Polycystic Ovary Syndrome

Sidika E. Karakas, M.D.

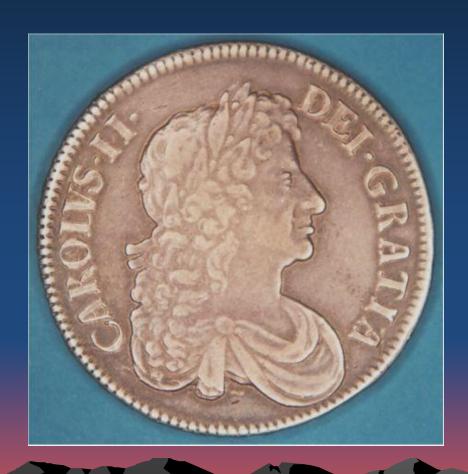
Professor and Chief
Division of Endocrinology, Diabetes and
Metabolism

PCOS

- Affects 1 out of 16 women
 - -8% of AA; 5% of White
- Most common cause of anovulatory infertility
- Increases risks for

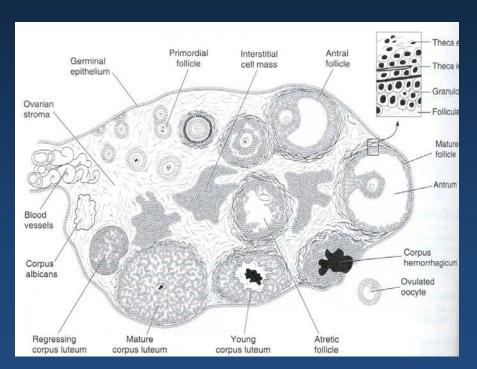
Type 2 DM

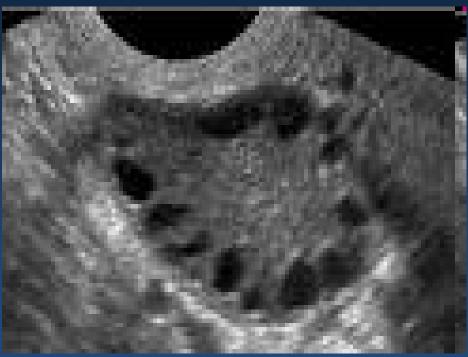
Gestational DM


Endometrial cancer

Cardiovascular disease

Clinical Definition


- Oligomenorrhea (< 6 periods/y)
 /Amenorrhea (no periods > 6 mo)
- Clinical and/or biochemical signs of hyperandrogenism
- Exclusion of other etiologies
 (congenital adrenal hyperplasia, androgensecreting tumors, Cushing's syndrome)
- Polycystic ovaries (Rotterdam Criterion)


PCOS—Two Sided Coin

Ovarian Dysfunction

Ovarian Dysfunction

- ovarian volume ≥ 10 ml
- ≥ 12 follicles
- each 2–9 mm
- subjective appearance of PCO cannot be substituted

Anti-Mullerian Hormone (AMH)

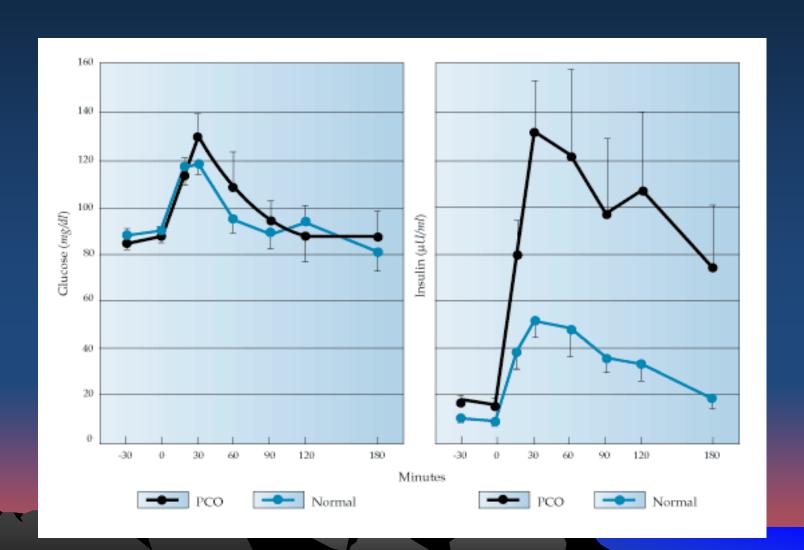
- Glycoprotein
- Produced by granulosa cells of primary, pre-antral and early antral follicles
- NOT by larger or atretic follicles
- Indicator of ovarian reserve
 - ->5 ng/ml ---PCOS
 - < 0.8 ng/ml ---Menopause</p>
 - -> 1.3 ng/ml---Successful IVF

