Hypertension 2018

Dena Wilson, MD, FACC
Introduction

• Clinical Consultant for DDTP and CCC for IHS.
• Board certified cardiologist.
Disclosures

• No financial disclosures
Outline

• Hypertension-overview
• 2017 ACC/AHA guidelines
• Evidence behind guidelines
• 2018 ADA HTN SOC
• Case studies
Objectives

• Describe the importance of understanding clinical practice guidelines and application to individual patient treatment.

• Outline a plan for assessing patients for hypertension.

• Integrate the IHS Hypertension Treatment protocol into clinical care.

• Identify one change you can make in your clinical or public health practice.
Evidence Grading System

A

• Clear evidence from well-conducted, generalized RCTs, that are adequately powered, including:
 • Evidence from a well-conducted multicenter trial or meta-analysis that incorporated quality ratings in the analysis;
 • Compelling nonexperimental evidence;
 • Supportive evidence from well-conducted RCTs that are adequately powered

B

• Supportive evidence from a well-conducted cohort studies
• Supportive evidence from a well-conducted case-control study

C

• Supportive evidence from poorly controlled or uncontrolled studies
• Conflicting evidence with the weight of evidence supporting the recommendation

E

• Expert consensus or clinical experience
Applying Class of Recommendation and Level of Evidence to Clinical Strategies, Interventions, or Treatments, or Diagnostic Testing in Patient Care* (Updated August 2015)
• **About 75 million** American adults (32%) have high blood pressure—that’s **1 of every 3** adults.¹

• Only **about half (54%)** of people with high blood pressure have their condition under control.¹

• High blood pressure costs the nation **$48.6 billion each year**. This total includes the cost of health care services, medications to treat high blood pressure, and missed days of work.²

Prevalence of Hypertension Among Adults aged 18 and over, by sex and age: United States, 2015 - 2016

Figure 1. Prevalence of hypertension among adults aged 18 and over, by sex and age: United States, 2015–2016

1Men significantly different from women in the same age group.
2Significant increasing trend by age.

NOTES: Estimates for age group 18 and over are age adjusted by the direct method to the 2000 U.S. Census population using age groups 18–39, 40–59, and 60 and over. Crude estimates for age group 18 and over are 32.1%, total; 31.8%, men; and 32.4%, women. Access data table for Figure 1.

What is Hypertension?

• High blood pressure

• The force exerted against the blood vessels as blood is being pumped from the heart to the body. Cardiac output x total vascular resistance.

• Factors affecting blood pressure include the amount of blood being pumped, the strength of the heart pushing the blood out, the resistance of the vessels carrying the blood, and the width(flow) of the vessels.

• At what number is that “force” considered high?
Pathogenesis of HTN

- Increased sympathetic tone
- Increased cardiac output
- Increased vascular resistance
- Increased renin release
- Increased sodium retention
- Increased water retention
Pathophysiology of Hypertension
Pathogenesis of HTN

Increased cardiac output
- Stress
 - Sympathetic activation
- Hypervolemia
 - Renal artery stenosis
 - Renal disease
 - Hyperaldosteronism
 - Hypersecretion of ADH

Increased systemic vascular resistance
- Atherosclerosis
- Renal artery disease
- Thyroid dysfunction
- Diabetes
 - Endothelial damage
- Stress
 - Sympathetic activation
Guidelines – Which one is right?
Blue and Black?
White and Gold?
Targets for Systolic and Diastolic BP

<table>
<thead>
<tr>
<th>Guideline</th>
<th>SBP target</th>
<th>DBP target</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>JNC 8 (2014)</td>
<td><140mmHg (grade E)</td>
<td><90mmHg (grade E)</td>
<td>SBP target raised b/c “no RCTs have addressed whether treatment to SBP goal <140 compared with a higher goal improved health outcomes in adults with diabetes. DBP target raised b/c “there are no good or fair quality RCTs with mortality as a primary or secondary outcomes that compared a DBP goal of lower than 90 with a lower goal”.</td>
</tr>
<tr>
<td>ADA (2013-2017)</td>
<td><140mmHg (grade A)</td>
<td><90mmHg (grade A)</td>
<td>SBP target raised b/c “the evidence that SBP >140 is harmful is irrefutable but for some patients lower SBP targets closer to 130 are appropriate. DBP target raised b/c “strong evidence from RCT’s supports DBP of <90. Further “a DBP <80 may still be appropriate for pts with long life expectancy, CKD, CVD or additional risk factors.</td>
</tr>
<tr>
<td>Hypertension Canada (2017) and Diabetes Canada (2013)</td>
<td><130mmHg (grade C)</td>
<td><80mmHg (grade A)</td>
<td>SBP target maintained: moving target to <140 may result in an increase in strokes based on the results from ACCORD-BP and meta-analysis of RCT’s DBP target maintained based on the HOT trial and the normotensive ABCD trial.</td>
</tr>
<tr>
<td>European Society of Hypertension (2013)</td>
<td><140mmHg (level A)</td>
<td><85mmHg (level A)</td>
<td>SBP target raised “there is no clear evidence of benefits in general from initiating tx at SBP levels <140 nor is there evidence of benefits from aiming at targets <130”. Supportive evidence against lowering SBP <130 comes from the ACCORD. DBP target raised b/c a “diastolic BP target between 80-85 is supported by the results of the HOT and UKPDS studies”.</td>
</tr>
</tbody>
</table>
2017 ACC/AHA Guidelines
ACC 2017 Summary Table

