an actual routine on the current system. As of Kernel Patch XU*8.0*393, however, any
routine that has been marked in the CHECKSUM REPORT field (#6) in the ROUTINE file (#9.8) as "National" will not be deleted during the clean up the Routine File phase of the update.

Then, the Update Routine File option re-populates the ROUTINE file (#9.8) with all routines currently on the system for the namespaces you enter (you can exclude parts of a namespace if you want, as well).

Figure 24-11. Update Routine File option—Sample user dialogue

Select Utilities Option: Update Routine File

Routine Namespace: XU
Routine Namespace: -XUI
Routine Namespace: <Enter>

NAMESPACE INCLUDE EXCLUDE
------- -------
XU XUI

OK to continue? YES// <Enter>

Want me to clean up the Routine File before updating? YES// <Enter>

...SORRY, THIS MAY TAKE A FEW MOMENTS... ...Done.

24.9 Verify a Build Option

The Verify a Build option [XPD VERIFY BUILD] checks whether a build entry's listed components actually exist on the current system. This is useful for developers who are preparing to create a transport global. They can check that there are actual components on the system matching the components requested in the build entry, in advance of trying to create a transport global. Therefore, developers should use the Verify a Build option before creating transport globals from build entries.

For any component in the build entry that does not actually exist on the system, the option outputs a one-line message identifying the missing component, with the appellation **NOT FOUND**. The developer is also prompted with "Do you want to remove the missing Files? NO/". This allows you to verify if the missing component should in fact be removed from the build. If the missing component is required, the developer should create the missing component for the build entry before creating a transport global.

Figure 24-12. Verify a Build option—Sample user dialogue

Select Utilities Option: Verify a Build
Select BUILD NAME: XU*8.0*11 <Enter> KERNEL
File #8995 ** NOT FOUND **
Do you want to remove the missing Files? NO// <Enter>

** DONE **

Select Utilities Option:
24.10 Verify Package Integrity Option

You can use the Verify Package Integrity option [XPD VERIFY INTEGRITY] to compare checksums of software components on the system against the checksums of the components when they were originally transported. Any discrepancies are reported. Currently, routines are the only components that are checked, but checksums will be extended to other software components in the future.

The checksums of components for the currently installed software are verified against checksums stored in the BUILD file (#9.6) entry for the software. If the most recent version of the BUILD file (#9.6) entry for a software application has been purged, the Verify Package Integrity option will no longer be able to verify checksums for the loaded software. Because of this, in most cases you should not purge the most recent build entry for a software application.

As of Kernel Patch XU*8.0*369, the integrity checking CHECK1^XTSUMBLD routine supports the Compare local/national checksums report option [XU CHECKSUM REPORT].

As of Kernel Patch XU*8.0*393, KIDS was modified to send a message to a server on FORUM when a KIDS build is sent to a Host File Server (HFS) device. This message contains the checksums for the routines in the patch. The server on FORUM matches the message with a patch if the sending domain is authorized on FORUM. There is no longer a need for developers to manually include routine checksums (either CHECK^XTSUMBLD or CHECK1^XTSUMBLD routines) in the patch description. The patch module will include the before and after CHECK1^XTSUMBLD values in the Routine Information section at the end of the patch document.

With changes in the National Patch Module (NPM) on FORUM, when the patch is released the checksums for the routines are moved to the ROUTINE file (#9.8) on FORUM. The checksum "before" values will come from the FORUM ROUTINE file (#9.8) and are considered the GOLD standard for released checksums. The local site's Compare local/national checksums report option [XU CHECKSUM REPORT] uses the FORUM ROUTINE file (#9.8) as its source to create reports showing any routines that do not match.

This patch also modified the KIDS BUILD file (#9.6) by adding the TRANSPORT BUILD NUMBER field (#63) used to store a build number that is incremented each time a build is made. This build number is added to the second line of each routine in the 7th ";" piece. This makes it easy to tell if a site is running the current release during testing and afterword. The leading "B" found in the checksum tells the code what checksum API to use.
VI. Toolkit

This section provides descriptive information about the set of software utilities furnished by Kernel Version 8.0 and Kernel Toolkit Version 7.3 (a.k.a. "Toolkit"), describing how these tools can be used for the management and definition of development projects.

The major areas of the Kernel Toolkit described in this section are listed below:

- **Multi-Term Look-Up (MTLU)**

 Multi-Term Look-Up (MTLU) utilities provide a method of enhancing the lookup capabilities of associated VA FileMan files. Multi-Term Look-Up (MTLU) is an adaptation of a tool developed by the Indian Health Service (IHS) which was originally made generic by the Albany Office of Information Field Office (OIFO). MTLU does the following:

 - Tests ICD diagnosis and procedure codes, CPT codes, and other commonly used references that have been entered in the LOCAL LOOKUP file (#8984.4). Optionally, terms or phrases can be entered into the LOCAL KEYWORD (#8984.1), LOCAL SHORTCUT (#8984.2), or LOCAL SYNONYM (#8984.3) files.

 - Prints a list of shortcuts, keywords, or synonyms from a specified reference file in the LOCAL LOOKUP file (#8984.4).

 - Adds or deletes a reference file from a site's LOCAL LOOKUP file (#8984.4).

 - Enters new or edit existing shortcuts, keywords, or synonyms to the LOCAL LOOKUP file (#8984.4).

- **Routine Tools**

 Routine Tools provide a set of generic tools to aid the VistA development community and IRM in analysis, writing, and testing of code. These tools are used by VistA developers to support distinct tasks. Routine Tools do the following:

 - Promote standard program interfaces.

 - Check adherence to programming standards and correct syntax with the XINDEX utility.

 - Provide standard error trapping, storing, and reporting.

 - Customize and tunes site parameters for local requirements.

 - Provide M function libraries.

 - Provide a portable routine and global editor.

 - Provide a Kermit file transfer utility.

 - Provide a Multi-Term Look-Up (MTLU) utility for enhanced VA FileMan lookups.

 - Provide software project management utilities.
• **Verification Tools**

Verification Tools are a set of generic tools to aid the VistA development community and IRM in reviewing M code. These tools are used by VistA developers to support distinct tasks. Verification Tools provide the following:

− Tools used for comparison of routines and data dictionaries.
− A tool used to record routine text indicated in the file used to maintain changes in routines.

Where applicable, each major area of Kernel Toolkit is described first in terms of its user interface then in terms of system management implications, showing the menu that can be used to accomplish the task at hand.

REF: Kernel and Kernel Toolkit Application Program Interfaces (APIs) are documented in the "Toolkit: Developer Tools" chapter in the *Kernel Developer's Guide*. Kernel and Kernel Toolkit APIs are also available in HTML format at the following VA Intranet Website:

NOTE: The *Parameter Tools Supplement to Patch Description (Patch XT*7.3*26)* explains the functions available with the use of the Parameter Tools, provides information on the Kernel PARAMETERS file (#8989.5), and describes the associated Application Program Interfaces (APIs).

REF: This documentation can be downloaded from the VHA Software Document Library (VDL) Website:

http://www.va.gov/vdl/application.asp?appID=12

The following Kernel Toolkit chapters were removed from the "Toolkit" section of this manual because they are superseded by subsequent software and documentation:

• **Duplicate Record Merge**

The Kernel Toolkit "Duplicate Record Merge" documentation is superseded by the *Duplicate Record Merge: Patient Merge* software/documentation (i.e., Kernel Toolkit Patch XT*7.3*23). The Duplicate Record Merge functionality provides a developer Merge Shell with options that allow users to check data files for duplicate entries and merge those entries if any are found. These options provide functionality to combine duplicate records based on conditions established in customized applications. The Merge Shell was originally developed by Indian Health Service (IHS) to support their Multi-Facility Integration Project.

REF: The *Duplicate Record Merge: Patient Merge* documentation is made available online in both Microsoft Word (DOC) and Adobe Acrobat (PDF) formats. It can be downloaded from the VHA Software Document Library (VDL) at the following Website:

http://www.va.gov/vdl/application.asp?appid=2
- **Capacity Management**

 The Kernel Toolkit "Capacity Management" documentation is superseded by the following software/documentation:
 - Capacity Management (CM) Tools 2.0
 - Resource Usage Monitor (RUM) 2.0
 - Statistical Analysis of Global Growth (SAGG) 1.8

REF: The Capacity Management-related documentation is made available online in both Microsoft Word (DOC) and Adobe Acrobat (PDF) formats. It can be downloaded from the VHA Software Document Library (VDL) at the following Website:

Kernel Toolkit Patch XT*7.3*102 removed all options, routines, and files associated with the following menus and options:

 - VPM VAX/ALPHA Capacity Management ...
 - Move Host File to Mailman
 - Response Time Log Options ...

The following namespace options and routines are also removed:

 - XUCM*
 - XUCS*
 - XURTL*
 - XTCM DISK2MAIL(option)
 - XTCMXTCMFILN (routine)
Data dictionaries and data have been deleted for the following VA FileMan compatible files:

- Global ^XUCM:
 - CM DAILY STATISTICS (#8986.6)
 - CM DISK DRIVE RAW DATA (#8986.5)
 - CM METRICS (#8986.4)
 - CM NODENAME RAW DATA (#8986.51)
 - CM SITE DISKDRIVES (#8986.35)
 - CM SITE NODENAMES (#8986.3)
 - CM SITE PARAMETERS (#8986.095)
 - VPM RESPONSE TIME DATA (#8986.098)
- Global ^%ZRTL:
 - RESPONSE TIME (#3.091)
 - RT DATE_UCl,VOL (#3.092)
 - RT RAWDATA (#3.094)

Data has been deleted for the following non-VA FileMan compatible global:

- ^%ZRTL(3)
- ^%ZRTL("RTH")

NOTE to System Managers: The ^XUCM and %ZRTL globals can be removed from your database after installation of this patch; however, please make sure no local routines access these globals before doing so.
25. Multi-Term Look-Up (MTLU)

25.1 Overview

This chapter contains an introduction and functional description, site implementation instructions for Multi-Term Look-Up (MTLU), and the option documentation.

25.2 Introduction to Multi-Term Look-Up (MTLU)

Many medical information systems depend on the standardized encoding of diagnoses and procedures for reports, searches, and statistics. The ICD DIAGNOSIS (#80), ICD OPERATION/PROCEDURE (#80.1), and CPT (#81) files are among some of the more critical files. The Multi-Term Look-Up utility increases the accessibility of the information in these files by associating user-supplied words or phrases with terms found in a more descriptive, free-text field.

Multi-Term Look-Up allows:

- Local setup of virtually any reference file.
- Modification of the behavior of the "special" lookup by defining shortcuts, synonyms, or keywords.

MTLU integrates with any software that uses a reference file that has been entered into a site's LOCAL LOOKUP file (#8984.4).

25.3 Functional Description

The Multi-Term Look-Up (MTLU) utility provides a method of enhancing the lookup capabilities of associated software applications. This utility is comprised of the following options:

- The Multi-Term Lookup (MTLU) option [XTLKLKUP] is used to test ICD diagnosis and procedure codes, CPT codes, and other commonly used references that have been entered in the LOCAL LOOKUP file (#8984.4). Optionally, terms or phrases may be entered into the LOCAL KEYWORD (#8984.1), LOCAL SHORTCUT (#8984.2), or LOCAL SYNONYM (#8984.3), files.

- The Print Utility option [XTLKPRTUTL] is used to print a list of shortcuts, keywords, or synonyms from a specified reference file in the LOCAL LOOKUP file (#8984.4). This list can be sorted alphabetically by name or numerically by code.

- The Delete Entries from Look-Up option [XTLKMODPARK] is used to delete a reference file from a site's LOCAL LOOKUP file (#8984.4). This option should be used as an IRM/developer utility and can only be accessed by holders of the XTLKZMGR security key.

- The Add Entries To Look-Up File option [XTLKMODPARS] is used to add reference files to a site's LOCAL LOOKUP file (#8984.4). This option should be used as an IRM/developer utility and can only be accessed by holders of the XTLKZMGR security key. In order to add entries with this option, DUZ(0) must be set to an at-sign (@); programmer access).
Multi-Term Look-Up (MTLU)

- The Add/Modify Utility option [XTLKMODUTL] is used to enter new or edit existing shortcuts, keywords, or synonyms to the LOCAL LOOKUP file (#8984.4) as described below:
 - The Shortcuts option [XTLKMODSH] is used to enter new or edit existing shortcuts to the LOCAL LOOKUP file (#8984.4).
 - The Keywords option [XTLKMODKY] is used to enter new or edit existing keywords to the LOCAL LOOKUP file (#8984.4).
 - The Synonyms option [XTLKMODSY] is used to enter new or edit existing synonyms to the LOCAL LOOKUP file (#8984.4).

25.4 Usage Considerations

MTLU provides users and developers with the ability to perform specialized lookups on database files using standard VA FileMan calls. These files typically comprise a number or "term" in the .01 field and a longer description or definition in some other field.

In the simplest application of MTLU, a special lookup routine (XTLKDICL) is defined in the file's data dictionary (DD), then a MUMPS cross-reference is applied to the description/definition field. Options are available to fully configure a file for use with MTLU. FileMan is used to create/build the cross-reference. To set the cross-reference, text from the selected field is passed to a tokenizing routine (XTLKTOKN). Trivial words are filtered by an expanded Key Word In Context (KWIC), then each remaining token is added to the cross-reference.

To request a lookup, users and developers can pass in words or phrases. Their input is similarly tokenized. However, only terms associated with all tokens entered are found. Input can be generalized using partial words or fewer words as well as lexical variants. For example, using the FileMan Inquire to File Entries option on the ICD DIAGNOSIS file (#80) one could first enter "MALIG". MTLU informs the user which terms apply to the search, "MALIG/MALIGNANT", and that 447 matches are found. To be more specific, the user might enter "MALIG LIP" to request all malignancies associated with the lip. In this case, only 12 matches are found. The user can further screen searches by using the Not-Sign (') before a word or phrase. To request all malignancies of the lip except those of the lower lip, one could enter "MALIG LIP 'LOWER" and obtain 10 matches. Though the term "malignancies" may not exist in the lookup file, MTLU might still produce a match. When a term contains a suffix that does not produce a match, MTLU removes the suffix and continues the search.

REF: For more information on the Inquire to File Entries option, see the "Print" chapter in the *VA FileMan Getting Started Manual.*
Three additional files are supplied that can dramatically alter the predictable behavior described above. They are checked in the following order against the user's entry:

1. **LOCAL SHORTCUT file (#8984.2):** Shortcuts are used to point to a single term. They can be a word or phrase. MTLU checks the user's entry against this file first for an exact match. If found, the lookup displays only the associated entry. A single shortcut cannot point to multiple terms.

2. **LOCAL SYNONYM file (#8984.3):** Synonyms can be associated with many terms in a file because they can be associated with multiple "tokens" rather than a specific term. For example, CANCER can be defined as a synonym of "MALIG", "TUMOR", and "LEUKEMIA". When the user enters CANCER, the lookup finds all terms associated with the three tokens as if each had been entered separately. Compared with the example above, CANCER returns 534 matches. CANCER LIP returns the same 12 matches as MALIG LIP.

3. **LOCAL KEYWORD file (#8984.1):** A keyword or phrase can be associated with a single term, much like a shortcut; however, it can also be associated with multiple terms, and multiple keywords can be associated with the same term.

The term SMOKER can be used as a synonym or keyword. As a keyword, one can associate it with a few specific diseases. As a synonym, properly selected tokens might result in a display of all smoking-related diseases.

Recall that MALIG results in 447 matches. If this were used as a shortcut to a single entry, MTLU would display only that entry and the remaining 446 would never be displayed.

These files add some control over the behavior of certain lookups. However, developers should use extreme caution when placing entries in these files to ensure that results are predictable and appropriate for both users and other VistA software developers.

The decision to populate them for a given lookup file depends on whether or not a commonly used word or phrase results in any matches during a lookup. If not, it is a candidate. The LOCAL KEYWORD (#8984.1), LOCAL SHORTCUT (#8984.2), and LOCAL SYNONYM (#8984.3) files should only be populated with common words or phrases.

In the event that a search produces no matches, MTLU continues with a standard FileMan search.
25.5 User Interface

25.5.1 Multi-Term Look-Up Menu Options

The following is a description of the Multi-Term Lookup Main Menu [XTLKUSER2] which can be selected from the Application Utilities menu [XTMENU]. The options are described in the same order as they appear on the screen:

Figure 25-1. Multi-Term Lookup Main Menu options

Application Utilities ...	[XTMENU]
Multi-Term Lookup Main Menu ...	[XTLKUSER2]
Multi-Term Lookup (MTLU)	[XTLKLKUP]
Print Utility	[XTLKPRTUTL]
Utilities for MTLU ... <Locked with XTLKZMGR>	[XTLKUTILITIES]
Delete Entries From Look-up <Locked with XTLKZMGR>	[XTLKMODPARK]
ST Add Entries To Look-Up File <Locked with XTLKZMGR>	[XTLKMODPARS]
Add/Modify Utility...	[XTLKMODUTL]

Most MTLU options are described using the following methods:

- Introduction—A detailed description of the option is given. The introduction usually contains any necessary special instructions.
- Process Chart—The step-by-step flow of the option is illustrated, showing the various choices allowed at each prompt.
- Examples—In most cases, there is an example of what might appear on the screen when using the particular option. If the option produces a hardcopy output, an example of the output is usually given.

The phrase "You will be prompted for a device at this step" appears in the process chart when a device is asked for. A Standard Device Chart is shown on the next page. It provides assistance in answering prompts related to device selection.

The MTLU Process Charts do not contain documentation of the system's response to erroneous input. In certain instances, in order to preserve the integrity of previously entered data, the system does not allow the entry of a caret (^, sometimes referred to as an up-arrow). This might not be documented.
The following chart provides assistance in answering prompts related to device selection:

25.5.1.1 Standard Device Chart

Figure 25-2. Standard Device Chart

<table>
<thead>
<tr>
<th>STEP</th>
<th>AT THIS PROMPT...</th>
<th>IF USER</th>
<th>THEN</th>
<th>ANSWERS WITH...</th>
<th>STEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DEVICE:</td>
<td>Device name/number from your DEVICE file (#3.5) for report to print on.</td>
<td>3</td>
<td>'Q'UEUE to have report queued to print at a Later date/time.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><Enter> for report to Print on your screen.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Up-arrow <^> to have report queued to print at a Later date/time.</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>DEVICE:</td>
<td>Device name/number from your DEVICE file (#3.5) for report to print on.</td>
<td>6</td>
<td>*<Enter> to accept default, different RIGHT MARGIN Value, or up-arrow <^>.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*The next step depends on what you entered in Step 1: Device name/number</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>"Q".</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><Enter> (The report appears on your screen).</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>RIGHT MARGIN: 132//</td>
<td>*<Enter> to accept default, different RIGHT MARGIN Value, or up-arrow <^>.</td>
<td>6</td>
<td>*If <Enter> or later date/time is entered, the following message appears: "REQUEST QUEUED!"</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>WANT TO FREE UP THIS TERMINAL? NO//</td>
<td><Enter> to accept default, Y'ES to free up terminal during report processing and to exit from the system.</td>
<td>6</td>
<td>Up-arrow <^>.</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>REQUESTED TIME TO PRINT: NOW//</td>
<td>*<Enter> to accept default, Later date/time for report process to begin.</td>
<td>6</td>
<td>Up-arrow <^>.</td>
<td>6</td>
</tr>
</tbody>
</table>
25.5.2 Using the Multi-Term Lookup (MTLU) Option

The Multi-Term Lookup (MTLU) option [XTLKLKUP] is used to test the ICD diagnosis and procedure codes, CPT codes, and other commonly used references that have been entered in the LOCAL LOOKUP file (#8984.4) and have been associated with a shortcut, synonym, or keyword.

The system searches for entries in the following order: shortcut, synonym, then keyword. If you are entering a multi-term narrative (phrase), you can enter double spaces between each term to avoid a search of the LOCAL SHORTCUT file (#8984.2). When searching for a keyword phrase, the system searches for each word in the phrase and then displays all common entries. For example, if the keyword is FRACTURE FEMUR, the system searches for FRACTURE and then FEMUR and displays only those codes with a diagnosis containing both keywords or synonyms of those words.

The following process chart shows the prompts and steps involved in using the Multi-Term Lookup (MTLU) option:

![Figure 25-3. Multi-Term Lookup (MTLU) option process chart](chart.png)

<table>
<thead>
<tr>
<th>STEP</th>
<th>AT THIS PROMPT...</th>
<th>IF USER ANSWERS WITH...</th>
<th>THEN STEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lookup on which file?:</td>
<td>Name of entry in LOCAL LOOKUP file (#8984.4).................2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><?> for list of entries..............1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><Enter> or up-arrow <^>..............4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NARRATIVE:</td>
<td>Existing shortcut, synonym, or keyword.....................3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If a word, phrase, or symbol is entered that the system cannot identify, the following appears:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Narrative contained no usable words."</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following word(s) was not used in this search: {word(s)}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Search was unsuccessful."</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OK? Y//</td>
<td><Enter> to accept default..............4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>'N'O.....................................4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Return to the menu.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following is an example of what might appear on your screen when using the Multi-Term Lookup (MTLU) option:

Figure 25-4. Multi-Term Lookup (MTLU) option—Sample user entries

<table>
<thead>
<tr>
<th>Lookup on which file?: ICD DIAGNOSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NARRATIVE: DIABETES MELLITUS</td>
</tr>
<tr>
<td>(DIABETES</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>The following 3 matches were found:</td>
</tr>
<tr>
<td>1: 250.00 (250.00)</td>
</tr>
<tr>
<td>DIABETES UNCOMPL ADULT/NIDDM</td>
</tr>
<tr>
<td>2: 250.40 (250.40)</td>
</tr>
<tr>
<td>DIAB RENAL MANIF ADULT/NIDDM</td>
</tr>
<tr>
<td>3: 775.0 (775.0)</td>
</tr>
<tr>
<td>INFANT DIABET MOTHER SYN</td>
</tr>
<tr>
<td>Select 1-3: 2</td>
</tr>
</tbody>
</table>

25.5.3 Using the Print Utility Option

The Print Utility option [XTLKPRUTUL] is used to print a list of shortcuts, keywords, or synonyms from a specified reference file in the LOCAL LOOKUP file (#8984.4). Both the shortcut and keyword lists can be sorted alphabetically by name or numerically by code. The synonym list, however, only prints alphabetically.

Since these lists can be long and the generation time consuming, it is suggested you queue the report to a device during off hours.
The following process chart shows the prompts and steps involved in using the Print Utility option:

Figure 25-5. Print Utility option process chart

<table>
<thead>
<tr>
<th>STEP</th>
<th>AT THIS PROMPT...</th>
<th>IF USER</th>
<th>ANSWERS WITH...</th>
<th>THEN</th>
<th>STEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Select one of the following:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH</td>
<td></td>
<td>Shortcuts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KE</td>
<td></td>
<td>Keyword</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SY</td>
<td></td>
<td>Synonyms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Print which file?:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH for Shortcuts....................2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KE for Keywords.....................2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SY for Synonym.....................3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Select one of the following:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td>Alphabetic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td>Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sort By?:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>'A'alphabetic...........3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>'C'ode..................3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Print {Shortcuts, Keywords, or Synonyms} for which file?:</td>
<td></td>
<td>Name of entry in LOCAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOOKUP file (#8984.4).................4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><?> for list of entries............3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><Enter> or up-arrow <^>...............5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>You will be prompted for a device at this step....................1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Return to the menu.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following is an example of what might appear on your screen when using the Print Utility option (an example of the output generated by this option is provided following the computer dialogue):

Figure 25-6. Print Utility option—Sample user entries and sample output

```
Select one of the following:
SH    Shortcuts
KE    Keywords
SY    Synonyms

Print which file?: SH <Enter> Shortcuts

Select one of the following:
A     Alphabetic
C     Code

Sort By?: A <Enter> lphabetic

Print Shortcuts for which file?: CPT
DEVICE:HOME// <Enter> RIGHT MARGIN: 80// <Enter>

Shortcuts of the CPT file sorted by Name
FREQUENTLY USED NARRATIVE       ENTRY
---------------------------------------------
DREAM                               01200
NIGHT                               02400
SLEEP                               01100
```

Sample output.

25.5.4 Using the Utilities for MTLU Option

The following is a list of the options and their descriptions that comprise the Utilities for MTLU menu [XTLKUTILITIES]. This option can only be accessed by holders of the XTLKZMGR security key:

- The Delete Entries From Look-Up option [XTLKMODPARK] deletes entries from the LOCAL LOOKUP file (#8984.4). In order to do this, there cannot be any shortcuts, synonyms, or keywords associated with the file to be deleted. This option should be used as an IRM/developer utility and can only be accessed by holders of the XTLKZMGR security key.

- The Add Entries To Look-Up File option [XTLKMODPARS] sets entries in the LOCAL LOOKUP file (#8984.4). This option should be used as an IRM/developer utility and can only be accessed by holders of the XTLKZMGR security key. In order to add entries with this option, DUZ(0) must be set to an at-sign (@); programmer access.

- The Add/Modify Utility option [XTLKMODUTL] is used to make or edit entries in the LOCAL KEYWORD (#8984.1), LOCAL SHORTCUT (#8984.2), and LOCAL SYNONYM (#8984.3) files.
25.5.4.1 Delete Entries from Look-Up Option

The Delete Entries From Look-Up option [XTLKMODPARK] is used to delete a reference file from a site's LOCAL LOOKUP file (#8984.4).

All shortcuts, synonyms, and keywords associated with the reference file you wish to delete must be canceled before you attempt to delete the file.

It should be noted that when a reference file is "killed" through this option, all variable pointers from the LOCAL KEYWORD (#8984.1) and LOCAL SHORTCUT (#8984.2) files are deleted. The special lookup routine for the file is also deleted.

Only holders of the XTLKZMGR security key, can access this option.

NOTE: Due to the brevity of this option, no process chart has been provided.

The following is an example of what might appear on your screen when using the Delete Entries From Look-Up option:

Figure 25-7. Delete Entries From Look-Up option—Sample user entries

Select LOCAL LOOKUP NAME: PROCEDURE MODIFIERS
Are you sure you want to delete PROCEDURE MODIFIERS? YES
Deleting from Local Lookup file....
Deleting variable pointers from Local Keyword and Shortcut files.
Deleting special lookup routine from PROCEDURE MODIFIERS DD.

25.5.4.2 Add Entries To Look-Up File Option

The Add Entries To Look-Up File option [XTLKMODPARS] is used to add/edit reference files to a site's LOCAL LOOKUP file (#8984.4). Examples of files that a site might wish to enter in their LOCAL LOOKUP file (#8984.4) include: ICD DIAGNOSIS (#80), ICD OPERATION/PROCEDURE (#80.1), and CPT (#81).

Only holders of the XTLKZMGR security key, can access this option. In order to add entries with this option, DUZ(0) must be set to an at-sign ("@"; programmer access).
The process chart below shows the prompts and steps involved in using the Add Entries To Look-Up File option:

Figure 25-8. Add Entries To Look-Up File option process chart (1 of 2)

<table>
<thead>
<tr>
<th>STEP</th>
<th>AT THIS PROMPT...</th>
<th>IF USER ANSWERS WITH...</th>
<th>THEN STEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Select LOCAL LOOKUP NAME:</td>
<td>Name of new reference file you wish to enter in LOCAL LOOKUP file (#8984.4)...</td>
<td>2
<?> for file list...
Name of existing file...
<Enter> or up-arrow:
2

12</td>
</tr>
<tr>
<td>2</td>
<td>ARE YOU ADDING {reference file name} AS A NEW LOCAL LOOKUP (THE nTH)?</td>
<td>'Y'ES...
'N'O...</td>
<td>3
1</td>
</tr>
<tr>
<td>3</td>
<td>LOCAL LOOKUP NAME:</td>
<td><Enter> to accept default...
Other file name...</td>
<td>4
4</td>
</tr>
<tr>
<td>4</td>
<td>LOCAL LOOKUP DISPLAY PROTOCOL:</td>
<td>Entry point for routine to determine the display format...
<Enter> to accept the internal default display format...</td>
<td>5
5

If the entry made at this step is not the same as the cross reference in the description field of the file, the software still functions, but it only uses the keywords entered in the LOCAL LOOKUP file (#8984.4).</td>
</tr>
</tbody>
</table>

Required field
Figure 25-9. Add Entries To Look-Up File option process chart (2 of 2)

<table>
<thead>
<tr>
<th>STEP</th>
<th>AT THIS PROMPT...</th>
<th>IF USER</th>
<th>THEN</th>
<th>ANSWERS WITH...</th>
<th>STEP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* 5 INDEX:</td>
<td>Cross reference to be used to create new keywords.</td>
<td>6</td>
<td>INDEX:</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: The following message is displayed:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"...Ok, will now setup KEYWORD and SHORTCUT file DD's to allow terms for (reference file name) entries..."</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* 6 PREFIX: M//:</td>
<td>Letter(s) to be used to identify a variable pointer.</td>
<td>7</td>
<td>PREFIX: M//:</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>The following reminder message is displayed:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><REMINDER> Using 'Edit File', set the lookup routine, XTLKDICL, in {reference file name} DD</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>...OK? YES//</td>
<td><Enter> to accept default</td>
<td>9</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>'N'O................</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>LOCAL LOOKUP NAME:</td>
<td><Enter> to accept default</td>
<td>10</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>{reference file name}//</td>
<td>Correct file name.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>LOCAL LOOKUP DISPLAY PROTOCOL:</td>
<td><Enter> to accept default</td>
<td>11</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>{protocol}//</td>
<td>Correct entry point for routine to set display format.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><Enter> (no default) to accept the internal Default display format.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>INDEX: {index}//</td>
<td><Enter> to accept default</td>
<td>12</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>correct cross reference to be used to create new Keywords.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Return to the menu.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Required field
The following is an example of what might appear on your screen when using the Add Entries To Look-Up File option:

Figure 25-10. Add Entries To Look-Up File option—Sample user entries

| Select LOCAL LOOKUP NAME: PROCEDURE MODIFIERS |
| ARE YOU ADDING 'PROCEDURE MODIFIERS' AS A NEW LOCAL LOOKUP (THE 4th)? Y <Enter> |
| (YES) |
| LOCAL LOOKUP NAME: PROCEDURE MODIFIERS// <Enter> |
| LOCAL LOOKUP DISPLAY PROTOCOL: <Enter> |
| INDEX: AIHS |
| ...Ok, will now setup KEYWORD and SHORTCUT file DD's to allow terms for 'PROCEDURE MODIFIERS' entries... |
| <REMINDER> Using 'Edit File', set the lookup routine, XTLKDICL, in PROCEDURE MODIFIERS DD |
| Select LOCAL LOOKUP NAME: <Enter> |

25.5.4.3 Add/Modify Utility Option

The Add/Modify Utility option [XTLKMODUTL] is used to enter new or edit existing shortcuts, keywords, or synonyms to the LOCAL LOOKUP file (#8984.4).