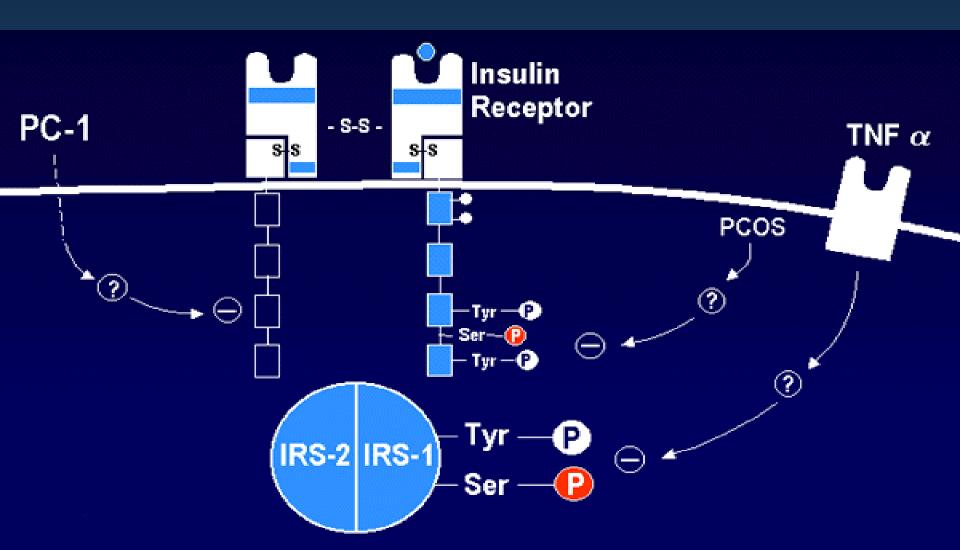
PCOS—Two Sided Coin

Insulin Resistance

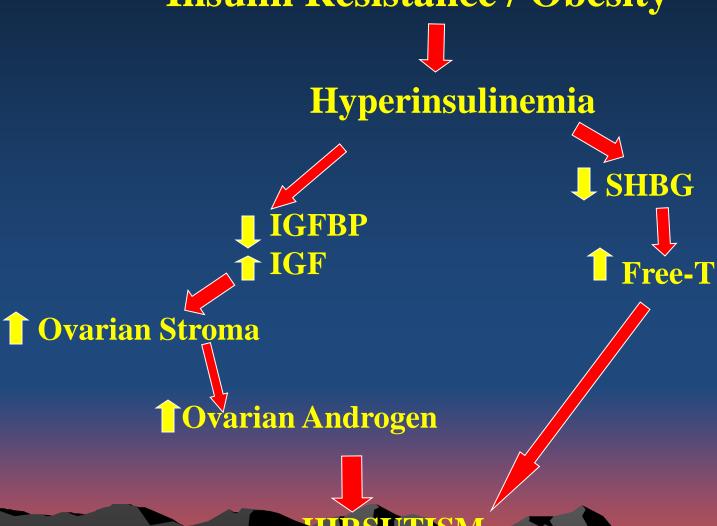
Most PCOS patients are insulin resistant