<table>
<thead>
<tr>
<th>Class</th>
<th>SBP</th>
<th>DBP</th>
<th>10yr ASCVD Risk <10%</th>
<th>10yr ASCVD Risk ≥10%</th>
<th>ASCVD secondary prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td><120 mmHg</td>
<td>and <80 mmHg</td>
<td>Reassess 1 year</td>
<td>Lifestyle modification</td>
<td>Lifestyle modification</td>
</tr>
<tr>
<td>Elevated</td>
<td>120-129 mmHg</td>
<td>and <80 mmHg</td>
<td>Non-pharmacological intervention</td>
<td>Reassess 3-6 months</td>
<td>Non-pharmacological intervention</td>
</tr>
<tr>
<td>Stage 1</td>
<td>130-139 mmHg</td>
<td>or 80-89 mmHg</td>
<td>Non-pharmacological intervention</td>
<td>Medical therapy and Non-pharmacological intervention</td>
<td>Medical therapy and Non-pharmacological intervention</td>
</tr>
<tr>
<td>Stage 2</td>
<td>≥140 mmHg</td>
<td>or ≥90 mmHg</td>
<td>Medical therapy and Non-pharmacological intervention</td>
<td>Medical therapy and Non-pharmacological intervention</td>
<td>Medical therapy and Non-pharmacological intervention</td>
</tr>
</tbody>
</table>
Advance

- RCT, 11,140 pts, 4.3yr follow-up, T2D ages 30-55yr with risk for vascular disease, excluded well-controlled T2D and those on insulin.
- Active drug (indapamide) vs placebo. Active treatment resulted in mean BP of 136/73 vs 140/73.
- Composite endpoints: CV death, nonfatal MI, nonfatal stroke, new or worsening nephropathy or retinopathy.
- 9% RRR in MACE and 14% in total mortality.
- Pts randomized to active drug not different blood pressure goals.
UKPDS-38

- RCT, 1,148 pts with HTN and T2D, 8.4yr follow up,
- Randomized to tight BP target <150/85mmHg vs less tight <180/105mmHg
- Outcomes: first clinical endpoint related to DM, death related to DM, death from all causes
- RRR 24% in DM related endpoints: 32% in DM related deaths: 44% in strokes and 37% in microvascular endpoints.
- Unable to separate SBP and DBP lowering effects.
ACCORD-BP

- RCT 4,733 pts, T2D with A1C ≥7.5; ≥ 40 with CVD or ≥55 with high risk of CVD, 4.7 yr f/u.
- Randomized to intensive therapy SBP <120mmHg vs standard therapy <140mmHg.
- Nonfatal MI, nonfatal stroke or CV death.
- MACE similar in both groups; significant reduction in stroke 41% RRR, HR 0.59 balanced against greater risk of adverse drug events 3.3 vs 1.3.
HOT

• HOT- RCT 1500 T2D with HTN defined as DBP 100-115mmHg, mean f/u 3.8yrs

• Randomized to DBP ≤90mmHg, ≤85mmHg, or ≤80mmHg

• Outcomes: Major CV events, MI, Stroke, CV mortality and total mortality

• Decreased CV risk in diabetic patients with DBP ≤80 vs ≤ 85 vs ≤90

• DBP ≤90 resulted in increased risk of MACE compared to ≤80

• DBP ≤80 led to reduction in CV death compared to ≤85

• HOT: Slightly increased mortality in intensively treated diabetic patients with ischemic heart disease Lancet 1998;351:1755-62 and 1748-1749
SPRINT

- SPRINT- RCT 9361 with SBP ≥130 but WITHOUT T2D
- Median f/u 3.26yrs
- Randomized to 120mmHg vs 140 mmHg
- Lower MACE in intensive treatment group 1.65% vs 2.19%. HR 0.75
- All cause mortality lower in intensive treatment group. HR 0.73
- Rates of adverse events not including injurious falls were higher in intensive treatment group
People Excluded from SPRINT