A shortcut is a word or phrase which recognizes one specific code or procedure. If you are adding a shortcut whose text duplicates the first part of an existing entry, you must enclose the new shortcut word or phrase in double quotes to prevent the system from matching it to existing terms.

A keyword is a word or phrase which corresponds to several related codes or procedures. Keywords are typically terms commonly used to describe a clinical entity. Entering a series of keywords separated by single spaces results in all of the keywords being added to the specified code.

A synonym is a word entered to expand the lookup capability of an existing term or terms in the LOCAL LOOKUP file (#8984.4). Synonyms would be used in cases where several words within the text of codes or procedures have the same diagnostic meaning (e.g., CANCER and MALIGNANCY). A synonym can be entered for an existing keyword or for a word in the diagnostic description or procedure (e.g., the term CANCER might be matched to the synonyms MALIGNANCY, LEUKEMIA, and CARCINOMA). When CANCER is referenced in the Multi-Term Lookup (MTLU) option, it recognizes all the codes and descriptions associated with MALIGNANCY, LEUKEMIA, and CARCINOMA.

NOTE: A synonym replaces the original word in the lookup process; therefore, to retain the original word in the search, it must be matched to itself as well as to other synonyms.

Words used as a shortcut should never be repeated as synonyms or keywords. Since the system searches for shortcuts first and stops when one is found, it cannot find duplicated words in the LOCAL SYNONYM (#8984.3) or LOCAL KEYWORD (#8984.1) files. Since searching all files for each word is time consuming, the search is done in this order so as to speedup the search process.
Since the add/modify functions for Shortcuts, Keywords, and Synonyms are considered separate options, a process chart for each is provided. The charts on the following pages show the prompts and steps involved in using the following options:

Figure 25-11. Add/Modify Utility menu options

<table>
<thead>
<tr>
<th>Select Add/Modify Utility Option: ??</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH Shortcuts [XTLKMODSH]</td>
</tr>
<tr>
<td>KE Keywords [XTLKMODKY]</td>
</tr>
<tr>
<td>SY Synonyms [XTLKMODSY]</td>
</tr>
</tbody>
</table>

The Shortcuts option [XTLKMODSH], one of the three selections within the Add/Modify Utility option, is described below.
The following process chart shows the prompts and steps involved in using the Add/Modify Utility option when adding or editing a shortcut:

Figure 25-12. Add/Modify Utility option—Shortcuts process chart (1 of 2)

<table>
<thead>
<tr>
<th>STEP</th>
<th>AT THIS PROMPT...</th>
<th>IF USER</th>
<th>THEN</th>
<th>ANSWERS WITH...</th>
<th>STEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SH Shortcuts</td>
<td>KE Keywords</td>
<td>SY Synonyms</td>
<td>Select Add/Modify Utility Option:</td>
<td>2 SH for Shortcuts. <Enter> or up-arrow <> 11</td>
</tr>
<tr>
<td>2</td>
<td>Additions/Modifications to Shortcuts in which file?</td>
<td>Name of entry in local reference file. <>? for list of entries. <Enter></td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Select LOCAL SHORTCUT FREQUENTLY USED NARRATIVE:</td>
<td>New text you wish to use as a shortcut. Existing shortcut term. <Enter></td>
<td>8 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ARE YOU ADDING {'text'} AS A NEW LOCAL SHORTCUT?</td>
<td>'Y'ES. 'N'O or <Enter></td>
<td>5 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>LOCAL SHORTCUT FREQUENTLY USED NARRATIVE: {shortcut} //</td>
<td><Enter> to accept default</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>LOCAL SHORTCUT ENTRY:</td>
<td>Name or number of entry in LOCAL LOOKUP file (#8984.4) you wish your shortcut to reference.</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 25-13. Add/Modify Utility option—Shortcuts process chart (2 of 2)

<table>
<thead>
<tr>
<th>STEP</th>
<th>AT THIS PROMPT...</th>
<th>IF USER</th>
<th>THEN</th>
<th>ANSWERS WITH...</th>
<th>STEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>If the selected number/name corresponds to more than one entry, they are shown and you are prompted to choose one. If there is only one corresponding entry, it is displayed and the following appears:</td>
<td>"...OK? YES//"</td>
<td><Enter> to accept default</td>
<td>...2</td>
<td>'N'O.</td>
</tr>
<tr>
<td>8</td>
<td>LOCAL SHORTCUT FREQUENTLY USED NARRATIVE:{shortcut}//</td>
<td><Enter> to accept default</td>
<td>...9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correct shortcut term</td>
<td>...9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>LOCAL SHORTCUT ENTRY: {code}//</td>
<td><Enter> to accept default</td>
<td>...2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correct code</td>
<td>...10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The selected code is displayed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>...OK? YES//</td>
<td><Enter> to accept default</td>
<td>...2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>'N'O.</td>
<td>...9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Return to the menu.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Keywords option [XTLKMODKY], one of the three selections within the Add/Modify Utility option, is described below.

The following process chart shows the prompts and steps involved in using the Add/Modify Utility option when adding or editing a keyword:

Figure 25-14. Add/Modify Utility option—Keywords process chart

<table>
<thead>
<tr>
<th>STEP</th>
<th>AT THIS PROMPT...</th>
<th>IF USER ANSWERS WITH...</th>
<th>THEN STEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SH</td>
<td>Shortcuts</td>
<td>KE for Keywords..........................2</td>
</tr>
<tr>
<td></td>
<td>KE</td>
<td>Keywords</td>
<td><Enter> or up-arrow <^>..................7</td>
</tr>
<tr>
<td></td>
<td>SY</td>
<td>Synonyms</td>
<td><Enter> or up-arrow <^>..................7</td>
</tr>
<tr>
<td></td>
<td>Select Add/Modify Utility Option: KE for Keywords.....................2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><Enter> or up-arrow <^>..................7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Additions/Modifications to Keywords in which file? Name of entry in local reference file.................3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><^> for list of entries..........2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><Enter>......................1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Which code in the {file name} file? Code for which you wish to enter a keyword..................4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Select LOCAL KEYWORD NAME: New text you wish to use as a keyword......................5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Existing keyword term...........6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><Enter>......................1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ARE YOU ADDING ('text') AS A NEW LOCAL KEYWORD? 'Y'ES.........................6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>'N'O or <Enter>..................1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>An at-sign (@) entered at this step deletes the entire entry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>LOCAL KEYWORD NAME: {keyword}// <Enter> to accept default...........2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correct keyword term...........2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Return to the menu.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multi-Term Look-Up (MTLU)

The Synonyms option [XTLKMODSY], one of the three selections within the Add/Modify Utility option, is described below.

The following process chart shows the prompts and steps involved in using the Add/Modify Utility option when adding or editing a synonym:

Figure 25-15. Add/Modify Utility option—Adding or editing a synonym process chart (1 of 2)

<table>
<thead>
<tr>
<th>STEP</th>
<th>AT THIS PROMPT...</th>
<th>IF USER ANSWERS WITH...</th>
<th>THEN STEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SH Shortcuts</td>
<td>SY for Synonyms...</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>KE Keywords</td>
<td><Enter> or up-arrow <^></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>SY Synonyms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select Add/Modify Utility Option:</td>
<td>SY for Synonyms...</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td><Enter></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Additions/Modifications to Synonyms in which file?</td>
<td>Name of entry in local reference file...</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td><?> for list of entries</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td><Enter></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The entry made at this step must be in all upper case letters.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Select LOCAL SYNONYM TERM:</td>
<td>New text you wish to use as a synonym...</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Existing synonym term...</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td><Enter></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>ARE YOU ADDING {'text'} AS A NEW LOCAL SYNONYM?</td>
<td>'Y'ES...</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'N'O...</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>An at-sign (@) entered at this step deletes the entire entry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>LOCAL SYNONYM TERM:</td>
<td><Enter> to accept default...</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>{synonym}//</td>
<td>Other text...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOCAL SYNONYM SELECT SYNONYM:</td>
<td>Existing term in LOCAL LOOKUP file (#8984.4) for which you are entering a synonym...</td>
<td>2</td>
</tr>
</tbody>
</table>
Figure 25-16. Add/Modify Utility option—Adding or editing a synonym process chart (2 of 2)

<table>
<thead>
<tr>
<th>STEP</th>
<th>AT THIS PROMPT...</th>
<th>IF USER</th>
<th>THEN</th>
<th>ANSWERS WITH...</th>
<th>STEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>TERM: {term entered at Step 3}///</td>
<td><Enter> to accept default.............8</td>
<td>Correct synonym term................8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The entry made at this step must be in all upper case letters.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Select SYNONYM: {term synonym was entered for}///</td>
<td><Enter> to accept default.............2</td>
<td>Correct term........................2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Return to the menu.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following are examples of what might appear on your screen when using the Add/Modify Utility option. The first example is for a new shortcut entry, the second example shows a new keyword entry, and the third shows the editing of an existing synonym entry.

Example 1

Illustration of a new Shortcut entry.

Figure 25-17. Shortcut option—Sample user entries

SH Shortcuts
KE Keywords
SY Synonyms

Select Add/Modify Utility Option: SH <Enter> Shortcuts

Additions/Modifications to Shortcuts in which file? CPT

Select LOCAL SHORTCUT FREQUENTLY USED NARRATIVE: COUGH
ARE YOU ADDING 'COUGH' AS A NEW LOCAL SHORTCUT? Y <Enter> (YES)
LOCAL SHORTCUT FREQUENTLY USED NARRATIVE: COUGH///<Enter>
LOCAL SHORTCUT ENTRY: 31659

Searching for a CPT 31659 BRONCHOSCOPIC PROCEDURES
...OK? YES///<Enter> (YES)
Example 2

Illustration of a new Keyword entry.

Figure 25-18. Keyword option—Sample user entries

```
SH  Shortcuts
KE  Keywords
SY  Synonyms

Select Add/Modify Utility Option: KE <Enter> Keywords

Additions/Modifications to Keywords in which file?: CPT

Which code in the CPT file?: 11044 <Enter> CLEANSING TISSUE/MUSCLE/BONE

Select LOCAL KEYWORD NAME: TISSUE SKIN
ARE YOU ADDING 'TISSUE SKIN' AS A NEW LOCAL KEYWORD? Y <Enter> (YES)
LOCAL KEYWORD NAME: TISSUE SKIN// <Enter>
```

Example 3

Illustration of editing an existing Synonym entry.

Figure 25-19. Synonym option—Sample user entries

```
SH  Shortcuts
KE  Keywords
SY  Synonyms

Select Add/Modify Utility Option: SY <Enter> Synonyms

Additions/Modifications to Synonyms in which file?: CPT

Select LOCAL SYNONYM TERM: SLEEP
TERM: SLEEP// <Enter>
Select SYNONYM: DREAM// NIGHT
```
25.6 Systems Management

25.6.1 Implementation of Multi-Term Look-Up (MTLU)

This is how a user would configure a new file to be used with MTLU. The file you select would typically contain a free text field that more completely describes the record entry. Users would then use a cross-reference on this text field to perform lookups. MTLU is distinguished from FileMan in that users can enter a narrative or phrase, rather than a single term. The cross-reference can be either a VA FileMan Key Word In Context (KWIC) cross-reference, or you can create a custom MUMPS cross-reference that calls the routine, ^XTLKWIC (shown below). The ICD DIAGNOSIS file (#80) is used as an example.

REF: Multi-Term Look-Up (MTLU) Application Programming Interfaces (APIs) are documented in the "Toolkit: Developer Tools" chapter in the Kernel Developer's Guide. Kernel and Kernel Toolkit APIs are also available in HTML format at the following VA Intranet Website:

Once you are in VA FileMan, do the following:

Figure 25-20. VA FileMan Utility Functions option—Sample user entries

Select OPTION: UTILITY FUNCTIONS
Select UTILITY OPTION: CROSS-REFERENCE A FIELD
MODIFY WHAT FILE: ICD DIAGNOSIS// <Enter> ICD DIAGNOSIS
(12535 entries)
Select FIELD: DESCRIPTION
CURRENT CROSS-REFERENCE IS MUMPS 'D' INDEX OF FILE
CHOOSE E (EDIT) / D (DELETE) / C (CREATE): C
WANT TO CREATE A NEW CROSS-REFERENCE FOR THIS FIELD? NO// Y <Enter> (YES)
CROSS-REFERENCE NUMBER: 2// <Enter>
Select TYPE OF INDEXING: REGULAR// MUMPS
WANT CROSS-REFERENCE TO BE USED FOR LOOKUP AS WELL AS FOR SORTING? YES// N <Enter> (NO)
SET STATEMENT: S %="^ICD9(""AIHS"",I,DA)" D S^XTLKWIC
KILL STATEMENT: S %="^ICD9(""AIHS"",I,DA)" D K^XTLKWIC
INDEX: AC// AIHS
...
NO-DELETION MESSAGE: <Enter>
DESCRIPTION: <Enter>
 Edit? NO// <Enter>
DO YOU WANT TO CROSS-REFERENCE EXISTING DATA NOW? YES// Y <Enter> (YES)
...EXCUSE ME, THIS MAY TAKE A FEW MOMENTS...
Figure 25-21. Add Entries To Look-Up File—Sample user entries

```plaintext
&D "XUP

Setting up programmer environment
Terminal Type set to: C-VT100

Select OPTION NAME: APP <Enter> LICATION UTILITIES XTMENU Application Utilities

Multi-Term Lookup Main Menu ...

Select Application Utilities Option: Multi <Enter>-Term Lookup Main Menu

Multi-Term Lookup (MTLU)
Print Utility
Utilities for MTLU ...

Select Multi-Term Lookup Main Menu Option: Util <Enter> ities for MTLU

KL Delete Entries From Look-up
ST Add Entries To Look-Up File
Add/Modify Utility ...

Select Utilities for MTLU Option: ST <Enter> Add Entries To Look-Up File
Select LOCAL LOOKUP NAME: ICD DIAGNOSIS
ARE YOU ADDING 'ICD DIAGNOSIS' AS A NEW LOCAL LOOKUP (THE 3RD)? Y <Enter> (YES)
LOCAL LOOKUP NAME: ICD DIAGNOSIS// <Enter>
LOCAL LOOKUP DISPLAY PROTOCOL: DSPLYD"XTLKWLD
INDEX: AIHS
...Ok, will now setup KEYWORD and SHORTCUT file DD's to allow terms for 'ICD DIAGNOSIS' entries...
PREFIX: M// ?
   Answer must be a unique prefix, 1-10 characters in length

PREFIX: M// D
<REMINDER> Using 'Edit File', set the lookup routine, XTLKDICL, in ICD DIAGNOSIS DD
Select LOCAL LOOKUP NAME: <Enter>
```

If all references to a file (by all packages) are to behave as MTLU lookups, add the special lookup routine, ^XTLKDICL, to the file's DD using the FileMan Edit File option.

REF: For more information on the Edit File option, see the "File Utilities" chapter in the VA FileMan Advanced User Manual.
Figure 25-22. VA FileMan Edit File option—Sample user entries

VAH,MTL>D Q^DI

VA FileMan 20.0

Select OPTION: UT <Enter> UTILITY FUNCTIONS
Select UTILITY OPTION: ED <Enter> IT FILE

MODIFY WHAT FILE: ICD DIAGNOSIS// <Enter>
NAME: ICD DIAGNOSIS// <Enter>
DESCRIPTION: <Enter>
 1>Contains all valid ICD diagnosis codes.
EDIT Option: <Enter>
Select APPLICATION GROUP: <Enter>
PROGRAMMER: <Enter>
VERSION: 9// <Enter>
DATA DICTIONARY ACCESS: <Enter>
READ ACCESS: <Enter>
WRITE ACCESS: <Enter>
DELETE ACCESS: <Enter>
LAYGO ACCESS: <Enter>
AUDIT ACCESS: <Enter>
DD AUDIT? NO// <Enter> (YES)
ASK 'OK' WHEN LOOKING UP AN ENTRY? YES// <Enter> (YES)
POST-SELECTION ACTION: <Enter>
LOOK-UP PROGRAM: XTLKDICL
CROSS-REFERENCE ROUTINE: <Enter>

Select UTILITY OPTION: <Enter>

NOTE: The developer might elect to use MTLU only in selected instances. This is accomplished by not adding the special lookup routine to the file's DD. After the file has been added to the LOCAL LOOKUP file (#8984.4), you can make a developer call to LKUP^XTLKMGR.

REF: Multi-Term Look-Up (MTLU) Application Programming Interfaces (APIs) are documented in the "Toolkit: Developer Tools" chapter in the Kernel Developer's Guide. Kernel and Kernel Toolkit APIs are also available in HTML format at the following VA Intranet Website:

Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA TESTING</td>
<td>In VA terminology, Alpha testing is when a VistA test software application is running in a site's account.</td>
</tr>
<tr>
<td>AUTO MENU</td>
<td>An indication to Menu Manager that the current user's menu items should be displayed automatically. When AUTO MENU is not in effect, the user must enter a question mark at the menu's select prompt to see the list of menu items.</td>
</tr>
<tr>
<td>BETA TESTING</td>
<td>In VA terminology, Beta testing is when a VistA test software application is running in a Production account.</td>
</tr>
<tr>
<td>CAPACITY MANAGEMENT</td>
<td>The process of assessing a system's capacity and evaluating its efficiency relative to workload in an attempt to optimize system performance. Kernel provides several utilities.</td>
</tr>
<tr>
<td>CHECKSUM</td>
<td>A numeric value that is the result of a mathematical computation involving the characters of a routine or file.</td>
</tr>
<tr>
<td>CIPHER</td>
<td>A system that arbitrarily represents each character as one or more other characters.</td>
</tr>
<tr>
<td></td>
<td>(See also: ENCRYPTION.)</td>
</tr>
<tr>
<td>COMMON MENU</td>
<td>Options that are available to all users. Entering two question marks ("??") at the menu's select prompt will display any SECONDARY MENU OPTIONS available to the signed-on user along with the common options available to all users.</td>
</tr>
<tr>
<td>COMPILED MENU SYSTEM</td>
<td>Job-specific information that is kept on each CPU so that it is readily available during the user's session. It is stored in the ^XUTL global, which is maintained by the menu system to hold commonly referenced information. The user's place within the menu trees is stored, for example, to enable navigation via menu jumping.</td>
</tr>
<tr>
<td>COMPUTED FIELD</td>
<td>This field takes data from other fields and performs a predetermined mathematical function (e.g., adding two columns together). You will not, however, see the results of the mathematical function on the screen. Only when you are printing or displaying information on the screen will you see the results for this type of field.</td>
</tr>
<tr>
<td>DEVICE HANDLER</td>
<td>The Kernel module that provides a mechanism for accessing peripherals and using them in controlled ways (e.g., user access to printers or other output devices).</td>
</tr>
<tr>
<td>DIFROM</td>
<td>VA FileMan utility that gathers all software components and changes them into routines (namespace!* routines) so that they can be exported and installed in another VA FileMan environment.</td>
</tr>
</tbody>
</table>
DOUBLE QUOTE (") A symbol used in front of a Common option's menu text or synonym to select it from the Common menu. For example, the five character string "TBOX selects the User's Toolbox Common option.

DR STRING The set of characters used to define the DR variable when calling VA FileMan. Since a series of parameters may be included within quotes as a literal string, the variable's definition is often called the DR string. To define the fields within an edit sequence, for example, the developer may specify the fields using a DR string rather than an INPUT template.

DUZ(0) A local variable that holds the FILE MANAGER ACCESS CODE field (#3) of the signed-on user.

ENCRYPTION Scrambling data or messages with a cipher or code so that they are unreadable without a secret key. In some cases encryption algorithms are one directional, that is, they only encode and the resulting data cannot be unscrambled (e.g., Access and Verify codes).

FILE ACCESS SECURITY SYSTEM Formerly known as Part 3 of the Kernel Inits. If the File Access Security conversion has been run, file-level security for VA FileMan files is controlled by Kernel's File Access Security system, not by VA FileMan Access codes (i.e., FILE MANAGER ACCESS CODE field [#3] in the NEW PERSON file [#200]).

FORCED QUEUING A device attribute indicating that the device can only accept queued tasks. If a job is sent for foreground processing, the device will reject it and prompt the user to queue the task instead.

GO-HOME JUMP A menu jump that returns the user to the primary menu presented at signon. It is specified by entering two carets ("^^") at the menu's select prompt. It resembles the "Rubber-band Jump" but without an option specification/name following the carets.

HELP PROCESSOR A Kernel module that provides a system for creating and displaying online documentation. It is integrated within the menu system so that help frames associated with options can be displayed with a standard query at the menu's select prompt.

HOST FILE SERVER (HFS) A procedure available on layered systems whereby a file on the host system can be identified to receive output. It is implemented by the Device Handler's HFS device type.

HUNT GROUP An attribute of an entry in the DEVICE file (#3.5) that allows several devices to be used interchangeably; useful for sending network mail or printing reports. If the first hunt group member is busy, another member can stand in as a substitute.

INIT Initialization of an software application. INIT* routines are built by VA FileMan's DIFROM and, when run, recreate a set of files and other software components.
JUMP

In VistA applications, the Jump command allows you to go from a particular field within an option to another field within that same option. You can also Jump from one menu option to another menu option without having to respond to all the prompts in between. To jump, type a caret (^) and then type the name of the field or option you wish to jump to.

(See also GO-HOME JUMP, PHANTOM JUMP, RUBBER-BAND JUMP, or UP-ARROW JUMP.)

JUMP START

A logon procedure whereby the user enters the "Access code;Verify code;option" to go immediately to the target option, indicated by its menu text or synonym. The jump syntax can be used to reach an option within the menu trees by entering "accesscode;verifycode;option".

KERMIT

A standard file transfer protocol. It is supported by Kernel and can be set up as an alternate editor.

MANAGER ACCOUNT

A UCI that holds vendor shared routines.

MENU CYCLE

The process of first visiting a menu option by picking it from a menu's list of choices and then returning to the menu's select prompt. Menu Manager keeps track of information (e.g., the user's place in the menu trees) according to the completion of a cycle through the menu system.

MENU MANAGER

The Kernel module that controls the presentation of user activities (e.g., menu choices or options). Information about each user's menu choices is stored in the Compiled Menu System, the ^XUTL global, for easy and efficient access.

MENU SYSTEM

The overall Menu Manager logic as it functions within the Kernel framework.

MENU TEMPLATE

An association of options as pathway specifications to reach one or more final destination options. The final options must be executable activities and not merely menus for the template to function. Any user can define user-specific MENU templates via the corresponding Common option.

MENU TREES

The menu system's hierarchical tree-like structures that can be traversed or navigated, like pathways, to give users easy access to various options.

PAC

Programmer Access Code. An optional user attribute that can function as a second level password into programmer mode.

PART 3 OF THE KERNEL INIT

See FILE ACCESS SECURITY SYSTEM.

PATTERN MATCH

A preset formula used to test strings of data. Refer to your system's M Language Manuals for information on Pattern Match operations.
PHANTOM JUMP Menu jumping in the background. Used by the menu system to check menu pathway restrictions.

PRIMARY MENUS The list of options presented at signon. Each user must have a PRIMARY MENU OPTION in order to sign on and reach Menu Manager. Users are given primary menus by IRM. This menu should include most of the computing activities the user will need.

PROGRAMMER ACCESS Privilege to become a developer on the system and work outside many of the security controls of Kernel. Accessing programmer mode from Kernel's menus requires having the at-sign security code ("@"), which sets the variable DUZ(0)=@.

PROTOCOL An entry in the PROTOCOL file (#101). Used by the Order Entry/Results Reporting (OE/RR) software to support the ordering of medical tests and other activities. Kernel includes several protocol-type options for enhanced menu displays within the OE/RR software.

QUEUING Requesting that a job be processed in the background rather than in the foreground within the current session. Kernel's TaskMan module handles the queuing of tasks.

QUEUING REQUIRED An option attribute that specifies that the option must be processed by TaskMan (the option can only be queued). The option can be invoked and the job prepared for processing, but the output can only be generated during the specified time periods.

RESOURCE A method that enables sequential processing of tasks. The processing is accomplished with a RES device type designed by the application developer and implemented by IRM. The process is controlled via the RESOURCE file (#3.54).

RUBBER-BAND JUMP A menu jump used to go out to an option and then return, in a bouncing motion. The syntax of the jump is two carets ("^^", uppercase-6 on most keyboards) followed by an option's menu text or synonym (e.g., ^^Print Option File). If the two carets are not followed by an option specification, the user is returned to the primary menu.

(See also: GO-HOME JUMP.)

SCHEDULING OPTIONS A way of ordering TaskMan to run an option at a designated time with a specified rescheduling frequency (e.g., once per week).

SCROLL/NO SCROLL The Scroll/No Scroll button (also called Hold Screen) allows the user to "stop" (No Scroll) the terminal screen when large amounts of data are displayed too fast to read and "restart" (Scroll) when the user wishes to continue.
SECONDARY MENU OPTIONS
Options assigned to individual users to tailor their menu choices. If a user needs a few options in addition to those available on the primary menu, the options can be assigned as secondary options. To facilitate menu jumping, secondary menus should be specific activities, not elaborate and deep menu trees.

SECURE MENU DELEGATION (SMD)
A controlled system whereby menus and security keys can be allocated by people other than IRM staff (e.g., application coordinators) who have been so authorized. SMD is a part of Menu Manager.

SERVER OPTION
An entry in the OPTION file (#19). An automated mail protocol that is activated by sending a message to the server with the "S.server" syntax. A server option's activity is specified in the OPTION file (#19) and can be the running of a routine or the placement of data into a file.

SIGNON/SECURITY
The Kernel module that regulates access to the menu system. It performs a number of checks to determine whether access can be permitted at a particular time. A log of signons is maintained.

SPECIAL QUEUEING
An option attribute indicating that TaskMan should automatically run the option whenever the system reboots.

SPOOLER
An entry in the DEVICE file (#3.5). It uses the associated operating system's spool facility, whether it's a global, device, or host file. Kernel manages spooling so that the underlying OS mechanism is transparent. In any environment, the same method can be used to send output to the spooler. Kernel will subsequently transfer the text to a global for subsequent despooling (printing).

SYNONYM
A field in the OPTION file (#19). Options can be selected by their menu text or synonym.

(See also: MENU TEXT.)

TASKMAN
The Kernel module that schedules and processes background tasks (also called Task Manager).

TIMED READ
The amount of time Kernel will wait for a user response to an interactive READ command before starting to halt the process.

UP-ARROW JUMP
In the menu system, entering a caret ("^"; sometimes referred to as an up-arrow) followed by an option specification/name accomplishes a jump to the target option without needing to take the usual steps through the menu pathway.

XINDEX
A Kernel utility used to verify routines and other M code associated with a software application. Checking is done according to current ANSI MUMPS standards and VistA programming standards. This tool can be invoked through an option or from direct mode (>D ^XINDEX).
Glossary

Z EDITOR (^%Z) A Kernel tool used to edit routines or globals. It can be invoked with an option, or from direct mode after loading a routine with >X ^%Z.

ZOSF GLOBAL (^%ZOSF) The Operating System File—a manager account global distributed with Kernel to provide an interface between VistA software and the underlying operating system. This global is built during Kernel installation when running the manager setup routine (ZTMGRSET). The nodes of the global are filled-in with operating system-specific code to enable interaction with the operating system. Nodes in the ^%ZOSF global can be referenced by VistA application developers so that separate versions of the software need not be written for each operating system.