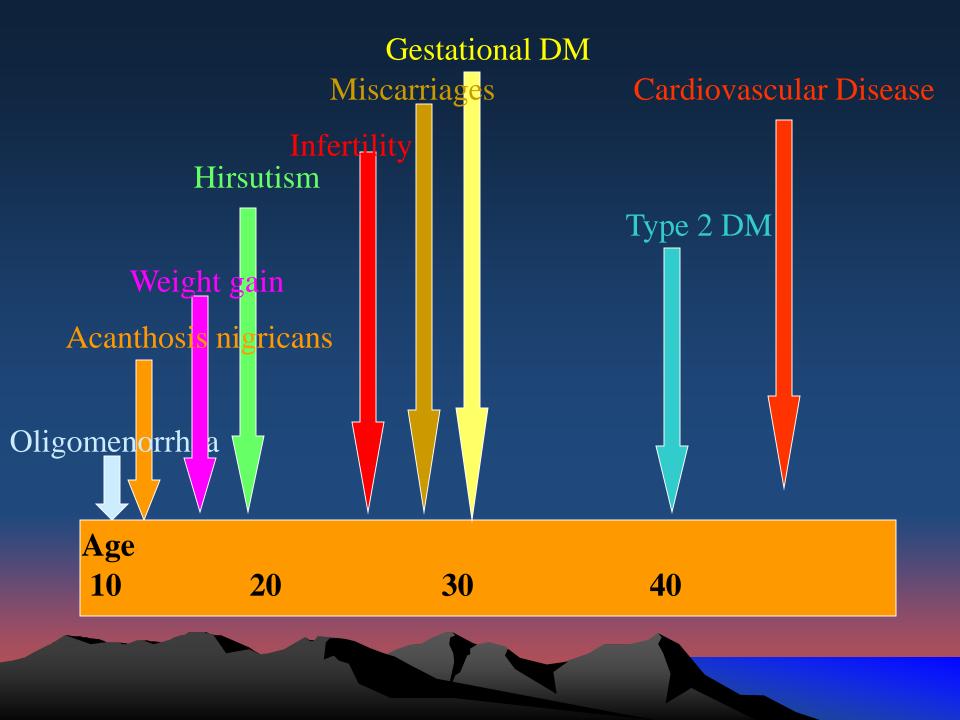
Presentation of Insulin Resistance




Blood Sugar: 80

Insulin: 10 30


OGTT in PCOS


Pathogenesis of Insulin Resistance

Insulin Resistance / Obesity

Clinical Findings of PCOS

Menstrual cycles are a vital sign

Andrea Dunaif, MD.

Clinical Findings of PCOS

Laboratory Testing for PCOS

- Confirm hyperandrogenemia
 - Bioavailable testosterone
- Differential diagnosis of hyperandrogenemia
 - DHEAS, 170HP
- Differential diagnosis of amenorrhea
 - Prolactin, FSH, AMH
- Diagnosis of metabolic abnormalities Insulin resistance Hyperlipidemia

Necessary and Sufficient

- -Bioavailable testosterone
- -DHEAS
- 170HP
- -Prolactin
- FSH
- -AMH

Why Bioavailable Testosterone?

Free testosterone 2%

• SHBG bound 44%

Albumin bound 50%

Bioavailable -- calculated from SHBG & albumin

Why Bioavailable Testosterone?

	Reference Range	Patient 1	Patient 2
Total-T	11-56 ng/dl	50	48
SHBG	30-135 nmol/l	25	186
Bioavail-T	4.1-22.6 ng/dl	26.0	5.8
Free-T	1.3-9.2 pg/ml	10	2.3

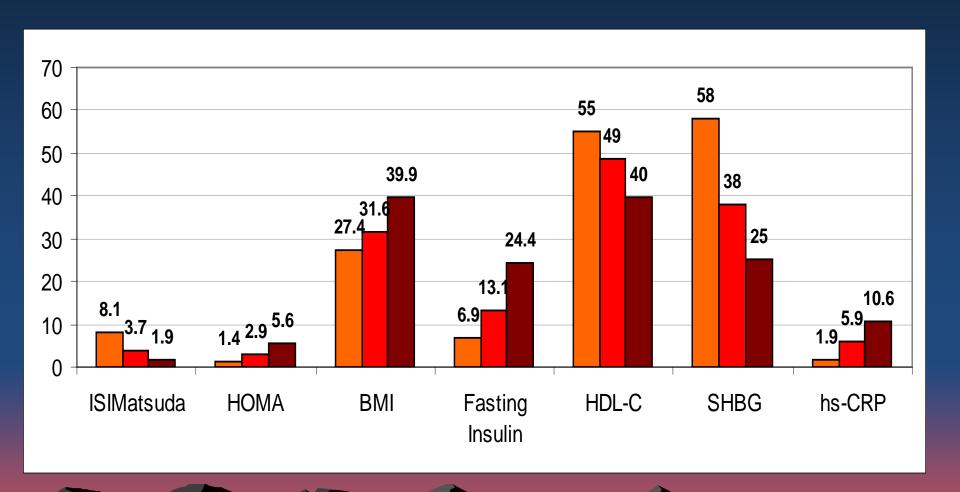
Oral Glucose Tolerance Test?