• Diabetes
• Past stroke
• Clinical diagnosis of dementia, and/or being on dementia medication
• People residing in a nursing home. (Assisted-living was ok.)
• Substance abuse (active or within the past 12 months)
• Symptomatic heart failure within the past 6 months or left ventricular ejection fraction (by any method) < 35%
• Polycystic kidney disease or eGFR < 20
• “Significant history of poor compliance with medications or attendance at clinic visits.”
SPRINT BP Measurements

• Had people sit down and rest for five minutes before checking BP
• Checked BP three times consecutively, using an automated BP monitor (Omron 907)
• Used the average of those three BP measurements to assess the person’s BP and determine whether medications should be adjusted up or down
SPRINT NNT

• During follow-up, 1.65% per year of people in the intensive-treatment group and 2.19% per year of people in the standard-treatment experienced a significant cardiovascular “outcome event”: a heart attack, a stroke, acute decompensated heart failure, or death from cardiovascular causes.

• The study authors calculated that “The numbers needed to treat to prevent a primary outcome event, death from any cause, and death from cardiovascular causes during the median 3.26 years of the trial were 61, 90, and 172, respectively.”
Randomized Controlled Trials of Intensive vs. Standard Hypertension Treatment Strategies

| Table 9.1—Randomized controlled trials of intensive versus standard hypertension treatment strategies |
|--|-----------------|-----------------|-------------------|------------------|
| Clinical trial | Population | Intensive | Standard | Outcomes |
| ACCORD BP (16) | 4,733 participants with T2D aged 40–79 years with prior evidence of CVD or multiple cardiovascular risk factors | Systolic blood pressure target: ≤120 mmHg | Systolic blood pressure target: 130–140 mmHg | • No benefit in primary end point: composite of nonfatal MI, nonfatal stroke, and CVD death |
| | | Achieved (mean) systolic/diastolic: 119.3/64.4 mmHg | Achieved (mean) systolic/diastolic: 133.5/70.5 mmHg | • Stroke risk reduced 41% with intensive control, not sustained through follow-up beyond the period of active treatment |
| | | | | • Adverse events more common in intensive group, particularly elevated serum creatinine and electrolyte abnormalities |
| ADVANCE BP (17) | 11,140 participants with T2D aged 55 years and older with prior evidence of CVD or multiple cardiovascular risk factors | Intervention: a single-pill, fixed-dose combination of perindopril and indapamide | Control: placebo | • Intervention reduced risk of primary composite end point of major macrovascular and microvascular events (9%), death from any cause (14%), and death from CVD (18%) |
| | | Achieved (mean) systolic/diastolic: 136/71 mmHg | Achieved (mean) systolic/diastolic: 141.6/75.2 mmHg | • 6-year observational follow-up found reduction in risk of death in intervention group attenuated but still significant (142) |
| HOT (143) | 18,790 participants, including 1,501 with diabetes | Diastolic blood pressure target: ≤80 mmHg | Diastolic blood pressure target: ≤90 mmHg | • In the overall trial, there was no cardiovascular benefit with more intensive targets |
| | | | | • In the subpopulation with diabetes, an intensive diastolic target was associated with a significantly reduced risk (51%) of CVD events |
| SPRINT (144) | 9,361 participants without diabetes | Systolic blood pressure target: ≤120 mmHg | Systolic blood pressure target: <140 mmHg | • Intensive systolic blood pressure target lowered risk of the primary composite outcome 25% (MI, ACS, stroke, heart failure, and death due to CVD) |
| | | Achieved (mean): 121.4 mmHg | Achieved (mean): 136.2 mmHg | • Intensive target reduced risk of death 27% |
| | | | | • Intensive therapy increased risks of electrolyte abnormalities and AKI |

CVD, cardiovascular disease; T2D, type 2 diabetes. Data from this table can also be found in the ADA position statement “Diabetes and Hypertension” (5).
Guideline Recommendations

• Review 2018 ADA Standards of Care and 2017 ACC/AHA Hypertension guidelines
 • Definition
 • Measurement
 • Lifestyle modification
 • Pharmacological treatment
Definition of High BP

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>Recommendation for Definition of High BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>B-NR</td>
<td>BP should be categorized as normal, elevated, or stage 1 or 2 hypertension to prevent and treat high BP.</td>
</tr>
</tbody>
</table>
Categories of BP in Adults*

<table>
<thead>
<tr>
<th>BP Category</th>
<th>SBP</th>
<th>DBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td><120 mm Hg</td>
<td><80 mm Hg</td>
</tr>
<tr>
<td>Elevated</td>
<td>120–129 mm Hg</td>
<td><80 mm Hg</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1</td>
<td>130–139 mm Hg</td>
<td>80–89 mm Hg</td>
</tr>
<tr>
<td>Stage 2</td>
<td>≥140 mm Hg</td>
<td>≥90 mm Hg</td>
</tr>
</tbody>
</table>

*Individuals with SBP and DBP in 2 categories should be designated to the higher BP category.