REF: For a comprehensive list of commonly used infrastructure- and security-related terms and definitions, please visit the Glossary VA Intranet Website:

http://vaww.vista.med.va.gov/iss/glossary.asp

For a comprehensive list of acronyms, please visit the Acronyms VA Intranet Website:

http://vaww.vista.med.va.gov/iss/acronyms/index.asp
Index

$ $Cache2() Algorithm, 21-21
$TEST^DDBRT API, 18-3
$HOROLOG Variable, 22-8, 22-9, 22-29
$I Field
	DEVICE File (#3.5), 15-1, 15-4, 15-16, 15-18, 16-3, 17-9, 18-9, 18-12, 18-13, 18-15, 22-33, 22-35
$I Field (#1)
	DEVICE File (#3.5), 15-2, 15-15, 17-10
$STACK Variable, 13-4
$ZC Calls, 13-6

^ ^XTER Direct Mode Utility, 13-6
^XTERPUR Direct Mode Utility, 13-5
^XTLKDICL Routine, 25-2, 25-22
^XTLKWIC Routine, 25-21
^ZTMON Direct Mode Utility, 22-11

A
Abnormal Signoff and Error Handling, 2-6
Abort
	KIDS Installations, 23-20
	Recovering From KIDS Installations, 23-20
	Restarting Aborted KIDS Installations, 23-20
ACADEMIC AFFILIATION WAIVER Field (#13), 3-29
ACCESS CODE Field, 3-20
ACCESS CODE Field (#2), 3-19
Access Codes, 1-1, 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 3-1, 3-2, 3-6, 3-11, 3-18, 3-19, 3-27, 3-28, 3-29, 3-32, 3-33, 5-10, 5-13, 11-9, 15-13
Assigning, 3-9
Log, 3-33
Old, 3-33
Purging, 3-33
ACCESSIBLE FILE Multiple Field (#32), 5-1, 5-3, 5-9, 5-11, 5-12, 5-13, 5-14
Acronyms
Intranet Website, Glossary, 6
Acting as a Delegate
User Interface, 9-2
Action Prompt
Monitor Taskman, 22-11
Actions
	USE AS LINK FOR MENU ITEMS, 23-8, 23-16
Actual Usage of Alpha/Beta Test Options
Option, 23-23
Add a New User Option, 3-10
Add a New User to the System Option, 3-9, 3-10
Add Entries To Look-Up File Option, 25-9, 25-10
Example, 25-13
Multi-Term Look-Up (MTLU), 25-1
Add Error Screens Option, 13-3
Add/Modify Utility Option, 25-9, 25-13
Multi-Term Lookup (MTLU), 25-2
Multi-Term Look-Up (MTLU) Examples, 25-19
Adding Explicit File Access for IRM, 5-12
Adding New Users, 3-9
	Add a New User to the System Option, 3-9
	Grant Access by Profile, 3-10
	Grant Access by Profile Option, 3-10
NEW PERSON IDENTIFIERS, 3-10
Primary Menu, 3-9
Security Forms, 3-10, 3-11
SSN Field (#9)
NEW PERSON File (#200), 3-9, 3-10
XUMGR Security Key, 3-9, 3-10
XUSPF200 Security Key, 3-9, 3-10
Additional Attributes Editable by Users, 3-26
After the File Access Security Conversion, 5-15
AGENCY Field, 3-7
AGENCY File (#4.11), 3-7
AHG Cross-references, 18-7
AK Cross-reference, 8-4
ALERT DATE/TIME Multiple Field (#.01), 10-10
ALERT File (#8992), 10-5, 10-6, 10-7, 10-8, 10-9, 10-10
Alert Management Menu, 10-4, 10-6
ALERT TRACKING File (#8992.1), 10-3, 10-5, 10-6, 10-7, 10-8, 10-9
Alerts, 2-7, 10-1
Deleting, 10-3
Forwarding, 10-4
Make an Alert on the Fly Option, 10-7
Processing, 10-1
Index

Purging, 10-6, 10-7
Reports, 10-8, 10-9, 10-10
Surrogates, 10-4, 10-6
System Management, 10-5
User Interface, 10-1
Alerts - Set/Remove Surrogate for User Option, 10-6
Algorithms
\$Cache2(), 21-21
Parsing, 3-18
All Keys a User Needs Option, 8-3
All your tasks Option, 22-3
Allocating
Security Keys, 8-3
Allocation of Security Keys Option, 8-3, 9-9
Allow other users access to spool documents
Option, 17-3
ALLOWED TO USE SPOOLER Field (#41), 3-22, 17-7
Alpha/Beta Test Option Usage Menu, 7-4, 23-23
Alpha/Beta Tracking
Sending a Summary Message, 23-23
Alpha/Beta Tracking (KIDS), 23-23
Altering Exported Menus, 7-8
ALTERNATE EDITOR File (#1.2), 3-21
Alternate Syntax for Device Specification, 14-6
ALWAYS SHOW SECONDARIES Field, 7-7
ALWAYS SHOW SECONDARIES Field
(#200.11), 3-22
Answerback Message, 3-5
Answering Installation Questions for Transport
Globals in a Distribution (KIDS), 23-7
AOLD Cross-reference, 3-33
APIs
\$TEST\^DDBRT, 18-3
\^%ZTLOAD, 20-2, 22-34
\^%ZTLOAD API, 18-12
\^DIE, 5-5
\^XUP, 18-3
DIC, 5-5
DIE, 5-5
DQ\^%ZTLOAD, 22-33
ENABLE\^XUFILE3 Routine, 5-14
ERR\^ZU, 13-2
GETENV\^%ZOSV API, 21-11
LKUP\^XTLKMGR, 25-23
PATIENT\^XQALERT, 10-5
REQ\^%ZTLOAD, 22-33
TaskMan, 20-1, 20-2
USER\^XQALERT, 10-5
Application Utilities Menu, 25-4
ASK DEVICE TYPE AT SIGN-ON Field, 2-6, 3-5, 3-6
ASK DEVICE TYPE AT SIGN-ON Field
(3200.05), 2-10, 3-22
ASK HFS I/O OPERATION Field (#5.2)
DEVICE File (#3.5), 16-2
ASK HOST FILE Field (#5.1)
DEVICE File (#3.5), 16-2
ASK PARAMETERS Field
DEVICE File (#3.5), 16-2
ASK PARAMETERS Field (#5)
DEVICE File (#3.5), 15-3, 15-14
Assign Editors Option, 12-5
Assigning
Access Codes, 3-6, 3-9
Display Order, 7-3
File Number Ranges, 3-22
Help Frame Editors, 12-5
Options, 9-3
Secondary Menus, 7-7
Assumptions
About the Reader, xlii
Attributes
Editable by Users, 3-26
Users, 3-1, 3-9, 3-10, 3-18
AUDIT Access, 5-1, 5-4, 5-5, 5-8
Audit Features Menu, 7-4
AUDIT File (#1.1), 5-8
AUDIT LOG FOR OPTIONS File (#19.081), 7-4, 11-1, 11-4
Audited Options Purge Option, 7-4
Audits
Failed Access Attempts, 3-32
Option Use, 7-4
Signon, 3-32
AUTO DESPOOL Field (#31)
DEVICE File (#3.5), 17-10
AUTO MENU Field, 3-7, 6-2
AUTO MENU Field (#200.06), 2-10, 3-22, 7-3
Auto Print Mode, 18-14
Auto-despooling, 17-4, 17-10
AUTO-GENERATE ACCESS CODES Field, 3-6
Automatic Deactivation of Users Option, 3-28
Automatically
Deactivating Users, 3-28

B

B Cross-references, 18-6, 22-30
BACK SPACE Field (#4)
TERMINAL TYPE File (#3.2), 15-13, 18-8
Background Jobs
TaskMan
User Interface, 19-1
Backing Up Transport Globals (KIDS), 23-15
Backup a Transport Global Option, 23-15
Backup Reviewer for Unprocessed Alerts, 10-10
BALANCE State, 21-21
TaskMan, 22-36
Block Count Utility, 12-6
BOX-VOLUME PAIR Field, 21-19, 21-20
BOX-VOLUME PAIR Field (#.01), 21-11, 21-12
Browse a Spool Document Option, 17-4
Browser Device, 18-1
Storing Host Files in a Specific Directory, 18-4
System Management, 18-3
User Interface, 18-1
BROWSER Device, 15-10, 18-1
BROWSER Type, 18-3
Build a New Menu Option, 9-3, 9-11
Build Entries and the BUILD File (#9.6), 23-4
Build Entry
Components, 24-11
Definition, 23-1
BUILD File (#9.6), 23-1, 23-4, 23-12, 23-17,
23-21, 24-7, 24-9, 24-10, 24-12
Purging, 24-7
Build File Print Option, 24-2
Build Primary Menu Trees Option, 7-14
Building Options, 9-5
BULLETIN File (#3.6), 11-4, 11-8
Bulletins
Server Request, 11-1, 11-2, 11-4, 11-5, 11-8,
11-9
XQSERVER, 11-4, 11-8
BYPASS DEVICE LOCK-OUT Field, 3-2

C

Caché
Systems
DCL Context, 21-24
VAX ENVIRONMENT FOR DCL Field (#9), 21-13
Cache/VMS DCL Context Setup, 21-24
Callout Boxes, xli
Calls
$ZC, 13-6

CAN DELETE WITHOUT PROCESSING
Field (#1), 10-7
CAN MAKE INTO A MAIL MESSAGE Field (#41.2), 3-22, 17-7
Can Server Requests Be Denied?, 11-1
Change my Division Option, 2-8
Change user's allocated keys to delegated keys
Option, 8-3
Changes in the Role of the PACKAGE File (#9.4) (KIDS), 23-5
Characteristics of Intended Users, 9-5
Check Taskman's Environment Option, 22-13
CHECK^XTSUMBLD Routine, 23-12, 24-12
CHECK1^XTSUMBLD Routine, 23-12, 24-12
Checkpoints
KIDS, 23-20
CHECKSUM REPORT Field (#6), 24-11
Checks
23-7, 24-9
KIDS, 23-12, 24-12
Choosing Options, 6-1
Clean Error Log Over Range Of Dates Option,
22-25
Clean Error Trap Option, 13-5
Clean old Job Nodes in the XUTL Option, 7-12,
7-13
Clean Old Job Nodes in XUTL, 7-12
Clean Task File Option, 22-17
Cleanup Task List Option, 22-6
Clear all users at startup Option, 3-5, 3-8, 3-31
Clear Electronic signature code Option, 4-2
CLOSE EXECUTE Field
TERMINAL TYPE File (#3.2), 14-7
CLOSE EXECUTE Field (#7)
TERMINAL TYPE File (#3.2), 15-13, 18-5,
18-15, 18-17
CLOSE PRINTER PORT Field (#111), 18-15,
18-17
Codes
Access, 1-1, 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 3-1,
3-2, 3-6, 3-11, 3-18, 3-19, 3-27, 3-28, 3-29,
3-32, 3-33, 5-10, 5-13, 11-9, 15-13
Assigning, 3-9
Log, 3-33
Old, 3-33
Purging, 3-33
Verify, 1-1, 2-1, 2-2, 2-3, 2-4, 2-5, 2-11, 3-1,
3-2, 3-6, 3-9, 3-19, 3-27, 3-32, 3-33, 5-10,
11-4, 11-9
Defining, 2-3
Log, 3-33
Old, 3-33
Index

Purging, 3-33

Commands

%SPAWN, 20-2, 21-13
JOB, 20-2, 21-11, 21-12, 21-13, 22-29
USE, 20-3

COMMERCIAL PHONE Field (#.135), 3-23
Common Menu, 2-3, 3-20, 6-3, 6-4, 6-6, 6-7, 6-8, 7-1, 7-8, 8-1, 8-6, 10-1, 17-3, 17-7, 19-2
Redefining, 7-8

Compare local/national checksums report
Option, 23-12, 24-12

Compare Transport Global to Current System
Option, 23-13

Comparing Loaded Transport Globals to the
Current System (KIDS), 23-13

Components

Build Entry, 24-11
Definition, 23-1
Exported, 23-12
Installations, 23-19
KIDS, 23-12
Missing, 24-11
Routine, 24-10
Software, 20-5, 23-4, 24-9, 24-12
Transport Global, 23-8

Compute Server

Job List, 20-6, 22-10, 22-34
Node, 22-27
Mode, 21-13

COMPUTE SERVER Type, 21-15

Computer Access Policy, 3-11

Computer Account Notification, 3-11

Configuration

Multiple Managers
TaskMan, 21-20
TaskMan, 21-9
Caché and GT.M, 21-18

Contents, xi

Continue Option, 6-7

Control

How Can the Number of Instances of a Server
Option Be Controlled?, 11-2

Conversion

After File Access Security, 5-15
File Access Security, 5-11

Convert Loaded Package for Redistribution
Option, 23-5, 24-4, 24-5

COORDINATOR (IRM) Field, 3-18

Copy Everything About an Option to a New
Option Option, 9-4, 9-11

Copy One Users Menus and Keys to others
Option, 9-4

Copy Print Mode, 18-14
CPT File (#81), 25-1

CPU

Cross-references, 15-2, 21-10
Definition, 20-8

CPU/Service/User/Device Stats Option, 3-21, 3-32

Create a Set of Options to Mark Out-Of-Order
Option, 7-10

Creating

Another Level of Delegation, 9-1
Delegates, 9-7
Device Types, 15-6
Distributions, 23-2
Help Frames, 12-6
Menus and Options, 7-1
New User Account, 3-9
Options and Menus, 7-1
Resource Devices, 18-13
Security Keys, 8-4
Several Dummy Users, 3-10
Spooled Document, 17-6
Tasks, 18-12

TaskMan User Interface, 19-1

Terminal Types, 15-14
Transport Globals, 24-11

Critical Alerts Count Report Option, 10-8

Cross Reference Help Frames Option, 12-5

Cross-references

^XUSEC, 8-5
AHG, 18-7
AK, 8-4
AOLD, 3-33
B, 18-6, 22-30

CPU, 15-2, 21-10
CUR, 3-30
Devices, 15-18, 15-19
Errors, 22-25
Lookup-type, 3-18, 3-19
Options, 12-5
Parents, 12-5
Routines, 12-5
VOLD, 3-33

CUR Cross-reference, 3-30

D

DA Return Code Edit Option, 3-6, 15-16
DA RETURN CODES File (#3.22), 3-6, 15-16, 15-17
Global Location, 15-1
DA RETURN CODES File(#3.22), 15-1
Dangling Pointers
OPTION File (#19), 7-9
Data Dictionaries Being Audited Option, 5-5
Data Dictionary
Data Dictionary Utilities Menu, xlii
Listings, xlii
DATA DICTIONARY Access, 5-1, 5-4, 5-6, 5-8, 5-13
Data Dictionary Utilities Menu, 5-6
DAY(S) FOR TIME PERIOD Field (#.02), 7-12
DAYS FOR BACKUP REVIEWER Field (#.15), 10-10
DAYS TO KEEP OLD TASKS Field, 21-17
DAYS TO KEEP OLD TASKS Field (#8), 21-16
DCL Command Files, 21-13, 21-24
DCL Commands
SET LOGINS/INTERACTIVE, 3-3
DCL Context
Batch Queues, 21-29
Restarting, 21-27
Running TaskMan with a DCL Context, 21-24
Set up for TaskMan and DCL Context in Cache/VMS, 21-24
TASKMAN Account, 21-29
TaskMan Cache/VMS, 21-24
TASKMAN Queue, 21-29
ZTMMSW/DCL.COM, 21-28
ZTMW/DCL.COM, 21-27
Deactivate a User Option, 3-27
Deactivating
Users, 3-26, 3-27
Automatically, 3-28
De-allocating
Security Keys, 8-3
De-allocation of Security Keys Option, 8-3, 9-9
De-assigning
Help Frame Editors, 12-5
DEFAULT # OF ATTEMPTS Field, 3-2
Default Institution, 3-21
DEFAULT INSTITUTION Field, 3-7
DEFAULT LANGUAGE Field, 3-23
DEFAULT LOCK-OUT TIME Field, 3-2
DEFAULT MULTIPLE SIGN-ON Field, 3-5
Defining
Environments
TaskMan, 21-9
Primary Menu, 7-1
Spool Device Types, 17-9
Caché, 17-9
GTM, 17-9
Verify Codes (Passwords), 2-3
Definitions
KIDS, 23-1
Delegate keys Option, 8-3, 9-8
DELEGATED KEYS Field (Multiple), 8-3, 8-4, 9-8
Delegate's Menu Management Menu, 9-2, 9-3, 9-5, 9-7, 9-9
Delegating, 9-1
Options, 8-3, 9-7, 9-9
Security Keys, 8-3, 9-8
DELEGATION LEVEL Field, 8-6
Delete A Spool Document Option, 17-4
DELETE Access, 3-20, 5-1, 5-3, 5-4, 5-6, 5-7
DELETE ALL MAIL ACCESS Field, 3-27
DELETE ALL MAIL ACCESS Field (#9.21), 3-28, 3-29
Delete Entries From Look-Up Option, 25-9, 25-10
Example, 25-10
Multi-Term Look-Up (MTLU), 25-1
Delete Error Log Option, 22-26
DELETE KEYS AT TERMINATION Field, 3-27
DELETE KEYS AT TERMINATION Field (#9.22), 3-28
Delete Old (>14 d) Alerts Option, 10-6, 10-7
Delete Tasks Option, 20-8, 22-6
Delete Unreferenced Options Option, 7-8, 7-9
Deleting
Alerts, 10-3
Security Keys, 8-5
Dequeue Tasks Option, 20-8, 22-4, 22-5, 22-6, 22-33
DESCRIPTION Field, 22-21
DESCRIPTION Field (#3.5)
OPTION File (#19), 11-3
Descriptions
Options, 7-5
DESPPOOL DEVICES Field (#32, Multiple)
DEVICE File (#3.5), 17-10
Device Allocation List, 22-10
Node, 22-27
Device Chart
Multi-Term Look-Up (MTLU), 25-5
DEVICE File (#3.5), 1-2, 3-1, 3-2, 3-4, 3-5, 3-20, 11-2, 11-5, 15-1, 15-2, 15-5, 15-6, 15-7, 15-10, 15-11, 15-13, 15-14, 15-15, 17-9, 17-10, 18-4, 18-5, 18-6, 18-8, 18-10, 18-11, 18-12, 18-13, 18-14, 18-15, 18-17, 20-7, 21-21, 22-20
$I Field, 15-1, 15-4, 15-16, 15-18, 16-3, 17-9, 18-9, 18-12, 18-13, 18-15, 22-33, 22-35
$I Field (#1), 15-2, 15-15, 17-10
ASK HFS I/O OPERATION Field (#5.2), 16-2
ASK HOST FILE Field (#5.1), 16-2
ASK PARAMETERS Field (#5), 16-2
AUTO DESPOOL Field (#31), 17-10
Cross-references, 15-18
DESPool DEVICES Field (#32, Multiple), 17-10
Fields, 15-2
GENERATE SPL DOC NAME Field (#33), 17-10
Global Location, 15-1
Identification, 15-18
NAME Field (#.01), 15-2
OPEN PARAMETERS Field (#19), 15-3, 16-2
OpenVMS-Specific DEVICE Fields, 15-5
POST-CLOSE EXECUTE Field (#8), 15-3
PRE-OPEN EXECUTE Field (#7), 15-3
PRIORITY AT RUN TIME Field (#25), 21-22
QUEUING Field (#5.5), 15-3
SIGN-ON/SYSTEM DEVICE Field (#1.95), 15-2, 15-15, 15-18, 15-19
SUBTYPE Field (#3), 15-3, 15-13, 18-8
TaskMan
Configuration, 21-21
TASKMAN PRINT A HEADER PAGE? Field (#26), 21-22
TYPE Field, 15-4
TYPE Field (#2), 15-2, 21-21
USE PARAMETERS Field (#19.5), 15-3
VOLUME SET(CPU) Field (#1.9), 15-2, 15-15, 15-18, 15-19, 21-21, 22-20
DEVICE FOR QUEUED JOB OUTPUT Field (#3), 22-19, 22-20
Device Handler, 1-2, 3-5, 3-20, 7-3, 7-19, 14-1, 14-4, 14-5, 14-7, 15-1, 15-2, 15-3, 15-11, 15-14, 15-15, 15-16, 15-17, 15-18, 16-2, 17-2, 18-5, 18-6, 18-7, 18-10, 18-12, 18-15, 18-16, 20-3
Alternate Syntax, 14-6
DA Return Codes, 15-16
Home Device, 15-15
Influence on TaskMan, 21-21
Out of Service Devices, 15-17
Page Length, 14-2
Queuing, 14-3
Right Margin, 14-2
Security (Devices), 15-12
Selecting Devices, 15-16
Spool Document Formats, 14-6
Subtypes, 14-4
Summary, 14-7
System Management, 15-1
Terminal Type Information Retained by User, 15-15
Test Pattern, 15-17
Troubleshooting, 15-17
User Interface, 14-1
Virtual Terminals, 15-15
Device Lock-out Times, 3-2
Device Management Menu, 15-6, 15-17, 18-6
Device Waiting List
Node, 22-28
Devices
BROWSER, 15-10, 18-1, 18-3
Cross-references, 15-18, 15-19
Editing, 15-18
File Entries, 18-15
Home, 14-1, 14-3, 15-15, 18-15, 18-16, 18-17
Hunt Groups, 18-6
Device on Another CPU, 18-7
Identification, 15-18
IO List, 22-10
Magtape, 18-8
Network Channel, 18-10
NULL, 15-9
P-MESSAGE, 15-10
Printing, 14-1
Queuing to a Hunt Group Device, 18-7
RESOURCES Type, 11-2
SDP, 18-14
Security, 15-12
Selection at Signon, 15-15
Sequential Disk Processor (SDP), 15-15, 18-14
Signon, 15-15
Slaved, 18-14
Special Devices, 18-1
SPOOLER, 17-1
Synonyms, 15-18
TELNET, 15-10
Using a Hunt Group Device Without Using the Hunt Group, 18-7
VMS
 Systems Virtual Devices, 15-16
DI DDU Menu, 5-6
Diagram Menus Option, 8-2, 8-6
Diagramming Options, 7-5
DIAUDIT DD Option, 5-5
DIAUDIT PURGE DATA Option, 5-6
DIAUDIT PURGE DD Option, 5-6
DIAUDIT TURN ON/OFF Option, 5-6
DIAUDITED FIELDS Option, 5-5
DIC API, 5-5
DIC Routine, 5-3
DIDEL Variable, 5-3, 5-5
DIE API, 5-5
DIE Routine, 5-3
DIEDFILE Option, 5-12
DIEDIT Option, 5-4, 5-6, 5-7
DIFROM Utility, 23-1, 23-4, 23-6
DIGITAL PAGER Field (#.138), 2-10, 3-23, 4-1
DIINQUIRE Option, 5-7, 5-8
DILIST Option, 5-7
DIMODIFY Option, 5-6, 5-8
DIP Routine, 7-21
DIPRINT Option, 5-7
Direct Mode Utilities
 Error Processing
 ^XTER, 13-6
 ^XTERPUR, 13-5
 TaskMan
 ^ZTMON, 22-11
 RESTART^ZTMB, 21-27
DISABLE USER Field, 3-27
Disclaimers, xl
DISEARCH, 5-7
Disk Space Concerns, 12-6
Display
 Attributes, 3-5
 Return Codes, 3-6
 Delegated Options, 9-11
 Help Frames, 12-1
 Nodes, 7-17, 7-18
 Options, 7-6
 Description, 6-5
 Help, 6-2
 Order, 7-3
 Status of Tasks, 19-4
Display Menus and Options Menu, 7-5
DISPLAY OPTION Field, 7-3, 7-7
Display Patches for a Package Option, 24-7
Display status Option, 19-4
DISPLAY TEXT field (#.02), 10-10
Display User Characteristics Option, 2-12, 8-1
Display/Edit Help Frames Option, 12-4, 12-6
Displaying Option Descriptions, 6-5
Displaying Option Help, 6-2
DISTATISTICS Option, 5-7
Distributions
 Definition, 23-1
 Global, 23-6
 KIDS, 23-2, 23-6
 Standard, 23-6
 Transport Mechanism, 23-5
DISUSER Field, 3-30
DISUSER Field (#7), 3-22, 3-27, 3-29
DISV Global, 3-27, 5-11, 5-12, 5-13, 5-16
 KILLing, 5-11, 5-12, 5-13
DITRANSFER Option, 5-6, 5-7, 5-7
DIUTILITY Menu, 5-6
DIVISION Field (#16, Multiple), 3-21
DIVISION Field (Multiple), 3-7
Division of Labor
 TaskMan, 20-1
DLAYGO Variable, 5-3, 5-5
Documentation
 History, iii
 Symbols, xl
Documentation Conventions, xl
DOMAIN File (#4.2), 5-12, 5-14
Double Quote Jump, 6-8
Double Quote Shortcuts, 6-8
DQ^%ZTLOAD API, 22-33
DSM for OpenVMS
 Systems
 VAX
 ENVIRONMENT FOR DCL Field (#9),
 21-13
DTIME Variable, 3-7, 3-22
DUZ
 Description, 5-7
 Variable, 5-10
DUZ("AG") Variable, 3-7
DUZ("AUTO") Variable, 3-7
DUZ(0) Variable, 3-20, 5-3, 5-4, 5-7, 5-8, 5-11, 9-5, 15-12
DUZ(2) Variable, 3-7
Edit a Build Option, 24-10
Edit a User's Options Option, 9-2
Example, 9-3
Edit an Existing User
 ACCESS CODE Field (#2), 3-19
 ALLOWED TO USE SPOOLER Field (#41), 3-22
 ALWAYS SHOW SECONDARIES Field (#200.11), 3-22
 ASK DEVICE TYPE AT SIGN-ON Filed (#200.05), 3-22
 AUTO MENU Field (#200.06), 3-22
 CAN MAKE INTO A MAIL MESSAGE Field (#41.2), 3-22
 DISUSER Field (#7), 3-22
 DIVISION Field (#16, Multiple), 3-21
 FILE MANAGER ACCESS CODE Field (#3), 3-20
 FILE RANGE Field (#31.1), 3-22
 INITIAL Field (#1), 3-18
 MAIL CODE Field (#28), 3-19
 MULTIPLE SIGN-ON Field (#200.04), 3-22
 NAME Field (#.01), 3-18
 NICK NAME Field (#13), 3-19
 PAC (#14, Programmer Access Code), 3-22
 PREFERRED EDITOR Field (#31.3), 3-21
 PRIMARY MENU OPTION Field (#201), 3-19
 PROHIBITED TIMES FOR SIGN-ON Field (#15), 3-22
 SECONDARY MENU OPTIONS Field (#203, Multiple), 3-19
 SERVICE/SECTION Field (#29), 3-21
 SSN Field (#9)
 NEW PERSON File (#200), 3-19
 TERMINATION DATE Field (#9.2), 3-22
 TIMED READ Field (#200.1), 3-22
 TITLE (#8), 3-19
 TYPE-AHEAD Field (#200.09), 3-22
 VERIFY CODE Field (#7.2), 3-19
Edit an Existing User Option, 3-18
Edit Devices by Specific Types Option, 18-8
Edit Error Screens Option, 13-3
Edit File Option, 13-2
Edit Install Status Option, 24-4
Edit Logical/Physical Mapping Option, 15-12
Edit Menu
 Line Editor, 5-2
 Edit option Menu, 3-21
Edit options Option, 7-1, 7-3, 7-8, 7-12, 7-14, 11-3, 12-7
Edit task Option, 19-5
Edit TaskMan Parameters Menu, 21-10, 21-22
Edit User Characteristics
 ASK DEVICE TYPE AT SIGN-ON Filed (#200.05), 2-10
 AUTO MENU Field (#200.06), 2-10
 Form and Template, 3-26
 INITIAL Field (#1), 2-9
 NETWORK USERNAME Field (#501.1), 2-10
 NICK NAME Field (#13), 2-9
 PREFERRED EDITOR Field (#31.3), 2-10
 TEXT TERMINATOR Field (#31.2), 2-10
 TYPE-AHEAD Field (#200.09), 2-10
 VERIFY CODE Field (#7.2), 2-11
Edit User Characteristics Option, 2-3, 2-6, 2-9, 2-12, 3-7, 3-20, 3-26, 15-15
Kernel, 3-21
MailMan, 3-21
Edit User's Spooler Access Option, 17-7
Editing
 Device Types, 15-6
 Devices, 15-18
 Help Frames, 12-6
 Network Channel Devices, 18-10
 Resource Devices, 18-13
 Security Keys, 8-4
 Tasks, 19-5
 Terminal Types, 15-14
Editors
 Line, 2-10, 3-21, 5-2, 5-5
 Screen, 2-6, 3-5, 3-21
Edits and Distribution Menu, 23-2
Electronic Signature Block Edit Option, 4-2
Electronic Signature code Edit Option, 4-1, 4-2
Electronic Signature code Option
 User's Toolbox, 4-1
Electronic Signatures, 4-1
 System Management, 4-1
 User Interface, 4-1
Enable Building Options from Templates, 9-5
ENABLE\^XUFILE3 API, 5-14
Enabling/Disabling Logons, 3-9
Enhanced Error Processing, 13-4
Enter or Edit File Entries Option, 5-4, 5-6, 5-7
Enter/Edit Kernel Site Parameters Option, 3-1, 3-2, 3-8, 15-12
Enter/Edit of Security Keys Option, 8-4
ENTRY ACTION Field (#20), 7-11, 11-1, 11-3
Environment Check, 20-2, 23-7, 23-9
ERR^ZU API, 13-2
Error Log, 13-7
 Purge, 13-5
ERROR LOG File (#3.075), 13-2, 13-5, 22-24
Error Log Node, 22-27
Error Messages During Menu Jumping, 7-14
ERROR MESSAGES File (#3.076), 13-5
Error Processing, 2-6, 13-1
 ^XTER, 13-6
 ^XTERPUR Direct Mode Utility, 13-5
 Add Error Screens Option, 13-3
 Clean Error Trap Option, 13-5
 Edit Error Screens Option, 13-3
 Enhanced, 13-4
 Error Screens, 13-2
 Error Trap Display Option, 13-6
 Interactive Print of Error Messages option, 13-7
 List Error Screens Option, 13-3
 P1 Print 1 occurrence of each error for T-1 (QUEUE) Option, 13-4
 P2 Print 2 occurrences of errors for T-1 (QUEUE), 13-5
 Remove Error Screens Option, 13-4
 System Management, 13-2
 User Interface, 13-1
Error Processing Menu, 13-4
Error Screens
 Node, 22-28
 TaskMan, 20-6
ERROR State
 TaskMan, 22-36
Error Trap Purging, 13-5
Error Trap Auto Clean Option, 13-5
Error Trap Display Option, 13-6
Errors
 Cross-references, 22-25
 Error Messages During Menu Jumping, 7-14
 Error Screens
 Error Processing, 13-2
Errors Logged in Alpha/Beta Test (QUEUED) Option, 23-23
ES Anonymous Directories, xliii
Escaping from a Jumbled Screen, 2-6
Establish System Audit Parameters Option, 7-4
EVE Menu, 7-1, 7-18, 7-19, 9-10, 13-2, 23-2
EXIT ACTION Field (#15), 7-3, 7-11, 11-1, 11-3
Exploding Key, 8-5