			J	4	J
	09/23/08 081 4	03/24/08 0940	03/04/08 1025	03/04/08 0955	03/04/08 0925
CHEMISTRY PANELS				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
FASTING	YES				
CHOLESTEROL	105 *				
TRIGLYCERIDE	98		<u> </u>		
LDL CHOLESTEROL	38				
HDL CHOLESTEROL	47				
NON-HDL CHOLEST	58 *				
TOTAL CHOLESTER	2.2				
GLUCOSE FASTING	104				
GLUCOSE,1 HOUR					150 *
GLUCOSE, 90 MINUTE				139 *	
GLUCOSE,2 HOUR			129 * 🛕		

17 yo AA woman, 240 lb

OGTT: Only with INSULIN

		2		3		4	J	
	09/23/08 0814	03/24/08 0940	1	03/04/08 1025		03/04/08 0955	03/04/08 0925	
CHEMISTRY PANELS								
FASTING	YES							
CHOLESTEROL	105 *							
TRIGLYCERIDE	98							
LDL CHOLESTEROL	38							
HDL CHOLESTEROL	47						 	
NON-HDL CHOLEST	58 *							
TOTAL CHOLESTER	2.2							
GLUCOSE FASTING	104							
GLUCOSE,1 HOUR							 150 *	
GLUCOSE, 90 MINUTE						139 *		
GLUCOSE,2 HOUR				129 *	_			
IRON TOTAL		19	V				Z	
TRANSFERRIN		273						
TOTAL IRON BIND		379						
IRON PERCENT SA		5.0	∇					
FERRITIN		17					 	
MISC. CHEMISTRY								
HEMOGLOBIN A1C	5.8 *					was a second		
hsCRP	26.0 *							
INSULIN	76.9	_		637.0		582.8	498.2	_

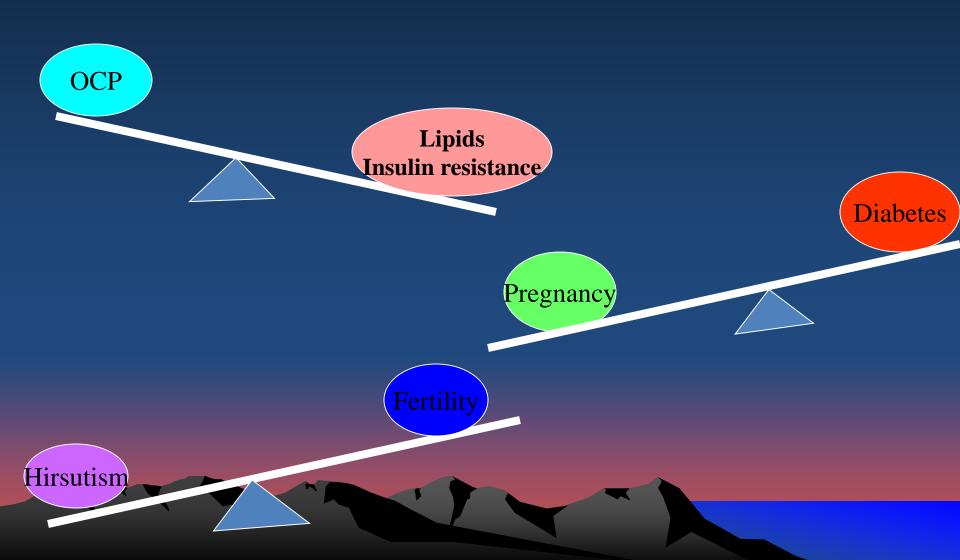

Is HgBA1 > 5.7% Useful in PCOS?