BP indicates blood pressure (based on an average of ≥2 careful readings obtained on ≥2 occasions, as detailed in DBP, diastolic blood pressure; and SBP systolic blood pressure.)
BP Goal for Patients With Hypertension

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>Recommendations for BP Goal for Patients With Hypertension</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>SBP: B-R<sup>SR</sup></td>
<td>For adults with confirmed hypertension and known CVD or 10-year ASCVD event risk of 10% or higher a BP target of less than 130/80 mm Hg is recommended.</td>
</tr>
<tr>
<td></td>
<td>DBP: C-EO</td>
<td></td>
</tr>
<tr>
<td>IIb</td>
<td>SBP: B-NR</td>
<td>For adults with confirmed hypertension, without additional markers of increased CVD risk, a BP target of less than 130/80 mm Hg may be reasonable.</td>
</tr>
<tr>
<td></td>
<td>DBP: C-EO</td>
<td></td>
</tr>
</tbody>
</table>

SR indicates systematic review.
Treatment Goals

• Most people with diabetes and hypertension should be treated to a systolic BP goal of <140 mmHg and a diastolic BP goal of <90 mmHg. A

• Lower systolic and diastolic BP targets, such as 130/80 mmHg, may be appropriate for individuals at high risk of CVD, if they can be achieved without undue treatment burden. C

• In pregnant patients with diabetes and preexisting hypertension who are treated with antihypertensive therapy, BP targets of 120-160/80-105 mmHg are suggested in the interest of optimizing long-term maternal health and minimizing impaired fetal growth. E
Accurate Measurement of BP in the Office

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>Recommendation for Accurate Measurement of BP in the Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>C-EO</td>
<td>For diagnosis and management of high BP, proper methods are recommended for accurate measurement and documentation of BP.</td>
</tr>
</tbody>
</table>
Checklist for Accurate Measurement of BP

<table>
<thead>
<tr>
<th>Key Steps for Proper BP Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Properly prepare the patient.</td>
</tr>
<tr>
<td>Step 2: Use proper technique for BP measurements.</td>
</tr>
<tr>
<td>Step 3: Take the proper measurements needed for diagnosis and treatment of elevated BP/hypertension.</td>
</tr>
<tr>
<td>Step 4: Properly document accurate BP readings.</td>
</tr>
<tr>
<td>Step 5: Average the readings.</td>
</tr>
<tr>
<td>Step 6: Provide BP readings to patient.</td>
</tr>
</tbody>
</table>
Selection Criteria for BP Cuff Size for Measurement of BP in Adults

<table>
<thead>
<tr>
<th>Arm Circumference</th>
<th>Usual Cuff Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>22–26 cm</td>
<td>Small adult</td>
</tr>
<tr>
<td>27–34 cm</td>
<td>Adult</td>
</tr>
<tr>
<td>35–44 cm</td>
<td>Large adult</td>
</tr>
<tr>
<td>45–52 cm</td>
<td>Adult thigh</td>
</tr>
</tbody>
</table>
Hypertension/BP Control: Recommendations

Screening and Diagnosis:

• Blood pressure (BP) should be measured at every routine clinical visit. Patients found to have elevated BP (≥140/90) should have BP confirmed using multiple readings, including measurements on a separate day, to diagnose hypertension. B

• All hypertensive patients with diabetes should monitor their BP at home. B

Cardiovascular Disease and Risk Management:
Standards of Medical Care in Diabetes - 2018. Diabetes Care 2018; 41 (Suppl. 1): S86-S104
Recommendation for Out-of-Office and Self-Monitoring of BP

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>Recommendation for Out-of-Office and Self-Monitoring of BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>ASR</td>
<td>Out-of-office BP measurements are recommended to confirm the diagnosis of hypertension and for titration of BP-lowering medication, in conjunction with telehealth counseling or clinical interventions.</td>
</tr>
</tbody>
</table>

SR indicates systematic review.
Hypertension/BP Control: Recommendations (3)