Exported
 Components, 23-12
 Files, 3-19
 Frames, 12-6
 Keys, 8-5
 Menus, 7-1, 7-8
 Options, 7-1
 Software, 23-1, 23-4, 23-12
Extended Help, 12-2

F
Failed Access Attempts Audit, 3-32
FAILED ACCESS ATTEMPTS LOG File (#3.05), 3-32, 3-33
FAX NUMBER Field (#.136), 3-23
Fields
 $I
 DEVICE File (#3.5), 15-1, 15-4, 15-16, 15-18, 16-3, 17-9, 18-9, 18-12, 18-13, 22-33, 22-35
 $I (#1)
 DEVICE File (#3.5), 15-2, 15-15, 17-10
 $DEVICE File (#3.5), 18-15
 ACADEMIC AFFILIATION WAIVER (#13), 3-29
 ACCESS CODE, 3-20
 ACCESS CODE (#2), 3-19
 ACCESSIBLE FILE Multiple (#32), 5-1, 5-3, 5-9, 5-11, 5-12, 5-13, 5-14
 AGENCY, 3-7
 ALERT DATE/TIME Multiple (#.01), 10-10
 ALLOWED TO USE SPOOLER (#41), 3-22, 17-7
 ALWAYS SHOW SECONDARIES, 7-7
 ALWAYS SHOW SECONDARIES (#200.11), 3-22
 ASK DEVICE TYPE AT SIGN-ON, 2-6, 3-5, 3-6
 ASK DEVICE TYPE AT SIGN-ON (#200.05), 2-10, 3-22
 ASK HFS I/O OPERATION (#5.2)
 DEVICE File (#3.5), 16-2
 ASK HOST FILE
 DEVICE File (#3.5), 16-2
 ASK PARAMETERS (#5)
 DEVICE File (#3.5), 15-3, 15-14, 16-2
 AUTO DESPOOL (#31)
 DEVICE File (#3.5), 17-10
 AUTO MENU, 3-7, 6-2
 AUTO MENU (#200.06), 2-10, 3-22, 7-3
AUTO-GENERATE ACCESS CODES, 3-6
BACK SPACE (#4)
 TERMINAL TYPE File (#3.2), 15-13, 18-8
BOX-VOLUME PAIR, 21-19, 21-20
BOX-VOLUME PAIR (#.01), 21-11, 21-12
BYPASS DEVICE LOCK-OUT, 3-2
CAN DELETE WITHOUT PROCESSING
 (#.1), 10-7
CAN MAKE INTO A MAIL MESSAGE
 (#41.2), 3-22, 17-7
CHECKSUM REPORT (#6), 24-11
CLOSE EXECUTE
 TERMINAL TYPE File (#3.2), 14-7
CLOSE EXECUTE (#7)
 TERMINAL TYPE File (#3.2), 15-13, 18-5, 18-15, 18-17
CLOSE PRINTER PORT (#111), 18-15, 18-17
COMMERCIAL PHONE (#.135), 3-23
COORDINATOR (IRM), 3-18
DAY(S) FOR TIME PERIOD (#.02), 7-12
DAYS FOR BACKUP REVIEWER (#.15),
 10-10
DAYS TO KEEP OLD TASKS, 22-17
DAYS TO KEEP OLD TASKS (#8), 21-16
DEFAULT # OF ATTEMPTS, 3-2
DEFAULT INSTITUTION, 3-7
DEFAULT LANGUAGE, 3-23
DEFAULT LOCK-OUT TIME, 3-2
DEFAULT MULTIPLE SIGN-ON, 3-5
DELEGATED KEYS (Multiple), 8-3, 8-4, 9-8
DELEGATION LEVEL, 8-6
DELETE ALL MAIL ACCESS, 3-27
DELETE ALL MAIL ACCESS (#9.21), 3-28, 3-29
DELETE KEYS AT TERMINATION, 3-27
DELETE KEYS AT TERMINATION
 (#9.22), 3-28
DESCRIPTION, 22-21
DESCRIPTION (#3.5)
 OPTION File (#19), 11-3
DESPOOL DEVICES (#32, Multiple)
 DEVICE File (#3.5), 17-10
DEVICE FOR QUEUED JOB OUTPUT (#3),
 22-19, 22-20
DIGITAL PAGER (#.138), 2-10, 3-23, 4-1
DISABLE USER, 3-27
DISPLAY OPTION, 7-3
DISPLAY TEXT (#.02), 10-10
DISUSER, 3-30
MAX SIGNON ALLOWED, 3-1, 3-3
MAX SIGNON ALLOWED (#41.2), 21-11
MAX SPOOL DOCUMENT LIFE-SPAN (#31.3), 17-8
MAX SPOOL DOCUMENT LIFE-SPAN field (#31.3), 17-4
MAX SPOOL DOCUMENTS PER USER (#31.2), 17-8
MAX SPOOL LINES PER USER (#31.1), 17-6, 17-8
MENU (item) (Multiple), 7-1
MENU TEMPLATE (Multiple), 6-9
MENU TEXT (#1), 11-3
MESSAGES, 23-17, 23-20
MIXED OS, 15-11
Mixed OS Environment
 KERNEL SYSTEM PARAMETERS file (#8989.3), 15-11
MNEMONIC, 15-18
MODE OF TASKMAN, 21-15, 21-19
MODE OF TASKMAN (#8), 21-12, 21-15
MULTI-DEVICE DESPOOLING (#41.1), 17-7
MULTIPLE SIGN-ON (#200.04), 3-22
NAME (#.01)
 BUILD File (#9.6), 23-4
 DEVICE File (#3.5), 15-2, 15-18
 NEW PERSON File (#200), 3-18, 4-2
 OPTION File (#19), 7-2, 11-3
 PARAMETER DEFINITION file (#8989.51), 10-10
 RESOURCES File (#3.54), 18-12
 SECURITY KEY File (#19.1), 8-5
 TERMINAL TYPE File (#3.2), 15-13
 NETWORK USERNAME (#501.1), 2-10
NEW PERSON IDENTIFIERS, 3-10
NICK NAME (#13), 2-9, 3-19
OFFICE PHONE (#.132), 2-9, 3-23, 4-1
OPEN EXECUTE
 TERMINAL TYPE File (#3.2), 14-7
OPEN EXECUTE (#6)
 TERMINAL TYPE File (#3.2), 15-13, 18-15, 18-16
OPEN PARAMETERS
 DEVICE File (#3.5), 18-9
OPEN PARAMETERS (#19)
 DEVICE File (#3.5), 15-3, 15-15, 16-2, 17-10, 18-4, 18-10
OPEN PRINTER PORT (#110), 18-15, 18-16
OpenVMS-Specific DEVICE Fields
 DEVICE File (#3.5), 15-5
OUT OF ORDER MESSAGE (#2), 7-10, 7-11, 7-15, 11-1, 11-3, 11-8
OUT OF SERVICE? (#3), 21-16
OUT-OF-SERVICE DATE, 3-2
PAC (#14, Programmer Access Code), 3-22
PAGE LENGTH (#3)
 TERMINAL TYPE File (#3.2), 15-13, 18-8
PASSWORD, 15-12, 15-13
PATCH APPLICATION HISTORY
 (Multiple), 23-5
PERFORM DEVICE CHECKING, 3-3
PERMITTED DEVICES (Multiple), 7-12
PERSON LOOKUP, 8-4
PHONE #3 (#.133), 3-23
PHONE #4 (#.134), 3-23
PHONE (HOME) (#.131), 2-9, 3-22
POST SIGN-IN MESSAGE, 3-8
POST-CLOSE EXECUTE (#19.8)
 DEVICE File (#3.5), 18-4
 POST-CLOSE EXECUTE (#8)
 DEVICE File (#3.5), 15-3
PREFERRED EDITOR, 3-21
PREFERRED EDITOR (#31.3), 2-10, 3-21
PRE-OPEN EXECUTE (#7)
 DEVICE File (#3.5), 15-3
PRIMARY HFS DIRECTORY (#320), 15-11
PRIMARY MENU OPTION, 3-1, 3-9, 3-19, 3-30, 9-3, 9-4
PRIMARY MENU OPTION (#201), 3-19
PRINT SERVER NAME OR ADDRESS (#65), 15-5
PRIORITY (#3.8)
 Options, 7-3
 Server Options, 11-3
PRIORITY AT RUN TIME (#25), 21-22
PROHIBITED TIMES FOR SIGN-ON, 3-2, 3-4
PROHIBITED TIMES FOR SIGN-ON (#15), 3-22
QUEUED TO RUN AT WHAT TIME (#2), 22-19, 22-20, 22-21, 22-23
QUEUED TO RUN ON VOLUME SET (#5), 22-19, 22-20, 22-22
QUEUING (#5.5)
 DEVICE File (#3.5), 15-3
 QUEUING REQUIRED (Multiple), 7-12
REMOTE PRINTER NAME (#67), 15-5
REPLACEMENT VOLUME SET (#7), 21-16
Required Fields
 NEW PERSON File (#200), 3-10
REQUIRED VOLUME SET? (#4), 21-16
RESCHEDULE FREQUENCY (#6), 22-19, 22-21
RESCHEDULING FREQUENCY (#6), 22-22, 22-23, 22-24
RESOURCE SLOTS (#35), 11-2, 11-5
 DEVICE File (#3.5), 18-12
RESTRICT DEVICES, 7-12
REVERSE/NEGATIVE LOCK, 8-6
RIGHT MARGIN (#1)
 TERMINAL TYPE File (#3.2), 15-13
ROUTINE (#25), 11-1, 11-3, 11-9
SCHEDULING RECOMMENDED (#209), 7-4, 22-19, 22-22
SECONDARY SI (#52), 15-7, 15-11
SECONDARY HFS DIRECTORY (#320.2), 15-11
SECONDARY MENU OPTIONS (#203, Multiple), 3-19
SECONDARY MENU OPTIONS (Multiple), 3-22, 7-7, 7-19, 9-4
SECURITY, 3-2, 3-20, 15-12
SELECTABLE AT SIGN-ON
 TERMINAL TYPE File (#3.2), 3-6
SELECTABLE AT SIGN-ON (#.02)
 TERMINAL TYPE File (#3.2), 15-13, 15-16
SERVER ACTION (#221), 11-2, 11-3, 11-4, 11-5
SERVER AUDIT (#223), 11-4
SERVER BULLETIN (#220), 11-4
SERVER DEVICE (#227), 11-2, 11-5
SERVER MAIL GROUP (#222), 11-4
SERVER REPLY (#225), 11-5
SERVICE/SECTION, 3-18
SERVICE/SECTION (#29), 3-21
SEX (#4)
 NEW PERSON File (#200), 3-9, 3-10, 3-19
SIGNATURE BLOCK PRINTED NAME, 4-2
SIGNATURE BLOCK PRINTED NAME (#20.2), 4-1
SIGNATURE BLOCK TITLE (#20.3), 4-1
SIGN-ON/SYSTEM DEVICE (#1.95)
 DEVICE File (#3.5), 15-2, 15-15, 15-18, 15-19
SLAVE FROM DEVICE, 18-17
SPECIAL QUEUEING (#9), 22-19
SPECIAL QUEUEING (#9), 22-22
SSN
 PATIENT File (#2), 5-8
SSN (#9)
 NEW PERSON File (#200), 3-9, 3-10, 3-19
START NEXT, 22-16
STATUS, 23-19
STATUS (#.02), 24-4
SUBMANAGER RETENTION TIME (#5), 21-11, 21-12
SUBORDINATE KEY (Multiple), 8-5
SUBTYPE (#3)
 DEVICE File (#3.5), 15-3, 15-13, 18-8
SUPPRESS BULLETIN (#224), 11-5
SUPPRESS FORM FEED AT CLOSE
 (#11.2), 18-5
SYNC FLAG, 22-16
TASK PARAMETERS, 3-33, 10-6, 10-7, 13-6
 TASK PARAMETERS (#15), 22-19, 22-21
 TASK PARTITION SIZE (#4), 21-11
 TASKMAN FILES UCI (#5), 21-16
 TASKMAN FILES VOLUME SET (#6), 21-16
 TASKMAN HANG BETWEEN NEW JOBS
 (#7), 21-11, 21-12
 TASKMAN JOB LIMIT, 3-3, 21-10
 TASKMAN JOB LIMIT (#6), 21-11
 TASKMAN PRINT A HEADER PAGE?
 (#26), 21-22
TELNET PORT (#66), 15-5
TERMINATION DATE, 3-10, 3-28, 3-30, 11-4
TERMINATION DATE (#9.2), 3-22, 3-27, 3-28
TEXT TERMINATOR, 3-26
TEXT TERMINATOR (#31.2), 2-10
TIED ROUTINE, 3-1
TIME PERIOD (#.01), 7-12
TIMED READ, 3-7
TIMED READ (#200.1), 3-22
TIMES/DAYS PROHIBITED (#3.91)
 (Multiple), 11-2, 11-3
TITLE (#8), 3-19
TO UCI (#3), 21-18
TO VOLUME SET (#2), 21-18
TRANSPORT BUILD NUMBER (#63), 23-12, 24-12
TYPE
 DEVICE File (#3.5), 15-4
 TYPE (#.1)
 VOLUME SET File (#14.5), 21-15, 21-16
 TYPE (#2)
 DEVICE File (#3.5), 15-2, 21-21
 TYPE (#4)
OPTION File (#19), 11-3
TYPE-AHEAD, 3-7
TYPE-AHEAD (#200.09), 2-10, 3-22
UCI ASSOCIATION TABLE, 21-17
USE PARAMETERS (#19.5)
 DEVICE File (#3.5), 15-3
USE TIMEOUT ON OPENS (#2009.5)
 DEVICE File (#3.5), 18-10
USER CHARACTERISTICS TEMPLATE, 3-26
VAX ENVIRONMENT FOR DCL (#9), 21-13, 21-24
VERIFY CODE, 3-20
VERIFY CODE (#7.2), 2-11, 3-19
VERSION (Multiple), 23-5
VMS DEVICE TYPE (#63), 15-5
VOICE PAGER (#.137), 2-10, 3-23, 4-1
VOLUME SET (#.01)
 VOLUME SET File (#14.5), 21-15
 VOLUME SET (#41, Multiple)
 KERNEL SYSTEM PARAMETERS File (#8989.3), 21-11
 VOLUME SET (Multiple)
 KERNEL SYSTEM PARAMETERS File (#8989.3), 3-3
 VOLUME SET(CPU) (#1.9)
 DEVICE File (#3.5), 15-2, 15-15, 15-18, 15-19, 21-21, 22-20
Fields Being Audited Option, 5-5
Figures, xxvii
File Access Security, 3-18, 3-20, 5-1, 5-2, 5-3
 Access Level, 5-5
 AUDIT, 5-1, 5-4, 5-5, 5-8
Conversion
 Advance Preparation, 5-11
 Advantages, 5-11
 After, 5-15
 Instructions, 5-14
 Summary, 5-13
DATA DICTIONARY, 5-1, 5-4, 5-6, 5-8, 5-13
DELETE, 5-1, 5-3, 5-4, 5-6, 5-7
DELETE Access, 3-20, 5-3
LAYGO, 3-19, 5-1, 5-3, 5-4, 5-6, 5-7, 5-13, 5-15, 7-1
LAYGO Access, 5-3
Menu, 5-9, 5-11, 5-14, 5-15, 5-16
Properties, 5-5
READ, 5-1, 5-4, 5-6, 5-7, 5-16, 7-1
READ Access, 3-20, 5-11
Running the Conversion, 5-11
System Management, 5-3
User Interface, 5-1
When is File Access Security Checked?, 5-3
Who Needs File Access?, 5-5
WRITE, 5-1, 5-4, 5-7, 7-1
WRITE Access, 3-20
FILE MANAGER ACCESS CODE Field (#3), 3-20, 3-27, 3-30, 5-2, 5-3, 5-4, 5-7, 5-8, 5-11, 5-13, 5-14, 7-1, 8-3, 9-5, 15-12
FILE RANGE Field (#31.1), 3-22
FILE SERVER Type (Obsolete), 21-15
FileMan
 Browser Device, 18-1
 Limited File manager Options (Build) Option, 9-5
 Line Editor, 2-10, 3-21, 5-2, 5-5
 Menu, 5-1
 Screen Editor, 2-6, 3-5, 3-21
 What Happened to DIFROM, 23-6
FileMan edit template Option, 11-3
FileMan Inquire to File Entries Option, 25-2
Files
 Adding Explicit File Access for IRM, 5-12
 AGENCY (#4.11), 3-7
 ALERT (#8992), 10-5, 10-6, 10-7, 10-8, 10-9, 10-10
 ALERT TRACKING (#8992.1), 10-3, 10-5, 10-6, 10-7, 10-8, 10-9
 ALTERNATE EDITOR (#1.2), 3-21
 AUDIT (#1.1), 5-8
 Audit Access, 5-8
 AUDIT LOG FOR OPTIONS (#19.081), 7-4, 11-1, 11-4
 BUILD (#9.6), 23-1, 23-4, 23-12, 23-17, 23-21, 24-7, 24-9, 24-10, 24-12
 BULLETIN (#3.6), 11-4, 11-8
 CPT (#81), 25-1
 DA RETURN CODES (#3.22), 3-6, 15-1, 15-16, 15-17
 Global Location, 15-1
 DCL Command, 21-13, 21-24
 DEVICE (#3.5), 1-2, 3-1, 3-2, 3-4, 3-5, 3-20, 11-2, 11-5, 15-1, 15-2, 15-5, 15-6, 15-7, 15-10, 15-11, 15-13, 15-14, 15-15, 17-9, 17-10, 18-4, 18-5, 18-6, 18-8, 18-10, 18-11, 18-12, 18-13, 18-14, 18-15, 18-17, 20-7, 21-21, 22-20
 $I Field, 15-1, 15-4, 15-16, 15-18, 16-3, 17-9, 18-9, 18-12, 18-13, 18-15, 22-33, 22-35
 $I Field (#1), 15-2, 15-15, 17-10
Index

ASK HFS I/O OPERATION Field (#5.2), 16-2
ASK HOST FILE Field (#5.1), 16-2
ASK PARAMETERS Field (#5), 16-2
Cross-references, 15-18
Fields, 15-2
Global Location, 15-1
MARGIN WIDTH Field (#9), 18-8
NAME Field (#.01), 15-2
OPEN PARAMETERS Field (#19), 15-3
OpenVMS-Specific DEVICE Fields, 15-5
POST-CLOSE EXECUTE Field (#19.8), 18-4
POST-CLOSE EXECUTE Field (#8), 15-3
PRE-OPEN EXECUTE Field (#7), 15-3
QUEUING Field (#5.5), 15-3
SIGN-ON/SYSTEM DEVICE Field (#1.95), 15-2, 15-15, 15-18, 15-19
SUBTYPE Field (#3), 15-3, 15-13, 18-8
TYPE Field, 15-4
TYPE Field (#2), 15-2
USE PARAMETERS Field (#19.5), 15-3
VOLUME SET(CPU) Field (#1.9), 15-2, 15-15, 15-18, 15-19, 21-21, 22-20
DEVICE File (#3.5)
OPEN PARAMETERS Field (#19), 18-4
Device File Entries, 18-15
DOMAIN (#4.2), 5-12, 5-14
ERROR LOG (#3.075), 13-2, 13-5, 22-24
ERROR MESSAGES (#3.076), 13-5
Exported, 3-19
FAILED ACCESS ATTEMPTS LOG (#3.05), 3-32, 3-33
File Access Security Conversion Instructions, 5-14
FORUM ROUTINE (#9.8), 23-12, 24-12
FUNCTION (#.5), 3-21
HELP FRAME (#9.2), 12-4, 12-6
Host, 16-1
How to
Grant Access, 5-9
ICD DIAGNOSIS (#80), 25-1, 25-2
ICD OPERATION/PROCEDURE (#80.1), 25-1
INSTITUTION (#4), 3-7
KERNEL PARAMETERS (#8989.2), 3-26
KERNEL SYSTEM PARAMETERS (#8989.3), 3-1, 3-2, 3-3, 3-5, 3-6, 3-7, 3-8, 3-10, 3-23, 3-29, 15-11, 17-4, 17-6, 21-11, 22-28
KERNEL SYSTEM PARAMETERS file (#8989.3)
Mixed OS Environment Fields, 15-11
KIDS, 23-4
Levels of File Access Security, 5-5
LOCAL SHORTCUT (#8984.2), 1, 25-1, 25-3, 25-6, 25-9, 25-10
LOCAL SYNONYM (#8984.3), 1, 25-1, 25-3, 25-9, 25-13
MESSAGE (#3.9), 17-6
NEW PERSON (#200), 2-3, 2-8, 2-9, 2-13, 3-1, 3-4, 3-5, 3-6, 3-7, 3-9, 3-10, 3-18, 3-19, 3-20, 3-27, 3-28, 3-29, 3-33, 4-1, 5-1, 5-2, 5-3, 5-9, 5-10, 5-11, 5-13, 5-16, 6-9, 7-7, 7-19, 8-2, 8-4, 8-5, 8-6, 9-8, 9-9, 11-9, 15-15, 17-7, 22-3
Required Fields, 3-10
NEW PERSON file (#200), 3-20
OLD ACCESS AND VERIFY CODES (#200 XREF), 3-33
OPTION (#19), 7-4, 22-19, 22-22
OPTION (#19), 3-21, 3-29, 6-3, 6-5, 6-9, 7-1, 7-2, 7-3, 7-9, 7-11, 7-14, 7-15, 7-17, 7-18, 7-19, 7-20, 8-2, 9-2, 9-10, 11-1, 11-2, 11-6, 11-8, 11-9, 12-6, 12-7
Dangling Pointers, 7-9, 12-5
OPTION SCHEDULING (#19.2), 7-14, 10-7, 20-1, 20-2, 20-7, 22-17, 22-18, 22-19, 22-20, 22-21, 22-22, 22-23, 22-24
Other TaskMan Files, 20-7
PACKAGE (#9.4), 5-6, 23-1, 23-4, 23-5, 23-6, 24-7
PARAMETER DEFINITION (#8989.51), 10-10
PARAMETERS (#8989.5), 10-10, 2
PATIENT (#2), 5-8
Purpose of Granting Access, 5-4
RESOURCE (#3.54), 18-12
ROUTINE (#9.8), 23-12, 24-10, 24-11, 24-12
SECURITY KEY (#19.1), 8-2, 8-4, 8-5, 12-6
SERVICE/SECTION (#49), 3-18, 3-21
SIGN-ON LOG (#3.081), 3-30, 3-31, 3-32

Index-14

Kernel
Systems Management Guide
Version 8.0

July 1995
Revised March 2010
Purging, 3-32
SPOOL DATA (#3.519), 17-6
SPOOL DOCUMENT (#3.51), 14-6, 15-14, 17-6, 17-7, 17-10
TaskMan, 20-5
TASKMAN ERROR, 22-11
BOX-VOLUME PAIR Field (#.01), 21-11, 21-12
Load Balance Routine, 21-20
LOAD BALANCE ROUTINE Field (#21), 21-13
LOG TASKS? Field (#2), 21-11
MODE OF TASKMAN Field (#8), 21-12
Standardized VA Caché and GT.M Configuration, 21-19
SUBMANAGER RETENTION TIME Field (#5), 21-11, 21-12
TASK PARTITION SIZE Field (#4), 21-11
TASKMAN HANG BETWEEN NEW JOBS Field (#7), 21-11, 21-12
TASKMAN JOB LIMIT Field (#6), 21-11
VAX ENVIRONMENT FOR DCL Field (#9), 21-13
TERMINAL TYPE (#3.2), 3-5, 3-6, 14-4, 15-1, 15-3, 15-13, 15-14, 15-16, 18-5, 18-8, 18-15
BACK SPACE Field (#4), 15-13, 18-8
CLOSE EXECUTE Field, 14-7
CLOSE EXECUTE Field (#7), 15-13, 18-5, 18-15, 18-17
FORM FEED Field (#2), 15-13, 18-8
Global Location, 15-1
NAME Field (#.01), 15-13
Naming Conventions, 15-14
OPEN EXECUTE Field, 14-7
OPEN EXECUTE Field (#6), 15-13, 18-15, 18-16
PAGE LENGTH Field (#3), 15-13, 18-8
RIGHT MARGIN Field (#1), 15-13
SELECTABLE AT SIGN-ON Field, 3-6
SELECTABLE AT SIGN-ON Field (#.02), 15-13, 15-16
Terminal Type File Entries, 18-15
TITLE (#3.1), 3-19
Transfer Entries, 5-7, 5-7
Transfer File Entries, 5-7
UCI ASSOCIATION (#14.6), 20-5, 20-7, 21-9, 21-17, 22-34
FROM UCI Field (#.01), 21-18
FROM VOLUME SET Field (#1), 21-18
Standardized VA Caché and GT.M Configuration, 21-19
TO UCI Field (#3), 21-18
TO VOLUME SET Field (#2), 21-18
VOLUME SET (#14.5), 3-9, 20-5, 20-7, 21-9, 21-14, 21-18, 22-17, 22-35, 22-37
DAYS TO KEEP OLD TASKS Field (#8), 21-16
INHIBIT LOGONS? Field (#1), 21-15
LINK ACCESS Field (#2), 21-16
OUT OF SERVICE? Field (#3), 21-16
REPLACEMENT VOLUME SET Field (#7), 21-16
REQUIRED VOLUME SET? Field (#4), 21-16
Standardized VA Caché and GT.M Configuration, 21-18
TASKMAN FILES UCI Field (#5), 21-16
TASKMAN FILES VOLUME SET Field (#6), 21-16
TYPE Field (#1), 21-15, 21-16
VOLUME SET Field (#.01), 21-15
Who Needs File Access?, 5-5
Find a User Option, 3-30
Fix Help Frame File Pointers Option, 12-5
Fix Option File Pointers Option, 7-9
FORM FEED Field (#2)
TERMINAL TYPE File (#3.2), 15-13, 18-8
Form Feeds, 18-5
SUPPRESS FORM FEED AT CLOSE Field (#11.2), 18-5
System Management, 18-5
User Interface, 18-5
Forms
Security, 3-10, 3-11
FORUM ROUTINE File (#9.8), 23-12, 24-12
Forwarding
Alerts, 10-4
FPHYSICAL DISK (#505), 15-11
FROM UCI Field, 21-17
FROM UCI Field (#.01), 21-18
FROM VOLUME SET Field, 21-17
FROM VOLUME SET Field (#1), 21-18
FUNCTION File (#.5), 3-21
Index

Functional Description
 Multi-Term Look-Up (MTLU), 25-1
Further Delegation, 9-9
Future tasks Option, 22-4

G

General Processor Mode, 21-12
GENERAL PURPOSE VOLUME SET Type, 21-15
GENERATE SPL DOC NAME Field (#33)
 DEVICE File (#3.5), 17-10
GET_METRIC.COM Script, 21-20
GETENV^%ZOSV API, 21-11
Global Distributions, 23-6
GLOBAL LOCK Field (#36), 18-11
Globals
 ^%ZIS, 20-7
 ^%ZIS(1., 15-1
 ^%ZIS(2., 15-1
 ^%ZIS(3.22., 15-1
 ^%ZISL, 18-12
 ^%ZTER, 13-2, 13-5
 ^%ZTSCH, 20-2, 20-5, 20-7, 21-16, 21-20,
 22-19, 22-27, 22-32
 ^%ZTSK, 20-2, 20-5, 21-16, 21-20, 22-2, 22-
 17, 22-30, 22-32
 ^%ZUA(3.05, 3-33
 ^DISV, 3-27, 5-11, 5-12, 5-13, 5-16
 KILLing, 5-11, 5-12, 5-13
 ^TMP, 7-12, 7-13
 ^UTILITY($J, 5-13, 7-12, 7-13
 ^XMB, 17-6
 ^XMBS, 17-6
 ^XTMP, 7-10, 7-12, 7-13, 23-7, 23-9, 23-20
 ^XUSEC(0., 3-32, 7-12
 ^XUTL, 7-12, 7-13, 7-14, 7-20, 15-15
 Display Nodes, 7-18
 Structure and Function, 7-17
 User Stacks, 7-17
Installing Global Distributions, 23-21
KIDS Transport Global, 23-1
 Backup, 23-15
 Compare, 23-3, 23-7, 23-13
 Create, 23-2, 23-5, 24-11
 Definition, 23-1
 Environment Check, 23-7
 Export, 23-2
 Install, 23-3
 Load from Distribution, 23-3, 23-7, 23-9
 Load from PackMan Messages, 23-3, 23-7