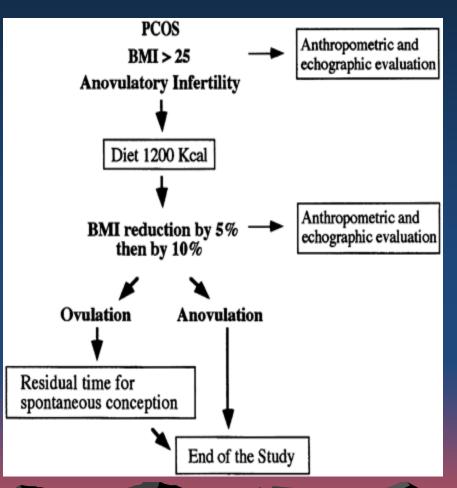
	HgBA1 < 5.7 (n = 25)	HgBA1 >5.7 (n = 23)	P value
Age (years)	31.1 ± 1.1	35.1 ± 1.1	0.039
Fasting glucose (mg/dl)	91.5 ± 0.9	99.6 ± 2.3	0.028
Adiponectin (ng/ml)	12.4 ± 0.9	8.8 ± 0.7	0.023
<u>FS-IVGTT</u>			
SI	4.2 ± 0.6	2.0 ± 0.2	0.020
DI	1901 ± 217	1014 ± 82	0.011
CVD risk factors			
Triglyceride (mg/dl)	92.6 ± 4.4	125.3 ± 9.5	0.018
hs-CRP (ng/ml)	2.1 ± 0.1	4.76 ± 0.5	0.003
FABP4 (ng/ml)	34.8 ± 2.9	58.5 ± 4.9	0.021

Almost half of the PCOS patients have Metabolic Syndrome

Risk Factor	Ehrmann	Glueck
	(n= 368)	(n=138)
Waist > 88 cm	80%	98%
TG > 150 mg/dL	32%	56%
HDL-C < 50 mg/dL	66%	95%
BP > 130/85 mmHg	21%	70%
Fasting glucose> 110 mg/dL	5%	11%
≥ 3 Risk Factors	33.4%	46%

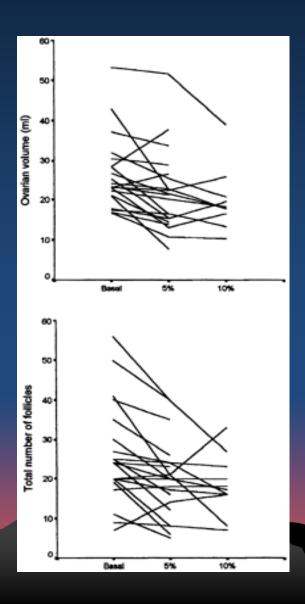
Clues for Insulin Resistance in PCOS Women with NORMAL Glucose Tolerance


Acanthosis and Skin Tags

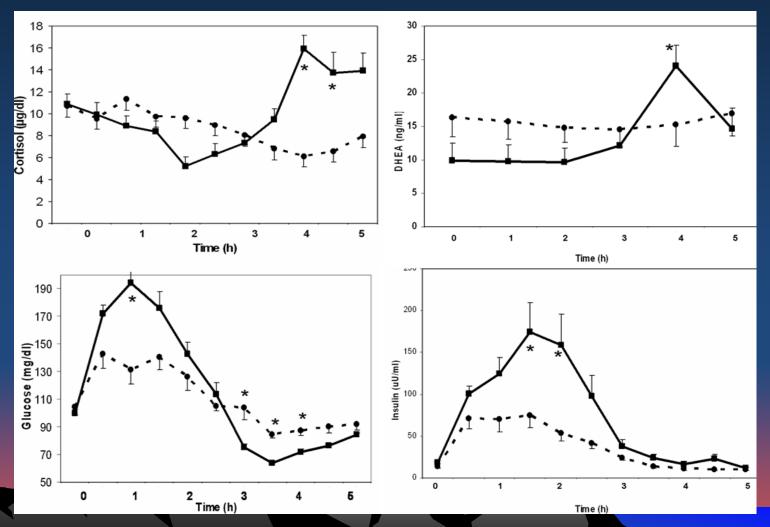

Most women in our PCOS clinic are obese

<u>BMI</u>	% of PCOS Women
<18.5	0
18.5 – 24.9	9
25 – 29.9	15
30 – 34.9	34
35 – 39.9	20
>40	22
YV	