Print, 23-3, 23-7, 23-12
Processing, 23-16
Verify, 24-11
Verifying Checksums, 23-12
Purging, 7-12
Scratch, 18-3
XUTL, 7-14, 7-21
Glossary, 1
 Intranet Website, Glossary, 6
 Go-home Jump, 6-7
 Grant Access by Profile Option, 3-10, 3-21
 Granting File Access, Purpose, 5-4

H

Halt Option, 6-7
HEADER Field (#26), 7-11, 11-1, 11-4
Header Page
 TaskMan, 21-22
Help
 At Prompts, xlii
 Display Option Help, 6-2
 Displaying Option Descriptions, 6-5
 Extended, 12-2
 Listing Options, 6-2
 Listing Secondary and Common Options, 6-3
 Online, xlii
 Question Marks, xlii, 2-4, 3-7, 3-22, 5-2, 5-
 10, 6-1, 6-2, 6-3, 6-5, 6-6, 6-9, 7-7, 7-8, 8-
 1, 12-2, 12-3, 12-7, 13-3, 13-4, 13-6, 14-2,
 15-4, 19-3, 19-5, 19-6, 22-5, 22-11, 23-16
HELP FRAME Field, 7-3, 12-5, 12-7
HELP FRAME File (#9.2), 12-4, 12-6
Help Frames
 Creating, 12-6
 Deleting Help Frames, 12-5
 Disk Space Concerns, 12-6
 Display, 12-1
 Editing, 12-6
 Editors, 12-5
 Exported, 12-6
 Keywords, 12-7
 Layout Considerations, 12-6
 Linking Help to an Option or Menu, 12-7
 Menu System, 12-2
 Namespace, 12-6
 XUSER COMPUTER ACCOUNT, 3-11
Help Processor, 12-1
 Cross Reference Help Frames Option, 12-5
 Deleting Help Frames, 12-5
 Display/Edit Help Frames Option, 12-4
Index

Editors, 12-5
Fix Help Frame File Pointers Option, 12-5
Help System Actions, 12-2
Layout Considerations, 12-6
Linking a Help Frame as Help for an Option or Menu, 12-7
List Help Frames Option, 12-4
Menu, 12-4
Menu System, 12-2
New/Revised Help Frames Option, 12-5
System Management, 12-4
User Interface, 12-1
HFS Device, 15-7
History, Revisions to Documentation and Patches, iii
Home Device, 14-1, 14-3, 15-15, 18-15, 18-16, 18-17
Home Pages
Acronyms Intranet Website, Glossary, 6
Adobe Website, xliii
Glossary Intranet Website, Glossary, 6
KAAJEE Documentation Website, 2-2
Kernel Website, xliii
RPC Broker Documentation Website, 2-1
VA FileMan Documentation Website, 3-21, 5-1, 5-5
VHA Software Document Library (VDL) Website, xliii
VHA Software Document Library (VDL) Website, 2
VHA Software Document Library (VDL) Website, 3
VistA Development Website, xl
HOME%ZIS, 7-3
Host File Server Device Edit Option, 15-7, 16-2
Host Files, 16-1
Caché Devices Setup, 16-3
GT.M Devices Setup, 16-3
Host File Server Device Edit Option, 16-2
System Management, 16-2
User Interface, 16-1
How Can the Number of Instances of a Server Option Be Controlled?, 11-2
How Shared Device and Terminal Type Attributes are Used, 15-14
How the File Access Security Conversion Works
Summary, 5-13
How to
Delete a Regularly Scheduled Task, 22-19
Grant File Access, 5-9
Obtain Technical Information Online, xlii
Requeue a Regularly Scheduled Task, 22-20
Restart TaskMan when Running in a DCL Context, 21-27
Use this Manual, xxxix
Hunt Groups
Device on Another CPU, 18-7
Devices, 18-6
Queuing to a Hunt Group Device, 18-7
System Management, 18-6
TaskMan, 19-4
User Interface, 18-6
Using a Hunt Group Device Without Using the Hunt Group, 18-7

ICD DIAGNOSIS File (#80), 25-1, 25-2
ICD OPERATION/PROCEDURE File (#80.1), 25-1
Identifying Locked Options, 8-2
Idle Node, 22-28
If the Option Invokes Non-VistA Applications, 7-3
If the Option Should Be Regularly Scheduled, 7-4
Implementation
Multi-Term Look-Up (MTLU), 25-21
INDEPENDENTLY INVOCABLE Field, 7-8
Information Stored in the INSTALL File (#9.7) (KIDS), 23-17
INHIBIT LOGONS? Field, 3-9
INHIBIT LOGONS? Field (#1), 21-15
INIT Routines, 23-1, 23-5, 23-6
INITIAL Field (#1)
NEW PERSON File (#200), 2-9, 3-10, 3-18, 3-19, 4-1
Inquire Option, 7-6
Inquire to File Entries Option, 5-7, 5-8
Inspecting the Tasks in the Monitor's Lists, 22-11
INSTALL ANSWERS Field (Multiple), 23-17
INSTALL COMPLETE TIME Field (#17), 24-4
Purging, 24-7
Install File Print Option, 23-17, 23-19, 24-3
Install Package(s) Option, 23-7, 23-16, 23-17
INSTALL/CHECK MESSAGE PackMan
 Option, 23-7, 23-9
Installation Menu, 23-3
Installation Menu (KIDS), 23-8, 23-16
Installations
 Components, 23-19
 Finish, 23-19
 Global Distributions (KIDS), 23-21
 KIDS, 23-2, 23-3
 Menu (KIDS), 23-8
 Progress (KIDS), 23-19
 Restarting, 23-20
 Running (KIDS), 23-16
 Scheduling (KIDS), 23-16
 Sequence (KIDS), 23-7
 Standard Distributions (KIDS), 23-6
Instances
 How Can the Number of Instances of a Server
 Option Be Controlled?, 11-2
 INSTITUTION File (#4), 3-7
 Intended Audience, xl
 Intensity, 14-6
Interactive Print of Error Messages Option, 13-7
INTERACTIVE USER'S PRIORITY Field, 3-5
INTRO TEXT Field, 3-1, 3-8
Introduction, 1-1
 Multi-Term Look-Up (MTLU), 25-1
 System Manager, 1-2
 User, 1-1
Introductory Text
 Signon/Security, 3-1
Introductory text edit Option, 3-1
INVOKED BY ROUTINE Field, 12-5
Invoking Non-VistA Applications Options, 7-3
IO
 List, 22-10
 Variables, 7-3
IONOFF Variable, 18-5
IRM Setup to Enable Building Options from
 Templates, 9-5

J
JOB Command, 20-2, 21-11, 21-12, 21-13, 22-29
Job List, 20-6, 22-10
 Node, 22-28
Jobs
 KILL, 22-10

Jumbled Screen
 Escaping from, 2-6
Jump Nodes, 7-17
 ^XUTL Global, 7-20
Jump Start
 Signon, 2-5
Jumps
 Error Messages During Menu Jumping, 7-14
 Options, 6-6
 Phantom, 7-14, 7-15
 Rubber-band Jump, 6-7
 Up-arrow, 6-1, 6-6, 6-7, 6-8, 6-9, 7-14

K
KAAJEE Documentation Website, 2-2
KEEP AT TERMINATE Field, 8-4
Kernel
 Installation and Distribution System (KIDS), 23-1
 KIDS, 23-1
 Menus, 7-1
 Signon Auditing Files, 3-32
 Website, xliii
Kernel Installation & Distribution System Menu, 23-2
Kernel Management Menu, 15-12
KERNEL PARAMETERS File (#8989.2), 3-26
KERNEL SYSTEM PARAMETERS file
 (#8989.3), 15-11, 17-4
 Mixed OS Environment Fields, 15-11
KERNEL SYSTEM PARAMETERS File
 (#8989.3), 3-1, 3-2, 3-3, 3-5, 3-6, 3-7, 3-8, 3-10, 3-23, 3-29, 15-11, 17-6, 21-11, 22-28
Key Management Menu, 8-3, 8-4, 9-8, 9-9
Key Word In Context (KWIC), 25-2, 25-21
Keys
 Delegating, 9-8
 Delegation Levels, 8-3, 8-6, 9-3, 9-9
 Exported, 8-5
 Management
 Security Keys, 8-2
 Provider, 3-28, 8-3, 8-4
 KEYS Field (Multiple), 8-2, 8-3, 9-4
 Keys For a Given Menu Tree Option, 8-3
Keyword Option
 Multi-Term Look-Up (MTLU)
 Example, 25-20
Keywords
 Help Frames, 12-7
 Multi-Term Look-Up (MTLU), 25-1, 25-13
Index

Associated with a Single Term and Multiple Terms, 25-3
Keywords Option
Multi-Term Look-Up (MTLU), 25-2, 25-17
KIDS, 23-21, 24-10
Aborted Installations, 23-20
 Recovering From, 23-20
Alpha/Beta Tracking, 23-23
Answering Installation Questions for
 Transport Globals in a Distribution, 23-7
Backup a Transport Global Option, 23-15
Build Entry
 Definition, 23-1
BUILD File (#9.6), 23-4
Build File Print Option, 24-2
Changes in the Role of the PACKAGE File
 (#9.4), 23-5
Checkpoints, 23-20
Checksums, 23-7, 23-12, 24-9, 24-12
Comparing Loaded Transport Globals to the
 Current System, 23-13
Components, 23-12
 Definition, 23-1
Convert Loaded Package for Redistribution
 Option, 24-4
Definitions, 23-1
Deleting Security Keys, 8-5
Display Patches for a Package Option, 24-7
Distributions, 23-2
 Definition, 23-1
 Global, 23-6, 23-21
 Split Across Diskettes, 23-10
 Standard, 23-6
 Transport Mechanism, 23-5
Edit Install Status Option, 24-4
Environment Check, 23-7, 23-9
Exported
 Components, 23-12
Files, 23-4
Global Distributions, 23-6
Information Stored in the INSTALL File
 (#9.7), 23-17
INSTALL File (#9.7), 23-5
 Information, 23-17
Install File Print Option, 24-3
Installations, 22-28, 23-2, 23-3
 Answering Questions, 23-16
 Global Distributions, 23-21
Menu, 23-8
Progress, 23-19
Progress Bar, 23-19
Queued, 23-17
Re-answering Questions, 23-17
Restarting, 23-20
Sequence, 23-7
Software, 23-8
Standard Distributions, 23-6
Loading
 Standard Distributions, 23-9
 Transport Globals from a Distribution or
 PackMan Message, 23-7
Once the Installation Finishes, 23-19
Options, 23-2
OVERWRITE, 23-21
Package
 Definition, 23-1
PACKAGE File (#9.4), 23-5
Patches, 23-5, 23-6, 23-15, 24-10
Printing Loaded Transport Globals, 23-12
Processing Each Transport Global, 23-16
Progress Bar (Installations), 23-19
Purge Build or Install Files Option, 24-7
Purging
 BUILD File, 23-21
 INSTALL File, 23-21
 Selected Entries, 24-9
Re-answering Installation Questions, 23-17
Reasons to Retain BUILD and INSTALL File
 Entries, 24-9
Recovering from an Aborted Distribution
 Load, 23-20
REPLACE, 23-21
Restarting Aborted Installations, 23-20
Rollup Patches into a Build Option, 24-10
ROUTINE File (#9.8), 24-10
Running Installations, 23-16
Scheduling Installations, 23-16
Selecting Software Names for Purging, 24-8
Software Installation, 23-8
Standard Distributions, 23-6
System Management
 Installations, 23-1
 Utilities, 24-1
Transport Global, 23-1
 Backup, 23-15
 Checksums, 23-12
 Compare, 23-3, 23-7, 23-13
 Create, 23-2, 23-5, 24-11
 Definition, 23-1
 Environment Check, 23-7
 Export, 23-2
 Install, 23-3
Load from Distribution, 23-3, 23-7, 23-9
Load from PackMan Messages, 23-3, 23-7
Print, 23-3, 23-7, 23-12
Processing, 23-16
Verify, 24-11
Verifying Checksums, 23-12
Transport Mechanism
Distributions, 23-5
Update Routine File Option, 24-10
Verify a Build Option, 24-11
Verify Package Integrity Option, 24-12
Verifying Checksums in a Transport Global, 23-12
Versions to Retain, 24-8
When the Distribution is Split Across
Diskettes, 23-10
When the Installation is Queued, 23-17
KILL
^DISV Global, 5-11, 5-13
^TMP Global, 7-13
^UTILITY($J Global, 7-13
^XTMP Global
INSTALL File (#9.7) Entries and Transport
Globals, 23-7
Device Allocation List Node, 22-27
IO Variables, 7-3
Jobs, 22-10
Signon Nodes, 7-13
Software-wide Variables, 7-8
Subscript ($J) or Namespace, $J in the
^UTILITY($J or ^TMP Global, 7-13
TaskMan Process, 22-16
Tasks, 22-10
Update Node, 22-29
KILL off a users' job Option, 22-10, 22-29
KWIC, 25-2, 25-21

L

LANGUAGE Field (#200.07), 3-23
LAST SIGN-ON DATE/TIME Field (#202), 3-29
LAT PORT SPEED Field (#64), 15-5
LAT SERVER NODE Field (#61), 15-5
LAT SERVER PORT Field (#62), 15-5
LAYGO Access, 3-19, 5-1, 5-3, 5-4, 5-6, 5-7, 5-13, 5-15, 7-1
Legal Requirements, xl
Levels of File Access Authority, 5-5
LIFETIME OF VERIFY CODE Field, 3-6

Limited File Manager Options (Build) Option, 9-5, 9-11
Example, 9-6
Limiting Simultaneous Running of a Particular
Task, 18-12
Line Editor
VA FileMan, 2-10, 3-21, 5-2, 5-5
LINK ACCESS Field (#2), 21-16
Link List, 20-6
Link List Node, 22-28
Linking a Help Frame as Help for an Option or
Menu, 12-7
List Alerts for a user from a specified date
Option, 10-8
List Delegated Options and their Users Option,
9-11
List Error Screens Option, 13-3
List File Attributes Option, xlii, 5-7
List Help Frames Option, 12-4, 12-7
List of tasks Option, 22-3
List Options by Parents and Use Option, 7-5
List own tasks Option, 19-5
List Spool Documents Option, 17-3
List Tasks Option, 22-2, 22-5, 22-11, 22-12, 22-
32
All your tasks, 22-3
Future tasks, 22-4
List of tasks, 22-3
Running tasks, 22-4
Tasks waiting for a device, 22-4
Unsuccessful tasks, 22-4
Your future tasks, 22-3
List the Defined Options Sets Option, 7-11
List Users Option, 3-31
Listing and Printing Tasks, 19-5
Listing Options, 6-2
Listing Primary, Secondary, and Common Menu
Options, 6-4
Listing Secondary and Common Options, 6-3
LKUP^XTLKMGR API, 25-23
Load a Distribution Option, 23-5, 23-7, 23-9,
23-10, 23-21
Load Balance Routine
TASKMAN SITE PARAMETERS File
(#14.7), 21-20
LOAD BALANCE ROUTINE Field, 21-20, 21-
21
LOAD BALANCE ROUTINE Field (#21), 21-
13
Load Balancing and Multiple Managers, 21-20
Load List Node, 22-28
Load Node, 22-28
Loading
 Standard Distributions (KIDS), 23-9
 Transport Globals from a Distribution or
 PackMan Message (KIDS), 23-7
LOCAL SHORTCUT File (#8984.2), 1, 25-1, 25-3, 25-6, 25-9, 25-10
LOCAL SYNONYM Field, 15-18
LOCAL SYNONYM File (#8984.3), 1, 25-1, 25-3, 25-9, 25-13
LOCK Field (#3), 8-2, 8-6, 11-1, 11-3
Locked Options
 Identifying, 8-2
Lock-out Times, 3-3
Locks
 Negative, 7-11
 Options, 7-7, 7-11
 Reverse, 7-11, 8-3, 8-6
LOG RESOURCE USAGE? Field, 22-28
Log Resources Node, 22-28
LOG TASKS? Field (#2), 21-11
LOGICAL DISK NAME Field (#504), 15-11
LOGIN Menu Template, 2-4, 6-9
Logon, 2-1
Logs
 Add Error Screens Option, 13-3
 AUDIT LOG FOR OPTIONS File (#19.081), 7-4, 11-1, 11-4
 Clean Error Log Over Range Of Dates
 Option, 22-25
 Clean Error Trap Option, 13-5
 Delete Error Log Option, 22-26
 Edit Error Screens Option, 13-3
 Error Log, 13-7
 ERROR LOG File (#3.075), 13-2, 13-5, 22-24
 Error Log Node, 22-27
 Error Log Purge, 13-5
 FAILED ACCESS ATTEMPTS LOG File
 (#3.05), 3-32, 3-33
 List Error Screens Option, 13-3
 LOG RESOURCE USAGE? Field, 22-28
 Log Resources Node, 22-28
 LOG TASKS? Field (#2), 21-11
 Old Access Codes Stored in the Whole-file
 AOLD Cross-reference in File #200, 3-33
 Old Verify Codes Stored in the Whole-file
 VOLD Cross-reference in File #200, 3-33
Purge Error Log Of Type Of Error Option, 22-26
Queuable Task Log Clean Up Option, 22-17
Remove Error Screens Option, 13-4
Show Error Log Option, 22-25
SIGN-ON LOG File (#3.081), 3-30, 3-31, 3-32
 Purging, 3-32
Taskman Error Log, 13-2, 20-6, 22-11, 22-17, 22-24, 22-25
 Menu, 22-24
XUSCZONK Option
 Purging File #3.081, 3-32
XUTM QCLEAN Option, 22-24
Lookup-type Cross-reference, 3-18, 3-19
Loopback Test of Device Port Option, 15-17
Low Usage of Alpha/Beta Test Options Option, 23-23

M
Magtape Devices, 18-8
 System Management, 18-8
Mail
 Purging, 3-29
MAIL CODE Field (#28), 3-19
Make an Alert on the Fly Option, 10-7
Make spool document into a mail message
 Option, 17-5
Manager
 Startup TaskMan, 21-19
 TaskMan, 20-1, 20-2
 UCI Definition, 20-8
Managing
 Delegates, 9-7
 System Management, 9-7
 Display Attributes (DA) Return Codes, 15-16
 Menus and Options, 7-7
 Out-Of-Order Option Sets, 7-10
 Primary Menus, 7-7
 Spool Documents, 17-7
Map Pointer Relations Option, 5-6
MARGIN WIDTH Field (#9)
 DEVICE File (#3.5), 18-8
Mark Option Set Out-Of-Order Option, 7-10
MAX SIGNON ALLOWED Field, 3-1, 3-3
MAX SIGNON ALLOWED Field (#41,2), 21-11
MAX SPOOL DOCUMENT LIFE-SPAN Field
 (#31.3), 17-4, 17-8
(Max SPOOL DOCUMENTS PER USER Field (#31.2), 17-8)
(Max SPOOL LINES PER USER Field (#31.1), 17-6, 17-8)
(MENU (item) Field (Multiple), 7-1)
(Menu Management Menu, 9-7)
(Menu Manager)
(AUTO MENU, 6-2)
(Diagramming Options, 7-5)
(Display Options, 7-6)
(Double Quote Jump, 6-8)
(Fixing Option File Pointers, 7-9)
(Go-home Jump, 6-7)
(Local modifications, 7-8)
(LOGIN Menu Template, 2-4)
(Menu jumping, 6-6)
(Menu Tree Rebuilding, 7-13)
(Options that Should Be Scheduled, 7-12)
(Primary Menu, 6-2)
(Rebuilding Menu Trees, 7-13)
(Restricting Option Usage, 7-11)
(Rubber-band Jump, 6-7)
(Summary, 6-9)
(System Management, 7-1)
 (Out-Of-Order Set Management Menu, 7-10)
(Templates)
 (LOGIN Menu, 6-9)
 (Up-arrow Jump, 6-6)
 (User Interface, 6-1)
(Variation, Troubleshooting, 7-21)
(MENU TEMPLATE Field (Multiple), 6-9)
(Menu Templates Option, 6-8)
(MENU TEXT Field (#1), 11-3)
(Menus)
 (Alert Management, 10-4, 10-6)
 (Alpha/Beta Test Option Usage Menu, 7-4, 23-23)
 (Altering Exported Menus, 7-8)
 (Application Utilities, 25-4)
 (Audit Features, 7-4)
 (Common, 2-3, 3-20, 6-3, 6-4, 6-6, 6-7, 6-8, 7-1, 7-8, 8-1, 8-6, 10-1, 17-3, 17-7, 19-2)
 (Redefining, 7-8)
 (Creating, 7-1)
 (Data Dictionary Utilities, xlii, 5-6)
 (Delegate's Menu Management, 9-2, 9-3, 9-5, 9-7, 9-9)
 (Device Management, 15-6, 15-17, 18-6)
 (DI DDU, 5-6)
 (Diagramming, 7-5)
 (Display Menus and Options, 7-5)
 (Displaying, 7-5)
 (DIUTILITY, 5-6)
 (Edit)
 (Line Editor, 5-2)
 (Edit option, 3-21)
 (Edit TaskMan Parameters, 21-10, 21-22)
 (Edits and Distribution, 23-2)
 (Error Processing, 13-4)
 (EVE, 7-1, 7-18, 7-19, 9-10, 13-2, 23-2)
 (Exported, 7-1, 7-8)
 (File Access Security, 5-9, 5-11, 5-14, 5-15, 5-16)
 (Help Processor, 12-4)
 (Installation (KIDS), 23-3, 23-8, 23-16)
 (Kernel, 7-1)
 (Kernel Installation & Distribution System, 23-2)
 (Kernel Management Menu, 15-12)
 (Key Management, 8-3, 8-4, 9-8, 9-9)
 (Managing, 7-7)
 (Menu Management, 9-7)
 (Menu Templates Option, 6-8)
 (Multi-Term Lookup (MTLU) Main Menu, 25-4)
 (Navigating, 6-1)
 (Operations Management, 3-30, 23-23)
 (Out-Of-Order Set Management, 7-10)
 (PARENT OF QUEUABLE OPTIONS, 3-32, 7-1, 7-12, 17-9, 22-18)
 (Primary, 2-2, 2-5, 2-6, 3-1, 3-9, 3-19, 6-1, 6-6, 6-7, 7-1, 7-5, 7-7, 7-9, 7-17, 7-20, 7-21)
 (Assigning, 3-9)
 (Managing, 7-7)
 (Trees, 7-13, 7-14, 7-15, 7-20, 7-21)
 (Programmer Options, 8-2, 23-2)
 (Rebuilding, 7-13)
 (Report Menu for Alerts, 10-8)
 (Secondary, 3-22, 6-3, 6-6, 7-5, 7-6, 7-7, 7-9, 7-15, 7-19, 8-3, 9-2, 9-3)
 (Assigning, 7-7)
 (Trees, 7-7, 7-17)
 (Secure Menu Delegation, 9-5, 9-7, 9-9)
 (Secure Menu Management, 9-2, 9-5)
 (Spool Management, 17-7, 17-8)
 (Spooler Menu, 17-3, 17-5, 17-7)
 (Systems Manager Menu, 7-1, 23-2)
 (Taskman Error Log, 13-2, 22-24)
 (Taskman Management, 13-2)
 (TaskMan Management Menu, 22-1)
 (Taskman Management Utilities, 13-2, 22-7)
 (Testing, 7-9)
Text, 7-2
User Management, 3-26, 5-1
User Management Menu, 3-30, 5-9, 5-11, 5-15
User's Toolbox, 2-3, 2-6, 2-7, 2-8, 2-9, 2-12, 4-1, 4-2, 6-7, 6-8, 17-3, 19-2
Utilities For MTLU, 25-9
Utilities Menu
 KIDS, 24-1
Utility Functions, 5-6
VA FileMan, 5-1
XPD DISTRIBUTION MENU, 23-2
XPD INSTALLATION, 23-8
XPD INSTALLATION MENU, 23-3
XPD MAIN, 23-2
XPD UTILITY, 24-1
XQAB MENU, 23-23
XQAL REPORTS MENU, 10-8
XQALERT MGR, 10-6
XQDISPLAY OPTIONS, 7-5
XQHELP-MENU, 12-4
XQOomain, 7-10
XQSM MGR, 9-7, 9-9
XQSM USER MENU, 9-2, 9-3, 9-5, 9-7, 9-9
XTLKUSER2, 25-4
XTLKUTILITIES, 25-9
XTMENU, 25-4
XU AUDIT MENU, 7-4
XUCOMMAND, 7-1, 7-8
XUERRS, 13-4
XUFILEACCESS, 5-9, 5-11, 5-14, 5-15, 5-16
XUKERNEL, 15-12
XUOPTUSER, 3-30
XUROG, 23-2
XUSER, 3-26, 5-1, 5-9, 5-11, 5-15
XUSERTOOLS, 2-7
XUSITEMGR, 3-30, 23-23
XU-SPL-MGR, 17-7, 17-8
XUTIO, 15-6, 15-17
XUTM ERROR, 13-2, 22-24
XUTM MGR, 13-2
XUTM UTIL, 13-2, 22-7
XUTMGR, 22-1
ZTMQUEUEABLE OPTIONS, 3-28, 7-1, 17-9, 22-17, 22-18
MenusXQSM MGR, 9-5
MESSAGE File (#3.9), 17-6
Messages
 Answerback, 3-5
 PackMan, 23-3, 23-6, 23-7, 23-9
TaskMan Rejection Messages, 22-34
TaskMan States, 22-35
MESSAGES Field, 23-17, 23-20
METRIC_SCHEDULE.COM Script, 21-20
Missing Components, 24-11
Mixed OS Environment Fields
 KERNEL SYSTEM PARAMETERS file (#8989.3), 15-11
 MIXED OS Field (#.05), 15-11
 MNEMONIC Field, 15-18
 MODE OF TASKMAN Field, 21-15, 21-19
 MODE OF TASKMAN Field (#8), 21-12, 21-15
Modes
 Auto Print, 18-14
 Compute Server, 21-13
 Copy Print, 18-14
 General Processor, 21-12
 Other Non-TaskMan, 21-13
 Print Server, 21-12
 Printer Controller, 18-14
 Transparent Print, 18-14
Modify File Attributes Option, 5-6, 5-8
Monitor TaskMan
 Inspecting the Tasks in the Monitor's Lists, 22-11
Monitor Taskman Option, 21-21, 22-7, 22-35
 Action Prompt, 22-11
 IO List, 22-10
 Job List, 22-10
 RUN Node, 22-8
 Schedule List, 22-9
 Status List, 22-9
 Task List, 22-10
Mounted Volume Sets
 Definition, 20-8
MULTI-DEVICE DESPOOLING Field (#41.1), 17-7
Multiple Copies
 Spooling, 17-1
Multiple Managers and Load Balancing, 21-20
MULTIPLE SIGN-ON Field (#200.04), 3-22
Multiple Sign-On Restriction, 3-5
Multi-Term Look-Up (MTLU), 25-1
 Add Entries To Look-Up File Option, 25-1, 25-9, 25-10
 Example, 25-13
Add/Modify Utility
 Keywords Option, 25-13
 Shortcuts Option, 25-13
 Synonyms Option, 25-13
 Add/Modify Utility Option, 25-2, 25-9, 25-13
Examples, 25-19
Synonyms, 25-18
Delete Entries From Look-Up Option, 25-1, 25-9, 25-10
Example, 25-10
Functional Description, 25-1
Implementation, 25-21
Introduction, 25-1
Keyword Option
Example, 25-20
Keywords, 25-1, 25-13
Associated with a Single Term and Multiple Terms, 25-3
Keywords Option, 25-2, 25-17
Lexical Variants, 25-2
LOCAL LOOKUP file (#8984.4), 25-23
LOCAL SHORTCUT File (#8984.2), 25-1, 25-3, 25-6, 25-9, 25-10
Look-Up
How to Request, 25-2
Lookups on Database Files, 25-2
Multi-Term Lookup (MTLU) Main Menu, 25-4
Multi-Term Lookup (MTLU) Option, 25-6
Example, 25-7
Overview, 25-1
Print Utility Option, 25-1, 25-7
Example, 25-9
Shortcuts, 25-1, 25-13
Point to a Single Word or Phrase, 25-3
Shortcuts Option, 25-2, 25-14
Example, 25-19
Standard Device Chart, 25-5
Synonym Option
Example, 25-20
Synonyms, 25-1, 25-13
Associated with Multiple Terms, 25-3
Multiple Tokens, 25-3
Synonyms Option, 25-2, 25-18
Systems Management, 25-21
Usage Considerations, 25-2
User Interface, 25-4
Utilities for MTLU Menu, 25-9
Multi-Term Lookup (MTLU) Main Menu, 25-4
Multi-Term Lookup (MTLU) Option, 25-1, 25-6
Example, 25-7

N
Name
Options, 6-3
NAME Field (#.01)
BUILD File (#9.6), 23-4
DEVICE File (#3.5), 15-2, 15-18
NEW PERSON File (#200), 3-18, 4-2
OPTION File (#19), 7-2, 11-3
PARAMETER DEFINITION file (#8989.51), 10-10
RESOURCES File (#3.54), 18-12
SECURITY KEY File (#19.1), 8-5
TERMINAL TYPE File (#3.2), 15-13
Namespaces
Help Frames, 12-6
XQSRV, 11-5
XUFI, 5-13
XUTM (TaskMan), 20-5
Z, 9-11
ZTM (TaskMan), 20-5
Naming Conventions
TERMINAL TYPE File (#3.2), 15-14
Navigating Kernel's Menus, 6-1
Network Channel Device Edit Option, 18-10
Network Channel Devices, 18-10
Editing, 18-10
System Management, 18-10
NETWORK USERNAME Field (#501.1), 2-10
NEW PERSON file (#200), 2-8, 2-13, 3-20
NEW PERSON File (#200), 2-3, 2-9, 3-1, 3-4, 3-5, 3-6, 3-7, 3-9, 3-10, 3-18, 3-19, 3-20, 3-27, 3-28, 3-29, 3-33, 4-1, 5-1, 5-2, 5-3, 5-9, 5-10, 5-11, 5-13, 5-16, 6-9, 7-7, 7-19, 8-2, 8-4, 8-5, 8-6, 9-8, 9-9, 11-9, 15-15, 17-7, 22-3
Required Fields, 3-10
NEW PERSON IDENTIFIERS Field, 3-10
New/Revised Help Frames Option, 12-5
NICK NAME Field (#13), 2-9, 3-19
No Options Node, 22-28
Nodes
^%ZIS("14.5","LOGON","volume set"), 3-9
^%ZOSF, 22-37
^%ZOSF("VOL"), 21-15
^%ZTSK(task #, 0), 20-7
^%ZTSK(task#, .3), 20-7
^XUSEC(0,"CUR","DUZ","DATE"), 7-13
^XUTL("XQ", $J, "T") Node, 7-17
^XUTL("XQ", $J, "XQM") Node, 7-17
Compute Server Job List, 22-27
Device Allocation List, 22-27
Device Waiting List, 22-28
Display, 7-17, 7-18
Error Log, 22-27
Error Screens, 22-28
Idle, 22-28
Job List, 22-28
Jump, 7-17, 7-20
Link List, 22-28
Load, 22-28
Load List, 22-28
Log Resources, 22-28
No Options, 22-28
RUN, 20-6, 22-8, 22-9, 22-14, 22-29
Schedule List, 22-27
Startup List, 22-29
Status List, 22-29
Stop, 22-29
Sub, 22-29
Task List, 22-29
Taskman Error Log, 22-27
Update, 22-29
User Stacks, 7-17
Wait, 22-29
XQ, 7-17
XQT (MENU Templates), 7-18
Normal Signoff, 2-5
NULL Device, 15-9
NVSTNSET Routine, 15-6

O

Obtaining
 Data Dictionary Listings, xlii
OFFICE PHONE Field (#.132), 2-9, 3-23, 4-1
OLD ACCESS AND VERIFY CODES File
 (#200 XREF), 3-33
Once the Installation Finishes (KIDS), 23-19
One-time Option Queue Option, 22-24
Online
 Documentation, xlii
 Technical Information, How to Obtain, xlii
OPEN EXECUTE Field
 TERMINAL TYPE File (#3.2), 14-7
OPEN EXECUTE Field (#6)
 TERMINAL TYPE File (#3.2), 15-13, 18-15, 18-16
OPEN PARAMETERS Field
 DEVICE File (#3.5), 18-9
 OPEN PARAMETERS Field (#19)

DEVICE File (#3.5), 15-3, 15-15, 16-2, 17-10, 18-4, 18-10
OPEN PRINTER PORT Field (#110), 18-15, 18-16
OpenVMS Interactive Logins Parameter, 3-3
OpenVMS-Specific DEVICE Fields
 DEVICE File (#3.5), 15-5
Operations Management Menu, 3-30, 23-23
Option Access by User Option, 7-6
Option Audit Display Option, 7-4
OPTION File (#19), 3-21, 3-29, 6-3, 6-5, 6-9, 7-1, 7-2, 7-3, 7-4, 7-9, 7-11, 7-14, 7-15, 7-17, 7-18, 7-19, 7-20, 8-2, 9-2, 9-10, 11-1, 11-2, 11-6, 11-8, 11-9, 12-6, 12-7, 22-19, 22-22
Dangling Pointers, 7-9, 12-5
Option Restrictions, 6-3
Option Scheduling
 Deleting and requeuing, 22-19
 List Background Options, 22-18
 One-time Option Queue Option, 22-24
 PARENT OF QUEUABLE OPTIONS Menu, 22-18
 Problems, 22-23
 Queuing an option, 22-19
 Schedule/Unschedule Options Option, 22-19
 Scheduling Frequency Code Formats, 22-22
 Special Queueing settings, 22-22
 TaskMan, 22-18
 Through the OPTION SCHEDULING File
 (#19.2)
 TaskMan, 20-2
Which Options to Queue, 22-18
Options
 Actual Usage of Alpha/Beta Test Options, 23-23
 Add a New User, 3-10
 Add a New User to the System, 3-9, 3-10
 Add Entries To Look-Up File, 25-9, 25-10
 Example, 25-13
 Multi-Term Look-Up (MTLU), 25-1
 Add Error Screens, 13-3
 Add/Modify Utility, 25-9, 25-13
 Multi-Term Lookup (MTLU), 25-2
 Multi-Term Look-Up (MTLU)
 Examples, 25-19
 Alert Management, 10-4, 10-6
 Alerts - Set/Remove Surrogate for User, 10-6
 All Keys a User Needs, 8-3
All your tasks, 22-3
Allocation of Security Keys, 8-3, 9-9
Allow other users access to spool documents, 17-3
Alpha/Beta Test Option Usage Menu, 7-4, 23-23
Application Utilities, 25-4
Assign Editors, 12-5
Audit Features, 7-4
Audited Options Purge, 7-4
Audits, 7-4
Automatic Deactivation of Users, 3-28
Backup a Transport Global, 23-15
Browse a Spool Document, 17-4
Build a New Menu, 9-3, 9-11
Build File Print, 24-2
Build Primary Menu Trees, 7-14
Building, 9-5
Change my Division, 2-8
Change user's allocated keys to delegated keys, 8-3
Check Taskman's Environment Option, 22-13
Choosing, 6-1
Clean Error Log Over Range Of Dates, 22-25
Clean Error Trap, 13-5
Clean old Job Nodes in the XUTL, 7-12, 7-13
Clean Task File, 22-17
Cleanup Task List, 22-6
Clear all users at startup, 3-5, 3-8, 3-31
Clear Electronic signature code, 4-2
Common, 2-3, 3-20, 6-3, 6-4, 6-6, 6-7, 6-8, 7-1, 7-8, 8-1, 8-6, 10-1, 17-3, 17-7, 19-2
Redefining, 7-8
Compare local/national checksums report, 23-12, 24-12
Compare Transport Global to Current System, 23-13
Continue, 6-7
Convert Loaded Package for Redistribution, 23-5, 24-4, 24-5
Copy Everything About an Option to a New Option, 9-4, 9-11
Copy One Users Menus and Keys to others, 9-4
CPU/Service/User/Device Stats, 3-21, 3-32
Create a Set of Options to Mark Out-Of-Order, 7-10
Creating, 7-1
Critical Alerts Count Report, 10-8
Cross Reference Help Frames, 12-5
Cross-references, 12-5
DA Return Code Edit, 3-6, 15-16
Data Dictionaries Being Audited, 5-5
Data Dictionary Utilities, xlii, 5-6
Deactivate a User, 3-27
De-allocation of Security Keys, 8-3, 9-9
Delegates, 8-3, 9-8
Delegate's Menu Management, 9-2, 9-3, 9-5, 9-7, 9-9
Delegating, 8-3, 9-7, 9-9
Delete A Spool Document, 17-4
Delete Entries From Look-Up, 25-9, 25-10
Example, 25-10
Multi-Term Look-Up (MTLU), 25-1
Delete Error Log, 22-26
Delete Old (>14 d) Alerts, 10-6, 10-7
Delete Tasks, 20-8, 22-6
Delete Unreferenced Options, 7-8, 7-9
Dequeue Tasks, 20-8, 22-4, 22-5, 22-6, 22-33
Descriptions, 7-5
Device Management, 15-6, 15-17, 18-6
DI DDU, 5-6
Diagram Menus, 8-2, 8-6
Diagramming, 7-5
DIAUDIT DD, 5-5
DIAUDIT PURGE DATA, 5-6
DIAUDIT PURGE DD, 5-6
DIAUDIT TURN ON/OFF, 5-6
DIAUDITED FIELDS, 5-5
DIEDFILE, 5-12
DIEDIT, 5-4, 5-6, 5-7
DIINQUIRE, 5-7, 5-8
DILIST, 5-7
DIMODIFY, 5-6, 5-8
DIPRINT, 5-7
DISEARCH, 5-7
Display, 7-5, 7-6
Description, 6-5
Help, 6-2
Order, 7-3
Display Menus and Options, 7-5
Display Patches for a Package, 24-7
Display status, 19-4
Display User Characteristics, 2-12, 8-1
Display/Edit Help Frames, 12-4, 12-6
DISTATISTICS, 5-7
DITRANSFER, 5-6, 5-7, 5-7
DIUTILITY, 5-6
Edit a Build, 24-10
Edit a User's Options, 9-2
Example, 9-3
Edit an Existing User, 3-18
Edit Devices by Specific Types, 18-8
Edit Error Screens, 13-3
Edit File, 5-12
Edit Install Status, 24-4
Edit Line Editor, 5-2
Edit Logical/Physical Mapping, 15-12
Edit options, 3-21, 7-1, 7-3, 7-8, 7-12, 7-14, 11-3, 12-7
Edit task, 19-5
Edit TaskMan Parameters, 21-10, 21-22
Edit User Characteristics, 2-3, 2-6, 2-9, 2-12, 3-7, 3-20, 3-26, 15-15
 Kernel, 3-21
 MailMan, 3-21
Edit User's Spooler Access, 17-7
Edits and Distribution, 23-2
Electronic Signature Block Edit, 4-2
Electronic Signature code Edit, 4-1, 4-2
Enter or Edit File Entries, 5-4, 5-6, 5-7
Enter/Edit Kernel Site Parameters, 3-1, 3-2, 3-8, 15-12
Enter/Edit of Security Keys, 8-4
Error Processing, 13-4
Error Trap Auto Clean, 13-5
Error Trap Display Option, 13-6
Errors Logged in Alpha/Beta Test (QUEUED), 23-23
Establish System Audit Parameters, 7-4
EVE, 7-1, 7-18, 7-19, 9-10, 13-2, 23-2
Exported, 7-1
Fields Being Audited, 5-5
File Access Security, 5-9, 5-11, 5-14, 5-15, 5-16
FileMan edit template, 11-3
FileMan Inquire to File Entries option, 25-2
Find a User, 3-30
Fix Help Frame File Pointers, 12-5
Fix Option File Pointers, 7-9
Future tasks, 22-4
Grant Access by Profile, 3-10, 3-21
Halt, 6-7
Help Processor, 12-4
Host File Server Device Edit, 15-7, 16-2
Inquire, 7-6
Inquire to File Entries, 5-7, 5-8
Install File Print, 23-17, 23-19, 24-3
Install Package(s), 23-7, 23-16, 23-17
INSTALL/CHECK MESSAGE PackMan, 23-7, 23-9
Installation (KIDS), 23-3, 23-8, 23-16
Interactive Print of Error Messages, 13-7
Introductory text edit, 3-1
Invoking Non-VistA Applications, 7-3
Kernel, 7-1
Kernel Installation & Distribution System, 23-2
Kernel Management Menu, 15-12
Key Management, 8-3, 8-4, 9-8, 9-9
Keys For a Given Menu Tree, 8-3
Keyword
 Multi-Term Look-Up (MTLU)
 Example, 25-20
Keywords
 Multi-Term Look-Up (MTLU), 25-2, 25-17
 KIDS, 23-2
 KILL off a users' job, 22-10, 22-29
 Limited File Manager Options (Build), 9-5, 9-11
 Example, 9-6
List Alerts for a user from a specified date, 10-8
List Delegated Options and their Users, 9-11
List Error Screens, 13-3
List File Attributes, xlii, 5-7
List Help Frames, 12-4, 12-7
List of tasks, 22-3
List Options by Parents and Use, 7-5
List own tasks, 19-5
List Spool Documents, 17-3
List Tasks, 22-2, 22-5, 22-11, 22-12, 22-32
 All your tasks, 22-3
 Future tasks, 22-4
 List of tasks, 22-3
 Running tasks, 22-4
 Tasks waiting for a device, 22-4
 Unsuccessful tasks, 22-4
 Your future tasks, 22-3
List the Defined Options Sets, 7-11
List Users, 3-31
Load a Distribution, 23-5, 23-7, 23-9, 23-10, 23-21
Locked, Identifying, 8-2
Locks, 7-7, 7-11
Loopback Test of Device Port, 15-17
Low Usage of Alpha/Beta Test Options, 23-23
Make an Alert on the Fly, 10-7
Make spool document into a mail message, 17-5
Managing, 7-7
Map Pointer Relations, 5-6
Mark Option Set Out-Of-Order, 7-10
Menu Management, 9-7
Menu Templates Option, 6-8
Modify File Attributes, 5-6, 5-8
Monitor Taskman, 21-21, 22-7, 22-35
Multi-Term Lookup (MTLU), 25-1, 25-6
 Example, 25-7
Multi-Term Lookup (MTLU) Main Menu, 25-4
Name, 6-3
Name and Menu Text, 7-2
Network Channel Device Edit Option, 18-10
New/Revised Help Frames, 12-5
One-time Option Queue, 22-24
Operations Management, 3-30, 23-23
Option Access by User, 7-6
Option Audit Display, 7-4
Options in the Option File that are Out-of-Order, 7-11
Options that Should Be Scheduled, 7-12
Options to be Delegated, 9-8
OUT OF ORDER MESSAGE Field (#2), 7-11
Out of Service Set/Clear, 15-17
Out-Of-Order Set Management, 7-10
P1 Print 1 occurrence of each error for T-1
 (QUEUE), 13-4
PARENT OF QUEUABLE OPTIONS, 3-32,
 7-1, 7-12, 17-9, 22-18
Patient Alert List for specified date, 10-9
Permitted Devices, 7-12
Place Taskman in a WAIT State, 22-15
Post sign-in Text Edit, 3-8
Print 2 occurrences of errors on T-1
 (QUEUED), 13-5
Print A Spool Document, 17-4
Print All Delegates and their Options, 9-11
Print Alpha/Beta Errors
 (Date/Site/Num/Rou/Err), 23-23
Print File Entries, 5-7
Print Option File, 7-5
Print Options Recommended for Queueing
 TaskMan, 22-18
Print Options that are Scheduled to run, 22-18
Print Sign-on Log, 3-31
Print task, 19-5
Print Transport Global, 23-12
Print Utility
 Multi-Term Look-Up (MTLU), 25-1, 25-7
 Example, 25-9
Programmer mode, 3-22, 8-2
Programmer Options, 8-2, 23-2
Prohibited Times, 7-11
Protocols Marked Out-of-Order in Protocol
 File Option, 7-11
Purge Alerts for a User, 10-7
Purge Build or Install Files, 24-7
Purge Data Audits, 5-6
Purge DD Audits, 5-6
Purge Error Log Of Type Of Error, 22-26
Purge Inactive Users' Attributes Utility, 3-29
Purge Log of Old Access and Verify Codes
 Option, 3-33
Purge old spool documents, 17-9
Queuable Task Log Clean Up, 22-17
Reactivate a User, 3-27, 3-30
Recover Deleted Option Set, 7-10
Reindex the users key's, 8-5
Reindexing All Users' Security Keys, 8-5
Release user, 3-31
Remove Error Screens, 13-4
Remove Options Previously Delegated, 9-10
Remove Out-Of-Order Messages from a Set
 of Options, 7-10, 7-11
Remove Taskman from WAIT State, 22-15
Replace a Delegate, 9-9
Replicate or Replace a Delegate, 9-7, 9-10
Report Menu for Alerts, 10-8
Reprint Access Agreement Letter, 3-18
Requeue Tasks, 11-2, 20-8, 22-5, 22-33
Resource Device Edit, 18-13
Restart Install Of Package(s), 23-20
Restart Session, 6-7
Restart Task Manager Option, 22-14
Restart TaskMan, 21-27
Restrict Availability of Options, 7-11
Restricting Usage, 7-11
Rollup Patches into a Build, 24-10
Running tasks, 22-4
Schedule/Unschedule Options, 7-4, 22-17, 22-
 19, 22-23
Scheduling, 7-4
Search File Entries, 5-7
Secure Menu Delegation, 9-7, 9-9
Secure Menu Management, 9-2, 9-5
Select another task, 19-6
Select Options to be Delegated, 9-7, 9-9, 9-10
Send Alpha/Beta Usage to Programmers, 23-
 23
Send Test Pattern to Terminal, 15-17
Server-type, 11-1
Set Backup Reviewer for Alerts, 10-10
Shortcuts
Multi-Term Look-Up (MTLU), 25-2, 25-14
 Example, 25-19
Show a Delegate's Options, 9-11
Show Error Log, 22-25
Show the Security Keys of a Particular User, 9-9
Show Users with Selected Primary Menu, 7-6
Site Parameters Edit, 21-22
Specify Allowable New Menu Prefix, 9-5, 9-11
Spool Device Edit, 17-9
Spool Management, 17-7, 17-8
Spooler Menu, 17-3, 17-5, 17-7
Spooler Site Parameters Edit, 17-8
Statistics, 5-7
Stop task, 19-4
Stop Task Manager, 22-16
Stop TaskMan, 22-38
Surrogate for which Users?, 10-10
Switch Identities, 7-9
Switch UCI, 2-13
SYNC flag file control Option, 22-16
Synonym
 Multi-Term Look-Up (MTLU)
 Example, 25-20
Synonyms, 6-1, 6-3, 6-6, 7-3, 7-20, 12-2
 Multi-Term Look-Up (MTLU), 25-2, 25-18
Systems Manager Menu, 7-1, 23-2
Taskman Error Log, 13-2
Taskman Error Log Menu, 22-24
Taskman Management, 13-2
TaskMan Management Menu, 22-1
Taskman Management Utilities, 13-2, 22-7
TaskMan User, 19-2, 19-3, 19-4, 22-33
Tasks waiting for a device, 22-4
Time, 6-7
Toggle Options/Protocols On and Off, 7-10
Transfer Entries, 5-6
Transfer Lines from Another Document, 5-2, 5-5
Transport a Distribution, 23-5, 24-6
TRM or VTRM Device Edit, 15-9
Turn Data Audit On/Off, 5-6
UCI Association Table Edit, 21-17
Unassign Editor, 12-5
Unload a Distribution, 23-20, 23-21
Unreferenced, 7-9
Unsuccessful tasks, 22-4
Update Routine File, 24-10, 24-11
User Alerts Count Report, 10-9
User Inquiry, 3-31
User Management, 3-26, 5-1
User Management Menu, 3-30, 5-9, 5-11, 5-15
User Status Report, 3-31
User's Toolbox, 2-3, 2-6, 2-7, 2-8, 2-9, 2-12, 4-1, 4-2, 6-7, 6-8, 17-3, 19-2
Utilities For MTLU, 25-9
Utilities Menu
 KIDS, 24-1
Utility Functions, 5-6
VA FileMan, 5-1
Verify a Build, 24-11
Verify Checksums in Transport Global, 23-12
Verify Package Integrity, 24-12
View Alerts "VA", 2-7, 6-7, 10-1, 10-2
View data for Alert Tracking file entry, 10-9
Volume Set Edit Option, 21-14
Where am I?, 6-7
XPD BACKUP, 23-15
XPD COMPARE TO SYSTEM, 23-13
XPD CONVERT PACKAGE, 24-4
XPD DISTRIBUTION MENU, 23-2
XPD EDIT INSTALL, 24-4
XPD INSTALL BUILD, 23-16
XPD INSTALLATION, 23-8
XPD INSTALLATION MENU, 23-3
XPD LOAD DISTRIBUTION, 23-9, 23-10
XPD MAIN, 23-2
XPD PRINT BUILD, 24-2
XPD PRINT CHECKSUM, 23-12
XPD PRINT INSTALL, 23-12
XPD PRINT INSTALL FILE, 24-3
XPD PRINT PACKAGE PATCHES, 24-7
XPD PURGE FILE, 24-7
XPD RESTART INSTALL, 23-20
XPD ROLLUP PATCHES, 24-10
XPD ROUTINE UPDATE, 24-10
XPD UNLOAD DISTRIBUTION, 23-20, 23-21
XPD UTILITY, 24-1
XPD VERIFY BUILD, 24-11
XPD VERIFY INTEGRITY, 24-12
XQ UNREF'D OPTIONS, 7-9
XQ XUTL SJ NODES, 7-12, 7-13
XQAB ACTUAL OPTION USAGE, 23-23
XQAB AUTO SEND, 23-23
XQAB ERR DATE/SITE/NUM/ROU/ERR, 23-23
XQAB ERROR LOG XMIT, 23-23
XQAB LIST LOW USAGE OPTS, 23-23
XQAB MENU, 23-23
Index

XQAL ALERT LIST FROM DATE, 10-8
XQAL CRITICAL ALERT COUNT, 10-8
XQAL PATIENT ALERT LIST, 10-9
XQAL REPORTS MENU, 10-8
XQAL SET BACKUP REVIEWER, 10-10
XQAL SURROGATE FOR WHICH USERS, 10-10
XQAL USER ALERTS COUNT, 10-9
XQAL VIEW ALERT TRACKING ENTRY, 10-9
XQALERT, 2-7
XQALERT BY USER DELETE, 10-7
XQALERT DELETE OLD, 10-6
XQALERT MAKE, 10-7
XQALERT MGR, 10-6
XQALERT SURROGATE SET/REMOVE, 10-4, 10-6
XQBUILDTREEQUE, 7-14, 22-20
XQCOPYOP, 9-4
XQDISPLAY OPTIONS, 7-5
XQHELP-ASSIGN, 12-5
XQHELP-DEASSIGN, 12-5
XQHELP-DISPLAY, 12-4
XQHELPFIX, 12-5
XQHELP-MENU, 12-4
XQHELP-LIST, 12-4
XQHELP-MENU, 12-4
XQHELP-UPDATE, 12-5
XQHELP-XREF, 12-5
XQKEYALTODEL, 8-3
XQKEYDEL, 8-3, 9-8
XQLOCK1, 8-3
XQLOCK2, 8-3
XQOFF, 7-10
XQOMAIN, 7-10
XQOMAKE, 7-10
XQON, 7-10, 7-11
XQOREDO, 7-10
XQOSHOFIL, 7-11
XQOSHPRO, 7-11
XQOSHOW, 7-11
XQUITOG, 7-10
XQOPTFIX, 7-9
XQRESTRICT, 7-11
XQSMD ADD, 9-7, 9-9
XQSMD BUILD MENU, 9-3
XQSMD COPY USER, 9-4
XQSMD EDIT OPTIONS, 9-2
Example, 9-3
XQSMD LIMITED FM OPTIONS, 9-5
Example, 9-6
XQSMD MGR, 9-5, 9-7, 9-9
XQSMD REPLICATE, 9-9, 9-10
XQSMD SET PREFIX, 9-5
XQSMD USER MENU, 9-2, 9-3, 9-5, 9-7, 9-9
XTLKUP, 25-1, 25-6
XTLMODKY, 25-2, 25-17
XTLMODPARK, 25-1, 25-9, 25-10
XTLMODPARS, 25-1, 25-9, 25-10
XTLMODSH, 25-2
XTLMODSH, 25-14
XTLMODSY, 25-2, 25-18
XTLMODUTL, 25-2, 25-9, 25-13
XTLPRTUTL, 25-1, 25-7
XTKUSER2, 25-4
XTLKUTILITIES, 25-9
XTMENU, 25-4
XU CHECKSUM REPORT, 23-12, 24-12
XU DA EDIT, 15-16
XU FINDUSER, 3-30
XU OPTION QUEUE, 22-24
XU SID EDIT, 15-12
XU SWITCH UCI, 2-13
XU USER SIGN-ON, 3-8
XUAUDIT, 7-4
XUAUDIT MENU, 7-4
XUAUTOACTIVATE, 3-28
XUCOMMAND, 7-1, 7-8
XUDEVEDIT, 18-8
XUDEVEDITCHAN, 18-10
XUDEVEDITFS, 15-7, 16-2
XUDEVEDITRES, 18-13
XUDEVEDITTSPL, 17-9
XUDEVEDITTRM, 15-9
XUEDITOPT, 11-3
XUERRS, 13-4
XUERTRAP, 13-6
XUERTRP AUTO CLEAN, 13-5
XUERTRP CLEAN, 13-5
XUERTRP PRINT ERRS, 13-7
XUERTRP PRINT T-1 1 ERR, 13-4
XUERTRP PRINT T-1 2 ERR, 13-5
XUFILEACCESS, 5-9, 5-11, 5-14, 5-15, 5-16
XUKERNEL, 15-12
XUKEYALL, 8-3
XUKEYDEALL, 8-3
XUKEYEDIT, 8-4
XUOPTDISP, 7-4
XUOPTPURGE, 7-4
XUOPTWHO, 7-6
XUOUT, 15-17
XUPRINT, 7-5
XUPROG, 23-2
XUROGMODE, 7-17
XURESJOB, 22-10, 22-29
XUSC LIST, 3-31
XUSCZONK, 3-32
XUSER, 3-26, 5-1, 5-9, 5-11, 5-15
XUSER DIV CHG, 2-8
XUSER KEY RE-INDEX, 8-5
XUSERAOLD, 3-33
XUSERBLK, 3-10
XUSER-CLEAR-ALL, 3-8
XUSERDEACT, 3-27
XUSEREDIT, 3-18
XUSEREDITSELF, 2-9, 15-15
XUSERINQ, 3-31
XUSERINT Option, 3-1
XUSERLIST, 3-31
XUSERNW, 3-9, 3-10
XUSERPOST, 3-8
XUSERPURGEATT, 3-29
XUSERREACT, 3-27, 3-30
XUSERREL, 3-31
XUSERTOOLS, 2-7
XUSESIG, 4-1, 4-2
XUSESIG BLOCK, 4-2
XUSESIG CLEAR, 4-2
XUSITEMGR, 3-30, 23-23
XUSITEPARM, 3-2, 15-12
XU-SPL-ALLOW, 17-3
XU-SPL-BROWSE, 17-4
XU-SPL-DELETE, 17-4
XU-SPL-LIST, 17-3
XU-SPL-MAIL, 17-5
XU-SPL-MGR, 17-7, 17-8
XU-SPL-PRINT, 17-4
XU-SPL-PURGE, 17-9
XU-SPL-SITE, 17-8
XU-SPL-USER, 17-7
XUSTAT, 3-21, 3-32
XUTESTUSER, 7-9
XUTIO, 15-6, 15-17
XUTLOOPBACK, 15-17
XUTM BACKGROUND PRINT, 22-18
XUTM BACKGROUND RECOMMENDED TaskMan, 22-18
XUTM CHECK ENV, 22-13
XUTM CLEAN, 22-17
XUTM DEL, 20-8, 22-6
XUTM DQ, 20-8, 22-4, 22-5, 22-33
XUTM ERROR, 13-2, 22-24
XUTM ERROR DELETE, 22-26
XUTM ERROR LOG CLEAN RANGE, 22-25
XUTM ERROR PURGE TYPE, 22-26
XUTM ERROR SCREEN ADD, 13-3
XUTM ERROR SCREEN EDIT, 13-3
XUTM ERROR SCREEN LIST, 13-3
XUTM ERROR SCREEN REMOVE, 13-4
XUTM ERROR SHOW, 22-25
XUTM INQ, 22-2
XUTM MGR, 13-2
XUTM QCLEAN, 21-16, 22-17, 22-24, 22-30
XUTM REQ, 20-8, 22-5, 22-33
XUTM RESTART, 22-14, 22-15
XUTM RUN, 22-15
XUTM SCHEDULE, 22-19
XUTM STOP, 22-15, 22-16, 22-29
XUTM SYNC, 22-16
XUTM TLM CLEAN, 22-6
XUTM UCI, 21-17
XUTM USER, 19-2, 22-33
XUTM UTIL, 13-2, 22-7
XUTM VOLUME, 21-14
XUTM WAIT, 22-15
XUTM ZTMON, 21-21, 22-7, 22-35
XUTMGR, 22-1
XUTTEST, 15-17
XUUSERDISP, 2-12
XUUSERSTATUS, 3-31
XUXREF, 7-5
XUXREF-2, 7-6
Your future tasks, 22-3
ZTMQUEUABLE OPTIONS, 3-28, 7-1, 17-9, 22-17, 22-18
Options in the Option File that are Out-of-Order Option, 7-11
Options to be Delegated Option, 9-8
Optionals
Secure Menu Delegation, 9-5
Orientation, xxxix
Other Files
TaskMan, 20-7
Other Non-TaskMan Mode, 21-13
OTHER NON-TASKMAN VOLUME SET Type, 21-15
Other Sources of Tasks, 19-2
OUT OF ORDER MESSAGE Field (#2), 7-10, 7-11, 7-17, 11-1, 11-3, 11-8
Out of Service Set/Clear Option, 15-17
OUT OF SERVICE? Field (#3), 21-16
Out-Of-Order Set Management Menu, 7-10
Index