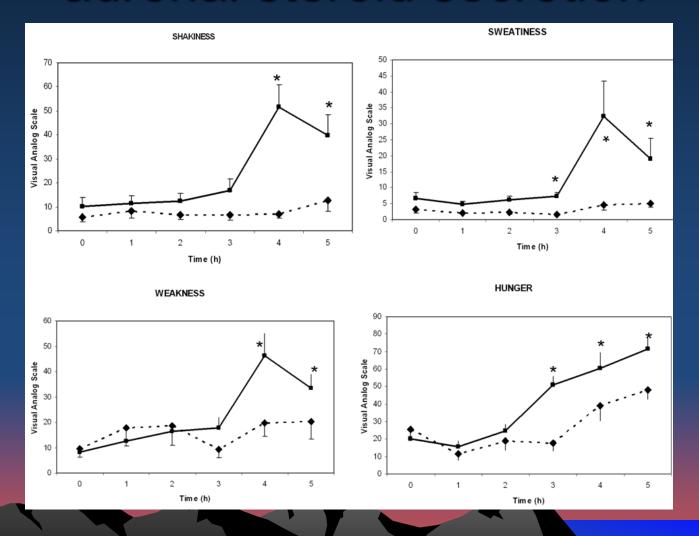
Management Planning



Effects of Weight Loss on Fertility


- 33 PCOS patients
- 25 lost 5% weight
- 11 of these lost >10%
- 15 women ovulated
- 10 became pregnant

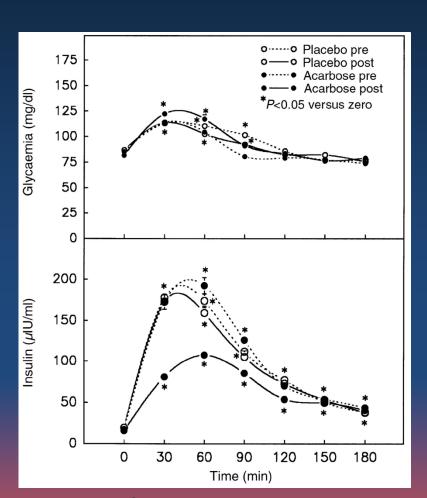
Changes in Ovarian Volume and Number of Follicles During Weight Loss


- Ovarian volume decreased by 18% with 5% weight loss
 25% with 10% weight loss
- Follicle number decreased from 23.5±11.5 to 19.9 ±9.9 with 5%,
 to 18.3 ±7.5 with 10% weight loss

Postprandial adrenal steroid secretion in PCOS

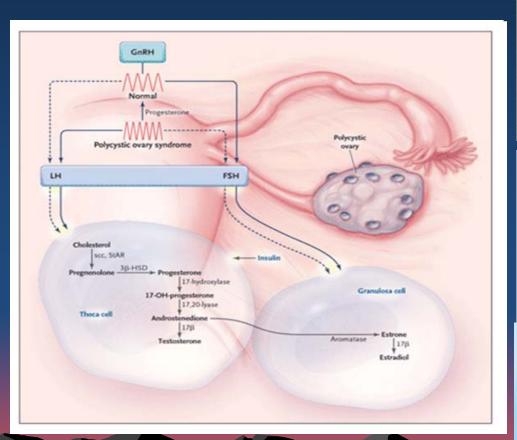
D. Gurusinghe et al. Fert. Ster. 2010.

Symptoms associated with adrenal steroid secretion



Conclusion

Symptoms of postprandial hypoglycemia are associated with adrenal steroid secretion in PCOS


Tools to decrease insulin response

- Reducing simple sugars and CHO in the diet
- Metformin -- fasting
- Acarbose –postprandial

Treatment of Hyperandrogenemia

Suppress ovarian androgen production –contraceptives

Treatment of Hyperandrogenemia

Block androgen receptor (sprinolactone)

Block conversion of testosterone to DHT (finasteride)

Treatment of Infertility

Weight loss

Insulin sensitizers (Metformin, TZD)

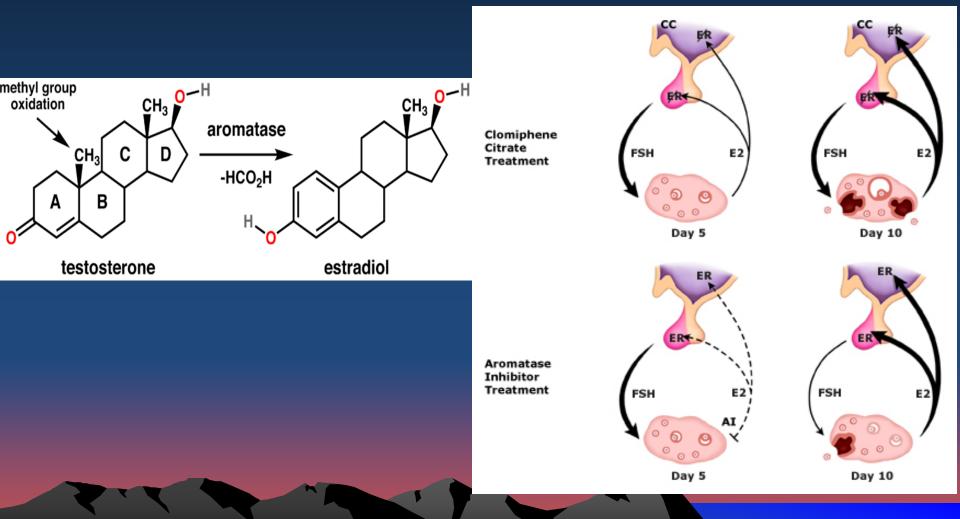
Clomiphene citrate

Aromatase inhibitors

Surgery

ESHRE/ASRM Consensus Statement on infertility in PCOS

	CC	Metformin	Combination	
N	209	208	209	
Ovulation	49 ¹	29	60 ²	
Conception	20 ¹	12	38 ¹	
Pregnancy	24 ¹	9	31 ¹	
Live birth	23 ¹	7	27 ¹	
Multiple	6	0	3	


Human reproduction--2008

ESHRE/ASRM Consensus Statement on infertility in PCOS

	CC	Metfor	Comb
N	209	208	209
Ovulation	49 ¹	29	60 ²
Conception	20 ¹	12	38 ¹
Pregnancy	24 ¹	9	31 ¹
Live birth	23 ¹	7	27 ¹
Multiple	6	0	3

- 1st: CC
- 2nd: Gonadotropins or laparoscopic ovarian sx
- 3rd: IVF
- Metformin: Only in IGT

New advances in infertility treatment Aromatase inhibitors

New advances in infertility treatment—Aromatase inhibitors

Clomiphene

- 2nd- 5th d of the cycle
- -50 mg/d
- 150 mg/d maximum
- 70-90% ovulation
- 30-40% pregnancy
- 6-8% multiple
- 10-30% resistant

Letrozole

- In CC resistant PCOS
- During 3-7 d of cycle
- -2.5 mg/d
- 75% ovulation
- 25% pregnancy

PCOS After Menopause

A 21-Year Controlled Follow-Up Study University of Gothenburg, Sweden

- Anthropometric differences between PCOS and controls diminish: body weight increases in controls, not in PCOS
- Testosterone and DHEAS decrease in both

Update Summary

- Serum AMH is replacing pelvic ultrasound
- Bioavailable testosterone and SHBG are very useful
- OGTT without insulin values is of minimal value
- Controlling both fasting and postprandial hyperinsulinemia is important
- There are new weight loss drugs and infertility management approaches on the horizon