OUT-OF-SERVICE DATE Field, 3-2
Overflowing Spool Document Storage, 17-6
Overview
 Multi-Term Look-Up (MTLU), 25-1
OVERWRITE, 23-21

P
P1 Print 1 occurrence of each error for T-1
 (QUEUE) Option, 13-4
PAC (#14, Programmer Access Code) Field, 3-22
Package
 Definition, 23-1
PACKAGE File (#9.4), 5-6, 23-1, 23-4, 23-5, 23-6, 24-7
PackMan Messages, 23-3, 23-6, 23-7, 23-9
PAGE LENGTH Field (#3)
 TERMINAL TYPE File (#3.2), 15-13, 18-8
PARAMETER DEFINITION File (#8989.51), 10-10
Parameters
 Checked during Signon, 3-2
 OpenVMS Interactive Logins, 3-3
PARAMETERS File (#8989.5), 10-10, 2
PARENT OF QUEUABLE OPTIONS Menu, 3-32, 7-1, 7-12, 17-9, 22-18
Parents Cross-reference, 12-5
Parsing Algorithms, 3-18
Part 3 of the Kernel Installation (See File Access
 Security), 3-20, 5-1
Partition Size, 21-11
PASSWORD Field, 15-12, 15-13
Passwords
 Defining, 2-3
 Why Longer Passwords?, 2-4
PATCH APPLICATION HISTORY Field
 (Multiple), 23-5
Patches
 History, ix
 KIDS, 23-5, 23-6, 23-15, 24-10
Patient Alert List for specified date Option, 10-9
PATIENT File (#2), 5-8
PATIENT^XQALERT API, 10-5
PAUSE State, 21-15, 22-37
P-BROWSER Type, 18-3
PERFORM DEVICE CHECKING Field, 3-3
Permitted Devices
 Options, 7-12
PERMITTED DEVICES Field (Multiple), 7-12
PERSON LOOKUP Field, 8-4

Phantom Jumps, 7-14, 7-15
PHONE #3 Field (#.133), 3-23
PHONE #4 Field (#.134), 3-23
PHONE (HOME) Field (#.131), 2-9, 3-22
PHYSICAL DISK Field (#505), 15-11
Pitch, 14-6
Place Taskman in a WAIT State Option, 22-15
P-MESSAGE Device, 15-10
POST SIGN-IN MESSAGE Field, 3-8
Post sign-in Text Edit Option, 3-8
POST-CLOSE EXECUTE Field (#19.8)
 DEVICE File (#3.5), 18-4
POST-CLOSE EXECUTE Field (#8)
 DEVICE File (#3.5), 15-3
PREFERRED EDITOR Field, 3-21
PREFERRED EDITOR Field (#31.3), 2-10, 3-21
PRE-OPEN EXECUTE Field (#7)
 DEVICE File (#3.5), 15-3
PRIMARY HFS DIRECTORY Field (#320), 15-11
Primary Menu, 2-2, 2-5, 2-6, 3-1, 3-9, 3-19, 6-1, 6-6, 6-7, 7-5, 7-7, 7-9, 7-17, 7-20, 7-21
Assigning, 3-9
Defining, 7-1
Managing, 7-7
Rebuilding Menu Trees, 7-13
Trees, 7-14, 7-15, 7-20, 7-21
PRIMARY MENU OPTION Field, 3-1, 3-9, 3-19, 3-30, 9-3, 9-4
PRIMARY MENU OPTION Field #201), 3-19
Print 2 occurrences of errors on T-1 (QUEUED)
 Option, 13-5
Print A Spool Document Option, 17-4
Print All Delegates and their Options, 9-11
Print Alpha/Beta Errors
 (Date/Site/Num/Rou/Err) Option, 23-23
Print File Entries Option, 5-7
Print Option File Option, 7-5
Print Options Recommended for Queueing
 Option
 TaskMan, 22-18
Print Options that are Scheduled to run Option, 22-18
Print Server Mode, 21-12
PRINT SERVER NAME OR ADDRESS Field
 (#65), 15-5
PRINT SERVER Type, 21-15
Print Sign-on Log Option, 3-31
Print task Option, 19-5
Print Transport Global Option, 23-12
Print Utility Option
Multi-Term Look-Up (MTLU), 25-1, 25-7
 Example, 25-9
Printer Controller Mode, 18-14
Printers
 Slaved, 18-14, 18-15
Printing
 Loaded Transport Globals (KIDS), 23-12
 To Devices, 14-1
Priority
 Interactive Users, 3-5
PRIORITY AT RUN TIME Field (#25), 21-22
PRIORITY Field (#3.8)
 Options, 7-3
 Server Options, 11-3
Privileges
 Audit, 5-8
 Spooling, 17-1, 17-6, 17-7
Processing Alerts, 10-1
Processing Each Transport Global (KIDS), 23-16
Producing Reports, Searches, and Statistics
 Through Standardized Encoding of Diagnoses
 and Procedures, 25-1
Programmer mode Option, 3-22, 8-2
Programmer Options Menu, 8-2, 23-2
Progress Bar
 KIDS Installations, 23-19
Prohibited Times
 Options, 7-11
PROHIBITED TIMES FOR SIGN-ON Field, 3-2, 3-4
PROHIBITED TIMES FOR SIGN-ON Field
 (#15), 3-22
Prompts
 Terminal Type, 2-6
Protocols
 XU USER TERMINATE, 3-29
Protocols Marked Out-of-Order in Protocol File
 Option, 7-11
Provider Key, 8-3, 8-4
Provider Security Key, 3-28
Purge Alerts for a User Option, 10-7
Purge Build or Install Files Option, 24-7
Purge Data Audits Option, 5-6
Purge DD Audits Option, 5-6
Purge Error Log Of Type Of Error Option, 22-26
Purge Inactive Users' Attributes Option, 3-29
Purge Log of Old Access and Verify Codes
 Option, 3-33
Purge old spool documents Option, 17-9
Purging
 ^UTILITY(SJ, 7-12
 ^XTMP, 7-12
 Alerts, 10-6, 10-7
 Audited options, 7-4
 BUILD File, 23-21
 Error Trap, 13-5
 Failed Access Attempts Log Purge, 3-33
 Inactive Users' Attributes, 3-29
 INSTALL File, 23-21
 Mail for Inactive Users, 3-29
 Old Access and Verify Codes, 3-33
 Old Job Nodes in XUTL, 7-12
 Options (unreferenced), 7-9
 Security Keys for Inactive Users, 3-29
 Selected Entries (KIDS), 24-9
 SIGN-ON LOG File (#3.081), 3-32
 Signon Nodes, 7-12
 Spool Documents, 17-4, 17-9
 Taskman Error Log, 13-4, 22-25, 22-26
 Tasks, 22-17, 22-30
Purpose for Granting File Access, 5-4

Q
Quality, 14-6
Question Mark Help, xlii, 2-4, 3-7, 3-22, 5-2, 5-10, 6-1, 6-2, 6-3, 6-5, 6-6, 6-9, 7-7, 7-8, 8-1, 12-2, 12-3, 12-7, 13-3, 13-4, 13-6, 14-2, 15-4, 19-3, 19-5, 19-6, 22-5, 22-11, 23-16
Queuable Task Log Clean Up Option, 22-17
QUEUED TO RUN AT WHAT TIME Field, 22-20
QUEUED TO RUN AT WHAT TIME Field
 (#2), 22-19, 22-20, 22-21, 22-23
QUEUED TO RUN ON VOLUME SET Field
 (#5), 22-19, 22-20, 22-22
Queuers
 TaskMan, 20-1
Queuing
Device Handler, 14-3
File Access Specifications, 5-10
Forced Queuing, 15-3
KIDS Installations, 23-17
Options, 22-19
Output
 TaskMan User Interface, 19-1
 To a Hunt Group Device, 18-7
 To Slaved Printers, 18-17
 To the Spooler, 17-1
Index

QUEUING Field (#5.5)
DEVICE File (#3.5), 15-3
QUEUING REQUIRED Field (Multiple), 7-12

R
Reactivate a User Option, 3-27, 3-30
Reactivating
Users, 3-26, 3-30
READ Access, 3-20, 5-1, 5-4, 5-6, 5-7, 5-11, 5-16, 7-1
Reader, Assumptions about the, xlii
Re-answering Installation Questions (KIDS), 23-17
Reasons to Retain BUILD and INSTALL File Entries (KIDS), 24-9
Rebuilding Primary Menu Trees, 7-13
Recover Deleted Option Set Option, 7-10
Recovering from an Aborted Distribution Load (KIDS), 23-20
Redefining
Common Menu, 7-8
Reference Materials, xliii
Reindex the users key's Option, 8-5
Reindexing All Users' Security Keys Option, 8-5
Rejection Messages
TaskMan, 22-34
Release user Option, 3-31
REMOTE PRINTER NAME Field (#67), 15-5
Remove Error Screens Option, 13-4
Remove Options Previously Delegated Option, 9-10
Remove Out-Of-Order Messages from a Set of Options Option, 7-10, 7-11
Remove Taskman from WAIT State Option, 22-15
REPLACE, 23-21
Replace a Delegate Option, 9-9
REPLACEMENT VOLUME SET Field (#7), 21-16
Replicate or Replace a Delegate Option, 9-7, 9-10
Report Menu for Alerts Menu, 10-8
Reports
Alerts, 10-8, 10-9, 10-10
First Occurrence of Each Error, 13-4
First Two Occurrences of Each Error, 13-5
Secure Menu Delegation, 9-11
Reprint Access Agreement Letter Option, 3-18
REQ^%ZTLOAD API, 22-33
Requeue Tasks Option, 11-2, 20-8, 22-5, 22-33
REQUIRED VOLUME SET? Field (#4), 21-16
Requirements
Legal, x1
RESCHEDULE FREQUENCY Field (#6), 22-19, 22-21
RESCHEDULING FREQUENCY Field (#6), 22-22, 22-23, 22-24
Resource Device Edit Option, 18-13
Resource Devices
Editing, 18-13
RESOURCE File (#3.54), 18-12
RESOURCE SLOTS Field (#35), 11-2, 11-5
DEVICE File (#3.5), 18-12
Resources
Creating Resource Devices, 18-13
Devices
RESOURCE File (#3.54), 18-12
Limiting Simultaneous Running of a Particular Task, 18-12
Running Sequences of Tasks, 18-12
Special Devices, 18-12
SYNC FLAGs, 18-12
System Management, 18-12
RESOURCES Device Type, 11-2
Response Time, 3-5, 21-11
Restart Install Of Package(s) Option, 23-20
Restart Session Option, 6-7
Restart Task Manager Option, 22-14
Restart TaskMan Option, 21-27
RESTART^ZTMB Direct Mode Utility, 21-27
Restarting Aborted Installations (KIDS), 23-20
Restrict Availability of Options Option, 7-11
RESTRICT DEVICES Field, 7-12
Retrieving Spool Documents, 17-3
Return Codes
Display
Attributes, 3-6
Reverse Locks, 8-3, 8-6
REVERSE/NEGATIVE LOCK Field, 8-6
Revision History, iii
Documentation, iii
Patches, ix
RIGHT MARGIN Field (#1)
TERMINAL TYPE File (#3.2), 15-13
Rollup Patches into a Build Option, 24-10
ROUTINE Field (#25), 11-1, 11-3, 11-9
ROUTINE File (#9.8), 23-12, 24-10, 24-11, 24-12
Routine Tools
Compare local/national checksums report Option, 23-12, 24-12
Routines
 %ZTER*, 13-2
 ^%ZTMSH, 21-22
 ^XTLKDICL, 25-2, 25-22
 ^XTLKWIC, 25-21
 ^ZU, 3-9
 CHECK^XTSUMBLD, 23-12, 24-12
 CHECK1^XTSUMBLD, 23-12, 24-12
 Component Editing, 24-10
 Cross-references, 12-5
 DIC, 5-3
 DIE, 5-3
 DIP, 7-21
 INIT, 23-1, 23-5, 23-6
 NVSTNSET, 15-6
 XTER*, 13-2
 XTLATSET Routine, 15-5, 15-6
 XTLKTKON, 25-2
 XUINCON, 5-15
 XUSCLEAN, 7-13
 ZSTU, 21-19
RPC Broker Documentation Website, 2-1
Rubber-band Jump, 6-7, 6-9
RUN Node, 20-6, 22-8, 22-9, 22-14, 22-29
RUN State
 TaskMan, 22-37
Running
 File Access Security Conversion, 5-11
 Advance Preparation, 5-11
 Advantages, 5-11
 Sequences of Tasks, 18-12
 TaskMan with a DCL Context, 21-24
Running tasks Option, 22-4

S
SAC, 7-8, 22-17
SCHEDULE File, 20-1, 20-2, 20-5, 20-6, 20-7,
 21-9, 21-10, 22-7, 22-11, 22-30, 22-32, 22-33,
 22-34, 22-36
 TaskMan, 22-27
Schedule List, 20-6, 22-9
 Node, 22-27
Schedule/Unschedule Options Option, 7-4, 22-
 17, 22-19, 22-23
Scheduling
 Installations (KIDS), 23-16
 Options, 7-4
 TaskMan, 22-18
SCHEDULING RECOMMENDED Field
 (#209), 7-4, 22-19, 22-22
Scratch Global, 18-3
Screen Editor
 VA FileMan, 2-6, 3-5, 3-21
Scripts
 GET_METRIC.COM, 21-20
 METRIC_SCHEDULE.COM, 21-20
SDP
 Devices, 18-14
Search File Entries Option, 5-7
SECONDARY $I Field (#52), 15-7, 15-11
SECONDARY HFS DIRECTORY Field
 (#320.2), 15-11
Secondary Menu, 3-22, 6-3, 6-6, 7-5, 7-6, 7-7, 7-
 9, 7-15, 7-19, 8-3, 9-2, 9-3
 Assigning, 7-7
 Trees, 7-7, 7-17
SECONDARY MENU OPTIONS Field (#203,
 Multiple), 3-19
SECONDARY MENU OPTIONS Field
 (Multiple), 3-22, 7-7, 7-19, 9-4
Secure Menu Delegation, 3-19, 3-27, 9-1
 Build a New Menu Option, 9-3
 Copy Everything About an Option to a New
 Option Option, 9-4
 Copy One Users Menus and Keys to others
 Option, 9-4
 Delegate's Menu Management Menu, 9-2
 Delegating Keys, 9-8
 Delegating Options
 Select Options to be Delegated, 9-7
 Delegation Levels, 9-9
 Edit a User's Options, 9-2
 Limited File Manager Options (Build), 9-5
 Menu Prefix, 9-11
 Options too Sensitive to Delegate, 9-10
 Remove Options Previously Delegated
 Option, 9-10
 Replicate or Replace a Delegate, 9-10
 Reports, 9-11
 System Management, 9-7
 User Interface
 Acting as a Delegate, 9-2
 Secure Menu Delegation Menu, 9-5, 9-7, 9-9
 Utilities, 8-1
Secure Menu Management Menu, 9-2, 9-5
Security
 Devices, 15-12
 File Access Security, 5-5
 SECURITY Field, 3-2, 3-20, 15-12
 Security Forms, 3-10, 3-11
SECURITY KEY File (#19.1), 8-2, 8-4, 8-5, 12-6
Security Keys
XTLKZMGR, 25-9, 25-10
Security Keys, 7-7, 8-1
Allocating Keys, 8-3
Creating, 8-4
De-allocating Keys, 8-3
Delegating, 8-3, 9-8
Delegation Levels, 8-3, 8-6, 9-3, 9-9
Deleting, 8-5
Editing, 8-4
Exploding Key, 8-5
Exported, 8-5
Key Management, 8-2
Person Lookup, 8-4
Provider, 3-28, 8-3, 8-4
Purging, 3-29
Reverse Locks, 8-6
Subordinate Keys, 8-5
System Management, 8-2
User Interface, 8-1
XMNOPRIV, 8-6
XQAL-DELETE, 10-7
XQSMDFM, 9-5
XTLKZMGR, 25-1, 25-9
XUAUTHOR, 12-5, 12-6
XUMGR, 3-9, 3-10, 3-19, 4-2, 8-3, 8-4, 9-9, 17-8
XUPROG, 3-22, 7-9, 8-1, 8-2, 23-2
XUROGMODE, 3-22, 8-2, 13-5
XUSPF200, 3-9, 3-10, 3-19
ZTMQ, 20-8, 22-2, 22-5, 22-6
Select another task Option, 19-6
Select Options to be Delegated Option, 9-7, 9-9, 9-10
SELECTABLE AT SIGN-ON Field
TERMINAL TYPE File (#3.2), 3-6
SELECTABLE AT SIGN-ON Field (#.02) TERMINAL TYPE File (#3.2), 15-13, 15-16
Selecting
Common Options with the Double Quote, 6-8
Software Names for Purging (KIDS), 24-8
Tasks
TaskMan User Interface, 19-3
Send Alpha/Beta Usage to Programmers Option, 23-23
Send Test Pattern to Terminal Option, 15-17
Sending Output to the Spooler, 17-1
Sequential Disk Processor (SDP), 18-14
Device Types, 15-15, 18-14
SERVER ACTION Field (#221), 11-2, 11-3, 11-4, 11-5
SERVER AUDIT Field (#223), 11-4
SERVER BULLETIN Field (#220), 11-4
SERVER DEVICE Field (#227), 11-2, 11-5
SERVER MAIL GROUP Field (#222), 11-4
Server Options, 11-1
Denying Server Requests, 11-1
Errors and Warnings, 11-8
How Can the Number of Instances of a Server Option Be Controlled?, 11-2
Server Request, 11-1
Setting up a Server Option, 11-3
System Management, 11-1
Testing, 11-5
What Can Server Options Do?, 11-1
What is a Server Option?, 11-1
XQSCCHK Utility, 11-6
XQSPING Utility, 11-5
SERVER reply Field (#225), 11-5
Servers
Compute Mode, 21-13
General Processor, 21-12
Other Non-TaskMan, 21-13
Print Server Mode, 21-12
SERVICE/SECTION Field, 3-18
SERVICE/SECTION Field (#29), 3-21
SERVICE/SECTION File (#49), 3-18, 3-21
Set Backup Reviewer for Alerts Option, 10-10
SET LOGINS/INTERACTIVE DCL Command, 3-3
Setting up a Server Option, 11-3
Setup
TaskMan and DCL Context in Cache/VMS, 21-24
SEX Field (#4)
NEW PERSON File (#200), 3-10
Shared Device and Terminal Type Attributes, 15-14
How are They Used, 15-14
Shortcuts
Double Quote and Option Name, 6-8
Multi-Term Look-Up (MTLU), 25-1, 25-13
Point to a Single Word or Phrase, 25-3
Signon, 2-5
Up-arrow Jump, 6-6, 6-8
Shortcuts Option
Multi-Term Look-Up (MTLU), 25-2, 25-14
Example, 25-19
Show a Delegate's Options, 9-11
Show Error Log Option, 22-25
Show the Security Keys of a Particular User Option, 9-9
Show Users with Selected Primary Menu Option, 7-6
SIGNATURE BLOCK PRINTED NAME Field, 4-2
SIGNATURE BLOCK PRINTED NAME Field (#20.2), 4-1
SIGNATURE BLOCK TITLE Field (#20.3), 4-1
Signoff
 Error Handling, 2-6
 Normal, 2-5
Signon, 2-1
 Audits, 3-32
 Devices, 15-15
 Enabling/Disabling Logons, 3-9
 Flow Chart, 3-4
 Jump Start, 2-5
 Lock-out Times, 3-3
 Multiple Sign-On Restriction, 3-5
 Parameters Checked, 3-2
 Process, 3-1
 Selecting Devices, 15-15
 Shortcuts, 2-5
 Statistics, 3-32
 Terminal Type Selection, 15-16
Signon Attempts, 3-2
SIGN-ON LOG File (#3.081), 3-30, 3-31, 3-32
 Purging, 3-32
Signon/Security
 Introductory Text, 3-1
 Summary, 2-13
 System Management, 3-1
 Add a New User to the System Option, 3-9
 Grant Access by Profile Option, 3-10
 User Interface, 2-1
 Change my Division Option, 2-8
 Edit User Characteristics Option, 2-9
 Switch UCI Option, 2-13
SIGN-ON/SYSTEM DEVICE Field (#1.95)
 DEVICE File (#3.5), 15-2, 15-15, 15-18, 15-19
Site Parameters, 3-1, 21-10
Site Parameters Edit Option, 21-22
SLAVE FROM DEVICE Field, 18-17
Slaved Printers, 18-14, 18-15
 Auto Print Mode, 18-14
 Copy Print Mode, 18-14
 Device and Terminal Type File Entries, 18-15
 Printer Controller Mode, 18-14
Processing Steps, 18-16
Queueing, 18-17
System Management, 18-14
Transparent Print Mode, 18-14
User Interface, 18-14
Software
 Components, 20-5, 23-4, 24-9, 24-12
 Exported, 23-1, 23-4, 23-12
 KIDS Installations, 23-8
SPAWN Command, 20-2, 21-13
Special Devices, 18-1
 Browser Device, 18-1
 Hunt Groups, 18-6
 Magtape, 18-8
 Network Channel Device Edit Option, 18-10
 Network Channel Devices, 18-10
 Resources, 18-12
 SDP, 18-14
SPECIAL QUEUEING Field (#9), 22-19, 22-22
 Specify Allowable New Menu Prefix Option, 9-5, 9-11
Specifying
 Right Margin and Page Length, 14-2
 Special Subtype, 14-4
SPOOL DATA File (#3.519), 17-6
Spool Device Edit Option, 17-9
SPOOL DOCUMENT File (#3.51), 14-6, 15-14, 17-6, 17-7, 17-10
Spool Documents
 Making into Mail Messages, 3-22
 Name, 14-6, 15-14, 17-2, 17-10
 Name—An Exception, 14-6
Spool Management Menu, 17-7, 17-8
SPOOLER Device, 17-1
Spooler Menu, 17-3, 17-5, 17-7
Spooler Site Parameters Edit Option, 17-8
Spooling, 17-1
 Attributes, 17-1
 Auto-despooling, 17-10
 Document Name Prompt, 17-2
 Generating Names, 17-10
 Granting Privileges, 17-7
 Making Into Mail Messages, 17-5
 Managing Spool Documents, 17-7
 Printing spool documents, 17-4
 Privileges, 3-22
 Privileges, 17-1
 Privileges, 17-6
 Privileges, 17-7
 Purge old Spool documents Option, 17-9
Retrieving Spool Documents, 17-3
Sending Output to the Spooler, 17-1
Spool Device Edit Option, 17-9
Spool Device Types, 17-9
Spool Document Name, 14-6, 15-14
Spool Document Storage, 17-6
Overflowing, 17-6
Spool Management Menu, 17-7
Spooler Menu, 17-3, 17-5, 17-7
Storage Overflows, 17-6
System Defaults, 17-8
System Management, 17-6
User Interface, 17-1
Viewing spool documents, 17-4

SSN Field
 PATIENT File (#2), 5-8
 SSN Field (#9)
 NEW PERSON File (#200), 3-9, 3-10, 3-19
STACK Variable, 13-4
Standard Device Chart
 Multi-Term Look-Up (MTLU), 25-5
Standard Distributions, 23-6
START NEXT Field, 22-16
Starting Up, Pausing, and Stopping Multiple Managers, 21-20
Startup List Node, 22-29

States
 Messages
 TaskMan, 22-35
Statistics
 Signon, 3-32
 Statistics Option, 5-7
Status Codes
 TaskMan, 22-32
STATUS Field, 23-19
STATUS Field (#.02), 24-4
Status List, 20-6, 22-9
 Node, 22-29
Stop Node, 22-29
Stop Task Manager Option, 22-16
Stop task Option, 19-4
Stop TaskMan Option, 22-27, 22-38
Stopping Tasks, 19-4
Storing Host Files in a Specific Directory, 18-4
Sub Node, 22-29
SUBMANAGER RETENTION TIME Field
 (#5), 21-11, 21-12
Submanagers
 TaskMan, 20-1, 20-3
SUBordinate KEY Field (Multiple), 8-5
Subordinate Keys, 8-5
SUBTYPE Field (#3)
 DEVICE File (#3.5), 15-3, 15-13, 18-8
Summary
 Device Handler, 14-7
 File Access Security Conversion, 5-13
 Menu Manager, 6-9
 Signon/Security, 2-13
 TaskMan
 User Interface, 19-6
SUPPRESS BULLETIN Field(#224), 11-5
SUPPRESS FORM FEED AT CLOSE Field
 (#11.2), 18-5
Surrogate for which Users? Option, 10-10
Surrogates
 Alerts, 10-4, 10-6
Switch Identities Option, 7-9
Switch UCI Option, 2-13
Switching
 UCI, 7-13, 21-10
Symbols
 Found in the Documentation, x1
SYNC FLAG Field, 22-16
SYNC flag file control Option, 22-16
SYNC FLAGs, 18-12, 22-16
Synonym
 Options, 6-3
Synonym Option
 Multi-Term Look-Up (MTLU)
 Example, 25-20
Synonyms
 Devices, 15-18
 Multi-Term Look-Up (MTLU), 25-1, 25-13
 Associated with Multiple Terms, 25-3
 Multiple Tokens, 25-3
 Options, 6-1, 6-3, 6-6, 7-3, 7-20, 12-2
Synonym Option
 Multi-Term Look-Up (MTLU), 25-2, 25-18
System Configuration
 TaskMan Terminology, 20-8
System Management
 Alerts, 10-5
 Browser Device, 18-3
 Device Handler, 15-1
 Electronic Signatures, 4-1
 Error Processing, 13-2
 File Access Security, 5-3
 Form Feeds, 18-5
 Help Processor, 12-4
 Host Files, 16-2
 Hunt Groups, 18-6
 KIDS
Installations, 23-1
Utilities, 24-1
Magtape Devices, 18-8
Managing Delegates, 9-7
Menu Manager, 7-1
Network Channel Devices, 18-10
Resources, 18-12
Secure Menu Delegation, 9-7
Security Keys, 8-2
Server Options, 11-1
Signon/Security, 3-1
Slaved Printers, 18-14
TaskMan
 Configuration, 21-9
 Operation, 22-1
 Overview, 20-1
System Manager
 Introduction, 1-2
System Parameters, 3-1
Systems Management
 Multi-Term Look-Up (MTLU), 25-21
Systems Manager Menu, 7-1, 23-2

T

Table of Contents, xi
Tables, xxxvi
Task File Cleanup, 22-17
Task List, 20-6, 22-10
 Node, 22-29
TASK PARAMETERS Field, 3-33, 10-6, 10-7, 13-6
TASK PARAMETERS Field (#15), 22-19, 22-21
TASK PARTITION SIZE Field (#4), 21-11
Task Rejection Messages
 TaskMan, 22-34
Task Status Codes
 TaskMan, 22-32
TaskMan, 19-1
 ^%ZTSCH Global, 20-5
 ^%ZTSK Global, 20-5
API, 20-1, 20-2
Check Taskman's Environment Option, 22-13
Clean Task File Option, 22-17
Cleanup Task List Option, 22-6
Configuration, 21-9
 DEVICE File (#3.5), 21-21
 Multiple Managers, 21-20
 Standardized VA Caché and GT.M, 21-18
DCL Context, 21-24
Batch Queues, 21-29
Cache/VMS, 21-24
Restarting, 21-27
TASKMAN Account, 21-29
TASKMAN Queue, 21-29
ZTMSWDCL.COM, 21-28
ZTMWDCL.COM, 21-27
Defining Environments, 21-9
Delete Tasks Option, 22-6
Dequeue Tasks Option, 22-4
DESCRIPTION Field, 22-21
DEVICE FOR QUEUED JOB OUTPUT
 Field (#3), 22-19, 22-20
Division of Labor, 20-1
Error Screens, 20-6
Files, 20-5
Header Page, 21-22
Inspecting the Tasks in the Monitor's Lists, 22-11
IO List, 22-10
Job Limit, 21-11
Job List, 22-10
List Tasks Option, 22-2
Load Balancing, 21-20
Manager, 20-1, 20-2
 Startup, 21-19
Monitor Action Prompt, 22-11
Multiple Managers and Load Balancing, 21-20
Option Scheduling, 22-18
 List Background Options, 22-18
 One-time Option Queue Option, 22-24
PARENT OF QUEUABLE OPTIONS
 Menu, 22-18
 Problems, 22-23
 Queuing an option, 22-19
 Schedule/Unschedule Options Option, 22-19
 Through the OPTION SCHEDULING File
 (#19.2), 20-2
Which Options to Queue, 22-18
Other Files, 20-7
QUEUED TO RUN AT WHAT TIME Field
 (#2), 22-19, 22-20, 22-21, 22-23
QUEUED TO RUN ON VOLUME SET Field
 (#5), 22-19, 22-20, 22-22
Queuers, 20-1
 QUEUEING an Option, 22-19
 Queuing Output, 19-1
Rejection Messages, 22-34
Place Taskman in a WAIT State Option, 22-15
Queuable Task Log Clean Up Option, 22-17
Remove Taskman from a WAIT State Option, 22-15
Restart Task Manager Option, 22-14
Stop Task Manager Option, 22-16
SYNC flag file control Option, 22-16
Taskman Management Utilities Menu, 13-2
TASKMAN PRINT A HEADER PAGE? Field (#26), 21-22
BOX-VOLUME PAIR Field (#.01), 21-11, 21-12
Load Balance Routine, 21-20
LOAD BALANCE ROUTINE Field (#21), 21-13
LOG TASKS? Field (#2), 21-11
MODE OF TASKMAN Field (#8), 21-12
Standardized VA Cache and GT.M Configuration, 21-19
SUBMANAGER RETENTION TIME Field (#5), 21-11, 21-12
TASK PARTITION SIZE Field (#4), 21-11
TASKMAN HANG BETWEEN NEW JOBS Field (#7), 21-11, 21-12
TASKMAN JOB LIMIT Field (#6), 21-11
VAX ENVIRONMENT FOR DCL Field (#9), 21-13
TaskMan User Option, 19-2, 19-3, 19-4, 22-33
Display Status of Tasks, 19-4
Editing Tasks, 19-5
Listing and Printing Tasks, 19-5
Stopping Tasks, 19-4
Summary, 19-6
Tasks in the Task List, 19-3
Working with Tasks, 19-2
Tasks
Creating, 18-12
Editing, 19-5
In the Task List, 19-3
KILL, 22-10
Waiting for a Volume Set, 20-3
Waiting to Start on a Compute Server, 20-6
Tasks waiting for a device Option, 22-4
Telnet Device, 15-10
TELNET PORT Field (#66), 15-5
Templates
IRM Setup to Enable Building Options from Templates, 9-5
LOGIN Menu, 2-4, 6-9
XUEDIT CHARACTERISTICS, 3-26
Terminal Type
Attributes, 3-5, 15-14, 15-15
Entries, 14-4, 15-17, 18-15
Identity, 2-5
Information Retained by User, 15-15
Naming Conventions, 15-14
P-BROWSER, 18-3
Prompt, 2-6, 2-6
Query, 2-5, 2-6
Selection at Signon, 15-16
Setup, 3-5, 3-26
Specifications, 14-6
TERMINAL TYPE File (#3.2), 3-5, 3-6, 14-4, 15-1, 15-3, 15-13, 15-14, 15-16, 16-5, 18-8, 18-15
BACK SPACE Field (#4), 15-13, 18-8
CLOSE EXECUTE Field, 14-7
CLOSE EXECUTE Field (#7), 15-13, 18-5, 18-15, 18-17
FORM FEED Field (#2), 15-13, 18-8
Global Location, 15-1
NAME Field (#.01), 15-13
Naming Conventions, 15-14
OPEN EXECUTE Field, 14-7
OPEN EXECUTE Field (#6), 15-13, 18-15, 18-16
PAGE LENGTH Field (#3), 15-13, 18-8
RIGHT MARGIN Field (#1), 15-13
SELECTABLE AT SIGN-ON Field, 3-6
SELECTABLE AT SIGN-ON Field (#.02), 15-13, 15-16
Terminating
Users, 3-26
TERMINATION DATE Field, 3-10, 3-28, 3-30, 11-4
TERMINATION DATE Field (#9.2), 3-22, 3-27, 3-28
Terminology
KIDS, 23-1
TaskMan, 20-8
Testing
User's Menus, 7-9
XQSCHK Server Option, 11-6
TEXT TERMINATOR Field, 3-26

July 1995
Revised March 2010
Kernel Systems Management Guide
Version 8.0
Index

TEXT TERMINATOR Field (#31.2), 2-10
TIED ROUTINE Field, 3-1
Time Option, 6-7
TIME PERIOD Field (#.01), 7-12
TIMED READ Field, 3-7
TIMED READ Field (#200.1), 3-22
TIMES/DAYS PROHIBITED Field (#3.91) (Multiple), 11-2, 11-3
TITLE Field (#8), 3-19
TITLE File (#3.1), 3-19
TMP Global, 7-12, 7-13
TO UCI Field (#3), 21-18
TO VOLUME SET Field (#2), 21-18
Toggle Options/Protocols On and Off Option, 7-10
Tokenizing Routine, 25-2
Toolbox
 Display User Characteristics Option, 2-12
 Electronic Signature code Option, 4-1
 Menu, 2-3, 2-6, 2-7, 2-8, 2-9, 2-12, 4-1, 4-2, 6-7, 6-8, 17-3, 19-2
Toolkit Queuable Options menu
 Errors Logged in Alpha/Beta Test (QUEUED) Option, 23-23
Transfer Entries Option, 5-6, 5-7, 5-7
Transfer File Entries Option, 5-7
Transfer Lines from Another Document Option, 5-2, 5-5
Transparent Print Mode, 18-14
Transport a Distribution Option, 23-5, 24-6
TRANSPORT BUILD NUMBER Field (#63), 23-12, 24-12
Transport Global, 23-1
 Backup, 23-15
 Compare, 23-3, 23-7, 23-13
 Components, 23-8
 Create, 23-2, 23-5, 24-11
 Definition, 23-1
 Environment Check, 23-7
 Export, 23-2
 Install, 23-3
 Load from Distribution, 23-3, 23-7, 23-9
 Load from PackMan Messages, 23-3, 23-7
 Print, 23-3, 23-7, 23-12
 Processing, 23-16
 Verify, 24-11
 Verifying Checksums, 23-12
Transport Mechanism
 Distributions, 23-5
 TRM or VTRM Device Edit Option, 15-9
 TRM Type, 18-17
Troubleshooting
 Device Handler, 15-17
 Menu Manager Variables, 7-21
 TaskMan, 22-9, 22-12, 22-27, 22-36
 Turn Data Audit On/Off Option, 5-6
 TYPE Field
 DEVICE File (#3.5), 15-4
 TYPE Field (#.1)
 VOLUME SET File (#14.5), 21-15, 21-16
 TYPE Field (#2)
 DEVICE File (#3.5), 15-2, 21-21
 TYPE Field (#4)
 OPTION File (#19), 11-1, 11-3
 TYPE-AHEAD Field, 3-7
 TYPE-AHEAD Field (#200.09), 2-10, 3-22
Types
 BROWSER, 18-3
 COMPUTE SERVER, 21-15
 FILE SERVER (Obsolete), 21-15
 GENERAL PURPOSE VOLUME SET, 21-15
 OTHER NON-TASKMAN VOLUME SET, 21-15
 P-BROWSER, 18-3
 PRINT SERVER, 21-15
 RESOURCES, 11-2
 TRM, 18-17

U

UCI
 Definition, 20-8
 Switching, 7-13, 21-10
UCI ASSOCIATION File (#14.6), 20-5, 20-7, 21-9, 21-17, 22-34
 FROM UCI Field (#.01), 21-18
 FROM VOLUME SET Field (#1), 21-18
 Standardized VA Caché and GT.M Configuration, 21-19
 TO UCI Field (#3), 21-18
 TO VOLUME SET Field (#2), 21-18
UCI Association Table Edit Option, 21-17
UCI ASSOCIATION TABLE Field, 21-17
Unassign Editor Option, 12-5
Understanding DUZ (the User Number), 5-10
Unload a Distribution Option, 23-20, 23-21
Unsuccessful tasks Option, 22-4
Up-arrow Jump, 6-1, 6-6, 6-7, 6-8, 6-9, 7-14
Update Node, 22-29
Update Routine File Option, 24-10, 24-11
URLs

Index-42

Kernel
Systems Management Guide
Version 8.0
July 1995
Revised March 2010
Index

Acronyms Intranet Website, Glossary, 6
Adobe Website, xliii
Glossary Intranet Website, Glossary, 6
KAAJEE Documentation Website, 2-2
Kernel Website, xliii
RPC Broker Documentation Website, 2-1
VA FileMan Documentation Website, 3-21, 5-1, 5-5
VHA Software Document Library (VDL) Website, xliii
VistA Development Website, xl

Usage Considerations
Multi-Term Look-Up (MTLU), 25-2
USE AS LINK FOR MENU ITEMS Action, 23-8, 23-16
USE Command, 20-3
Use of Slaved Printer
Processing Steps, 18-16
USE PARAMETERS Field (#19.5)
DEVICE File (#3.5), 15-3
Use this Manual, How to, xxxix
USE TIMEOUT ON OPENS Field (#2009.5)
DEVICE File (#3.5), 18-10
User Alerts Count Report Option, 10-9
USER CHARACTERISTICS TEMPLATE Field, 3-26
User Inquiry Option, 3-31
User Interface, 1-2
Alerts, 10-1
Browser Device, 18-1
Device Handler, 14-1
Electronic Signatures, 4-1
Error Processing, 13-1
File Access Security, 5-1
Form Feeds, 18-5
Help Processor, 12-1
Host Files, 16-1
Hunt Groups, 18-6
Menu Manager, 6-1
Multi-Term Look-Up (MTLU), 25-4
Secure Menu Delegation
Acting as a Delegate, 9-2
Security Keys, 8-1
Signon/Security, 2-1
Slaved Printers, 18-14
Spooling, 17-1
TaskMan, 19-1
User Management Menu, 3-26, 3-30, 5-1, 5-9, 5-11, 5-15
User Management Options on the Operations Menu, 3-30
User Stacks, 7-13, 7-17
Nodes, 7-17
User Status Report Option, 3-31
USER^XQALERT API, 10-5
Users
Adding New, 3-9
Attributes, 3-1, 3-9, 3-10, 3-18
Deactivating, 3-27
Deactivating Automatically, 3-28
Introduction, 1-1
Reactivating, 3-30
Terminating, 3-26
User's Toolbox Menu, 2-3, 2-6, 2-7, 2-8, 2-9, 2-12, 4-1, 4-2, 6-7, 6-8, 17-3, 19-2
Display User Characteristics Option, 2-12
Electronic User Signature code Option, 4-1
Using
File Access Options, 5-9
Hunt Group Device Without Using the Hunt Group, 18-7
Multi-Term Lookup (MTLU) Option, 25-6
Print Utility Option, 25-7
Ranges of File Numbers, 5-10
Security Keys with Reverse Locks, 8-6
Utilities for MTLU Option, 25-9
Utilities
^%ZTMOVE
Toolkit, 22-34
Block Count, 12-6
DIFROM, 23-1, 23-4, 23-6
Secure Menu Delegation Menu, 8-1
XQSCREKH Server Option, 11-6
XQSPING, 11-5
XTSPING, 11-6
Utilities For MTLU Menu, 25-9
Utilities Menu
KIDS, 24-1
Utility Functions Menu, 5-6
UTILITY($J Global, 5-13, 7-12, 7-13
Purging, 7-12

V

VA FileMan
Browser Device, 18-1
File Access Security Properties, 5-5
Limited File manger Options (Build) Option, 9-5
Line Editor, 2-10, 3-21, 5-2, 5-5
Menu, 5-1

July 1995
Revised March 2010

Kernel Systems Management Guide
Version 8.0

Index-43
Screen Editor, 2-6, 3-5, 3-21
What Happened to DIFROM, 23-6
VA FileMan Documentation Website, 3-21, 5-1, 5-5

Variables
$HOROLOG, 22-8, 22-9, 22-29
$STACK, 13-4
%ZISQUIT, 15-3
^%ZIS, 18-7
DIDEL, 5-3, 5-5
DLAYGO, 5-3, 5-5
DTIME, 3-7, 3-22
DUZ, 5-10
DUZ("AG"), 3-7
DUZ("AUTO"), 3-7
DUZ(0), 3-20, 5-3, 5-4, 5-7, 5-8, 5-11, 9-5, 15-12
DUZ(2), 3-7
IO, 7-3
IONOFF, 18-5
Menu Manager, Troubleshooting, 7-21
XQABTST, 7-21
XQACNDEL, 10-3
XQDIC, 7-21
XQMM("J"), 7-15
XQPSM, 7-21
XQT, 7-21
XQUIT, 7-15, 11-3
XQUR, 7-21
XQUOTER, 7-22
XQXFLG, 7-22
XQY, 7-22
XQY0, 22-22
ZTCP, 21-24
ZTQPARAM, 22-21
ZTSTOP, 22-33
VAX ENVIRONMENT FOR DCL Field (#9), 21-13, 21-24
Verify a Build Option, 24-11
Verify Checksums in Transport Global Option, 23-12
VERIFY CODE Field, 3-20
VERIFY CODE Field (#7.2), 2-11, 3-19
Verify Codes, 1-1, 2-1, 2-2, 2-3, 2-4, 2-5, 2-11, 3-1, 3-2, 3-6, 3-9, 3-19, 3-27, 3-32, 3-33, 5-10, 11-4, 11-9
Defining, 2-3
Log, 3-33
Old, 3-33
Purging, 3-33
Verify Package Integrity Option, 24-12
Verify Package Integrity in a Transport Global (KIDS), 23-12
VERSION Field (Multiple), 23-5
Versions to Retain (KIDS), 24-8
VHA Software Document Library (VDL)
Website, xliii, 2
Website, 2
Website, 3
View Alerts "VA" Option, 2-7, 6-7, 10-1, 10-2
View data for Alert Tracking file entry Option, 10-9
Virtual Devices
VMS Systems, 15-16
Virtual Terminals, 15-15
VMS Systems
Virtual Devices, 15-16
VMS DEVICE TYPE Field (#63), 15-5
VOICE PAGER Field (#.137), 2-10, 3-23, 4-1
VOLD Cross-reference, 3-33
Volume
Set Definition, 20-8
Volume Set Edit Option, 21-14
VOLUME SET Field (#.01)
VOLUME SET File (#14.5), 21-15
VOLUME SET Field (#41, Multiple)
KERNEL SYSTEM PARAMETERS File (#8989.3), 21-11
VOLUME SET Field (Multiple)
KERNEL SYSTEM PARAMETERS File (#8989.3), 3-3
VOLUME SET File (#14.5), 3-9, 20-5, 20-7, 21-9, 21-14, 21-18, 22-17, 22-35, 22-37
DAYS TO KEEP OLD TASKS Field (#8), 21-16
INHIBIT LOGONS? Field (#1), 21-15
LINK ACCESS Field (#2), 21-16
OUT OF SERVICE? Field (#3), 21-16
REPLACEMENT VOLUME SET Field (#7), 21-16
REQUIRED VOLUME SET? Field (#4), 21-16
Standardized VA Caché and GT.M Configuration, 21-18
TASKMAN FILES UCI Field (#5), 21-16
TASKMAN FILES VOLUME SET Field (#6), 21-16
TYPE Field (#1), 21-15, 21-16
VOLUME SET Field (#.01), 21-15
VOLUME SET(CPU) Field (#1.9)
DEVICE File (#3.5), 15-2, 15-15, 15-18, 15-19, 21-21, 22-20

W

Wait Node, 22-29
WAIT State, 22-29
TaskMan, 21-20, 22-15, 22-16, 22-38
Waiting List, 20-6

Websites
Acronyms Intranet Website, Glossary, 6
Adobe Website, xliii
Glossary Intranet Website, Glossary, 6
KAJJEE Documentation Website, 2-2
Kernel Website, xliii
RPC Broker Documentation Website, 2-1
VA FileMan Documentation Website, 3-21, 5-1, 5-5
VHA Software Document Library (VDL) Website, xliii, 2
VHA Software Document Library (VDL) Website, 2
VHA Software Document Library (VDL) Website, 3
VistA Development Website, xl
What Can Server Options Do?, 11-1
What Happened to DIFROM, 23-6
What in VA FileMan is Still Protected by the File Manager Access Code?, 5-4
What is a Server Option?, 11-1
When is File Access Security Checked?, 5-3
When the Distribution is Split Across Diskettes (KIDS), 23-10
When the KIDS Installation is Queued, 23-17
Where am I? Option, 6-7
Which Options to Queue TaskMan, 22-18
Who Needs File Access?, 5-5
Why Longer Passwords?, 2-4
Working with Tasks, 19-2
WRITE Access, 3-20, 5-1, 5-4, 5-7, 7-1

X

XMB Global, 17-6
XMBS Global, 17-6
XMNOPRIV Security Key, 8-6
XPD BACKUP Option, 23-15
XPD COMPARE TO SYSTEM Option, 23-13
XPD CONVERT PACKAGE Option, 24-4
XPD DISTRIBUTION MENU, 23-2
XPD EDIT INSTALL Option, 24-4
XPD INSTALL BUILD Option, 23-16
XPD INSTALLATION MENU Menu, 23-3, 23-8
XPD LOAD DISTRIBUTION Menu, 23-9, 23-10
XPD MAIN Menu, 23-2
XPD PRINT BUILD Option, 24-2
XPD PRINT CHECKSUM Option, 23-12
XPD PRINT INSTALL FILE Option, 24-3
XPD PRINT INSTALL Option, 23-12
XPD PRINT PACKAGE PATCHES Option, 24-7
XPD PURGE FILE Option, 24-7
XPD RESTART INSTALL Option, 23-20
XPD ROLLUP PATCHES Option, 24-20
XPD ROUTINE UPDATE Option, 24-10
XPD UNLOAD DISTRIBUTION Option, 23-20, 23-21
XPD UTILITY Menu, 24-1
XPD VERIFY BUILD Option, 24-11
XPD VERIFY INTEGRITY Option, 24-12
XQ Nodes, 7-17
XQ UNREF'D OPTIONS Option, 7-9
XQ XUTL SJ NODES Option, 7-12, 7-13
XQAB ACTUAL OPTION USAGE Option, 23-23
XQAB AUTO SEND Option, 23-23
XQAB ERR DATE/SITE/NUM/ROU/ERR Option, 23-23
XQAB ERROR LOG XMIT Option, 23-23
XQAB LIST LOW USAGE OPTS Option, 23-23
XQAB MENU Menu, 23-23
XQABTST Variable, 7-21
XQACNDEL Variable, 10-3
XQAL ALERT LIST FROM DATE Option, 10-8
XQAL BACKUP REVIEWER, 10-10
XQAL ALERT LIST FROM DATE Option, 10-8
XQAL PATIENT ALERT LIST Option, 10-9
XQAL REPORTS MENU Menu, 10-8
XQAL SET BACKUP REVIEWER Option, 10-10
XQAL SURROGATE FOR WHICH USERS Option, 10-10
XQAL USER ALERTS COUNT Option, 10-9
XQAL VIEW ALERT TRACKING ENTRY Option, 10-9
XQAL-DELETE Security Key, 10-7

July 1995
Revised March 2010

Kernel
Systems Management Guide
Version 8.0

Index-45
XQALERT BY USER DELETE Option, 10-7
XQALERT DELETE OLD Option, 10-6
XQALERT MAKE Option, 10-7
XQALERT MGR Menu, 10-6
XQALERT Option, 2-7
XQALERT SURROGATE SET/REMOVE Option, 10-4, 10-6
XQBUILDTREEQUE Option, 7-14, 22-20
XQCOPYYP Option, 9-4
XQDIC Variable, 7-21
XQDISPLAY OPTIONS Menu, 7-5
XQHELP-ASSIGN Option, 12-5
XQHELP-DEASSIGN Option, 12-5
XQHELP-DISPLAY Option, 12-4
XQHELPFIX Option, 12-5
XQHELP-LIST Option, 12-4
XQHELP-MENU Menu, 12-4
XQHELP-UPDATE Option, 12-5
XQHELP-XREF Option, 12-5
XKEYALTODEL Option, 8-3
XQLOCK1 Option, 8-3
XQLOCK2 Option, 8-3
XQMM("J") Variable, 7-15
XQOOFF Option, 7-10
XQOOG doubtful Menu, 7-10
XQOMAKE Option, 7-10
XQON Option, 7-10, 7-11
XQOREDO Option, 7-10
XQOSHOFIL Option, 7-11
XQOSHOPRO Option, 7-11
XQOSHOW Option, 7-11
XQOTOG Option, 7-10
XQOPTFIX Option, 7-9
XQPSM Variable, 7-21
XQRESTRICT Option, 7-11
XQCHK Server Option
 Errors and Warnings, 11-8
 Testing, 11-6
XQSERVER Bulletin, 11-4, 11-8
XQSMDFM Security Key, 9-5
XQSPING Utility, 11-5
XQSTOCK Variable, 7-21
XQTA Nodes (MENU Templates), 7-18
XQUIT Variable, 7-15, 11-3
XQUSER Variable, 7-22
XQFLG Variable, 7-22
XQ Variable, 7-22
XQY Variable, 7-22
XQY0 Variable, 7-22
XTER* Routines, 13-2
XTLATSET Routine, 15-5, 15-6
XTLKLKUP Option, 25-1, 25-6
XTLKMDFK Option, 25-2, 25-17
XTLKMODPK Option, 25-1, 25-9, 25-10
XTLKMODPARS Option, 25-1, 25-10
XTLKMODPARS Options, 25-9
XTLKMODSH Option, 25-2, 25-14
XTLKMODSY, 25-2
XTLKMODSY Option, 25-18
XTLKMODUTL Option, 25-2, 25-9, 25-13
XTLKPrTUTL Option, 25-1, 25-7
XTLKTOKN Routine, 25-2
XTLKUSER2 Menu, 25-4
XTLKUTILITIES, 25-9
XTLKMGR Security Key, 25-1, 25-9, 25-10
XTMENU Menu, 25-4
XTMP Global, 7-10, 7-12, 7-13, 23-7, 23-9, 23-20
XTSPING Utility, 11-6
XU CHECKSUM REPORT Option, 23-12, 24-12
XU DA EDIT Option, 15-16
XU FINDUSER Option, 3-30
XU OPTION QUEUE Option, 22-24
XU SID EDIT Option, 15-12
XU SWITCH UCI Option, 2-13
XU USER SIGN-ON Extended Action, 3-8
XU USER SIGN-ON Option, 3-8
XU USER TERMINATE Protocol, 3-29
XUAUDIT MENU, 7-4
XUAUDIT Option, 7-4
XUAUTHOR Security Key, 12-5, 12-6
XUAUTODEACTIVATE Option, 3-28
XUCOMMAND Menu, 7-1, 7-8
XUDEEDIT Option, 18-8
XUDEEDITCHAN Option, 18-10
XUDEEDITDIFS Option, 15-7, 16-2
XUDEEDITRES Option, 18-13
XUDEEDITTSP Option, 17-9
XUDEVEDIT Option, 18-8
XUDEEDITDIFS Option, 18-10
XUDEEDITDIFS Option, 15-7, 16-2
XUDEEDITRES Option, 18-13
XUDEEDITTSP Option, 17-9
Index

XUDEVEDITTRM Option, 15-9
XUEDIT CHARACTERISTICS Template, 3-26
XUEDITOPT Option, 11-3
XUERRS Menu, 13-4
XUERTRAP Option, 13-6
XUERTRP AUTO CLEAN Option, 13-5
XUERTRP CLEAN Option, 13-5
XUERTRP PRINT ERRS Option, 13-7
XUERTRP PRINT T-1 1 ERR Option, 13-4
XUERTRP PRINT T-1 2 ERR Option, 13-5
XUFILEACCESS Menu, 5-9, 5-11, 5-14, 5-15, 5-16
XUINCON Routine, 5-15
XUKERNEL, 15-12
XUKEYALL Option, 8-3
XUKEYDEALL Option, 8-3
XUKEYEDIT Option, 8-4
XUMGR Security Key, 3-9, 3-10, 3-19, 4-2, 8-3, 8-4, 9-9, 17-8
XUOPTDISP Option, 7-4
XUOPTPURGE Option, 7-4
XUOPTUSER Menu, 3-30
XUOPTWHO Option, 7-6
XUOUT Option, 15-17
XUP API, 18-3
XUPRINT Option, 7-5
XUROG Menu, 23-2
XUROG Security Key, 3-22, 7-9, 8-1, 8-2, 23-2
XUROGMODE Option, 7-17
XUROGMODE Security Key, 3-22, 8-2, 13-5
XURESJOB Option, 22-10, 22-29
XUSC LIST Option, 3-31
XUSCLEAN Routine, 7-13
XUSCZONK Option, 3-32
XUSEC Cross-reference, 8-5
XUSEC(0, Global, 3-32, 7-12
XUSEC(0,"CUR",DUZ,DATE), 7-13
XUSER COMPUTER ACCOUNT Help Frame, 3-11
XUSER DIV CHG Option, 2-8
XUSER KEY RE-INDEX Option, 8-5
XUSER Menu, 3-26, 5-1, 5-9, 5-11, 5-15
XUSERAOLD Option, 3-33
XUSERBLK Option, 3-10
XUSER-CLEAR-ALL Option, 3-8
XUSERDEACT Option, 3-27
XUSEREDIT Option, 3-18
XUSEREDITSELF Option, 2-9, 15-15
XUSERINQ Option, 3-31
XUSERINT Option, 3-1
XUSERLIST Option, 3-31
XUSERNEW Option, 3-9, 3-10
XUSERPOST Option, 3-8
XUSERPURGEATT Option, 3-29
XUSERREACT Option, 3-27, 3-30
XUSERREL Option, 3-31
XUSERTOOLS Menu, 2-7
XUSESIG BLOCK Option, 4-2
XUSESIG CLEAR Option, 4-2
XUSESIG Option, 4-1, 4-2
XUSITEMGR Menu, 3-30, 23-23
XUSITEPARM Option, 3-2, 15-12
XUSPF200 Security Key, 3-9, 3-10, 3-19
XU-SPL-ALLOW Option, 17-3
XU-SPL-BROWSE Option, 17-4
XU-SPL-DELETE Option, 17-4
XU-SPL-LIST Option, 17-3
XU-SPL-MAIL Option, 17-5
XU-SPL-MGR Menu, 17-7, 17-8
XU-SPL-PRINT Option, 17-4
XU-SPL-PURGE Option, 17-9
XU-SPL-SITE Option, 17-8
XU-SPL-USER Option, 17-7
XUSTAT Option, 3-21, 3-32
XUTESTUSER Option, 7-9
XUTIO Menu, 15-6, 15-17
XUTL Global, 7-12, 7-13, 7-14, 7-21, 15-15
 Display Nodes, 7-18
 Jump Nodes, 7-20
 Structure and Function, 7-17
 User Stacks, 7-17
 XUTL("XQ", SJ, "T") Node, 7-17
 XUTL("XQ", SJ, "XQM") Node, 7-17
 XUTLOOPBACK Option, 15-17
 XUTM BACKGROUND PRINT Option, 22-18
 XUTM BACKGROUND RECOMMENDED Option
 TaskMan, 22-18
 XUTM CHECK ENV Option, 22-13
 XUTM CLEAN Option, 22-17
 XUTM DEL Option, 20-8, 22-6
 XUTM DQ Option, 20-8, 22-4, 22-5, 22-33
 XUTM ERROR DELETE Option, 22-26
 XUTM ERROR LOG CLEAN RANGE Option, 22-25
 XUTM ERROR Menu, 13-2, 22-24
 XUTM ERROR PURGE TYPE Option, 22-26
 XUTM ERROR SCREEN ADD Option, 13-3
 XUTM ERROR SCREEN EDIT Option, 13-3
 XUTM ERROR SCREEN LIST Option, 13-3

July 1995
Revised March 2010
Kernel
Systems Management Guide
Version 8.0
Index

XUTM ERROR SCREEN REMOVE Option, 13-4
XUTM ERROR SHOW Option, 22-25
XUTM INQ Option, 22-2
XUTM MGR Menu, 13-2
XUTM QCLEAN Option, 21-16, 22-17, 22-24, 22-30
XUTM REQ Option, 20-8, 22-5, 22-33
XUTM RESTART Option, 22-14, 22-15
XUTM RUN Option, 22-15
XUTM SCHEDULE Option, 22-19
XUTM STOP Option, 22-15, 22-16, 22-29
XUTM SYNC Option, 22-16
XUTM TaskMan Namespace, 20-5
XUTM TL CLEAN Option, 22-6
XUTM UCI Option, 21-17
XUTM USER Option, 19-2, 22-33
XUTM UTIL Menu, 13-2, 22-7
XUTM VOLUME Option, 21-14
XUTM WAIT Option, 22-15
XUTM ZTMON Option, 21-21, 22-7, 22-35
XUTMG Menu, 22-1
XUTTEST Option, 15-17
XUUSERDISP Option, 2-12
XUUSERSTATUS Option, 3-31
XUXREF Option, 7-5
XUXREF-2 Option, 7-6

ZIS Global, 20-7
ZIS Variable, 18-7
ZIS("14.5","LOGON","volume set") Node, 3-9
ZIS(1, Global, 15-1
ZIS(2, Global, 15-1
ZIS(3.22, Global, 15-1
ZISL Global, 18-12
ZISQUIT Variable, 15-3
ZOSF Nodes, 22-37
ZOSF("VOL") Node, 21-15
ZSTU Routine, 21-19
ZTCPM Variable, 21-24
ZTER Global, 13-2, 13-5
ZTER* Routines, 13-2
ZTLOAD API, 18-12, 20-2, 22-34
ZTM TaskMan Namespace, 20-5
ZTMOVE Utility Toolkit, 22-34
ZTMOQ Security Key, 20-8, 22-2, 22-5, 22-6
ZTMQUEUABLE OPTIONS Menu, 3-28, 7-1, 17-9, 22-17, 22-18
ZTMSH Routine, 21-22
ZTMSWDCL.COM, 21-28
ZTMWDCL.COM, 21-27
ZTQPARAM Variable, 22-21
ZTSTOP Variable, 22-33
ZU Routine, 3-9
ZUA(3.05 Global, 3-33

Y
Your future tasks Option, 22-3

Z
Z Namespace, 9-11