Lifestyle Intervention

• For patients with BP >120/80, lifestyle intervention consists of weight loss if overweight or obese; a Dietary Approaches to Stop Hypertension-style dietary pattern including reducing sodium and increasing potassium intake; moderation of alcohol intake; and increased physical activity. B
Nonpharmacological Interventions

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>Recommendations for Nonpharmacological Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A</td>
<td>Weight loss is recommended to reduce BP in adults with elevated BP or hypertension who are overweight or obese.</td>
</tr>
<tr>
<td>I</td>
<td>A</td>
<td>A heart-healthy diet, such as the DASH (Dietary Approaches to Stop Hypertension) diet, that facilitates achieving a desirable weight is recommended for adults with elevated BP or hypertension.</td>
</tr>
<tr>
<td>I</td>
<td>A</td>
<td>Sodium reduction is recommended for adults with elevated BP or hypertension.</td>
</tr>
<tr>
<td>I</td>
<td>A</td>
<td>Potassium supplementation, preferably in dietary modification, is recommended for adults with elevated BP or hypertension, unless contraindicated by the presence of CKD or use of drugs that reduce potassium excretion.</td>
</tr>
</tbody>
</table>
Nonpharmacological Interventions (cont.)

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>Recommendations for Nonpharmacological Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A</td>
<td>Increased physical activity with a structured exercise program is recommended for adults with elevated BP or hypertension.</td>
</tr>
<tr>
<td>I</td>
<td>A</td>
<td>Adult men and women with elevated BP or hypertension who currently consume alcohol should be advised to drink no more than 2 and 1 standard drinks* per day, respectively.</td>
</tr>
</tbody>
</table>

*In the United States, 1 “standard” drink contains roughly 14 g of pure alcohol, which is typically found in 12 oz of regular beer (usually about 5% alcohol), 5 oz of wine (usually about 12% alcohol), and 1.5 oz of distilled spirits (usually about 40% alcohol).
Best Proven Nonpharmacological Interventions for Prevention and Treatment of Hypertension

<table>
<thead>
<tr>
<th>Nonpharmacological Intervention</th>
<th>Dose</th>
<th>Approximate Impact on SBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight loss</td>
<td>Weight/body fat
Best goal is ideal body weight, but aim for at least a 1-kg reduction in body weight for most adults who are overweight. Expect about 1 mm Hg for every 1-kg reduction in body weight.</td>
<td>Hypertension: -5 mm Hg
Normotension: -2/3 mm Hg</td>
</tr>
<tr>
<td>Healthy diet</td>
<td>DASH dietary pattern
Consume a diet rich in fruits, vegetables, whole grains, and low-fat dairy products, with reduced content of saturated and total fat.</td>
<td>Hypertension: -11 mm Hg
Normotension: -3 mm Hg</td>
</tr>
<tr>
<td>Reduced intake of dietary sodium</td>
<td>Dietary sodium
Optimal goal is <1500 mg/d, but aim for at least a 1000-mg/d reduction in most adults.</td>
<td>Hypertension: -5/6 mm Hg
Normotension: -2/3 mm Hg</td>
</tr>
<tr>
<td>Enhanced intake of dietary potassium</td>
<td>Dietary potassium
Aim for 3500–5000 mg/d, preferably by consumption of a diet rich in potassium.</td>
<td>Hypertension: -4/5 mm Hg
Normotension: -2 mm Hg</td>
</tr>
</tbody>
</table>

Type, dose, and expected impact on BP in adults with a normal BP and with hypertension. DASH indicates Dietary Approaches to Stop Hypertension; and SBP, systolic blood pressure. Resources: Your Guide to Lowering Your Blood Pressure With DASH—How Do I Make the DASH? Available at: https://www.nhlbi.nih.gov/health/resources/heart/hbp-dash-how-to. Top 10 Dash Diet Tips. Available at: http://dashdiet.org/dash_diet_tips.asp
Best Proven Nonpharmacological Interventions for Prevention and Treatment of Hypertension* (cont.)

<table>
<thead>
<tr>
<th>Nonpharmacological Intervention</th>
<th>Dose</th>
<th>Approximate Impact on SBP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hypertension</td>
</tr>
<tr>
<td>Physical activity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Aerobic | ● 90–150 min/wk
 ● 65%–75% heart rate reserve | -5/8 mm Hg | -2/4 mm Hg |
| Dynamic resistance | ● 90–150 min/wk
 ● 50%–80% 1 rep maximum
 ● 6 exercises, 3 sets/exercise, 10 repetitions/set | -4 mm Hg | -2 mm Hg |
| Isometric resistance | ● 4 × 2 min (hand grip), 1 min rest between exercises, 30%–40% maximum voluntary contraction, 3 sessions/wk
 ● 8–10 wk | -5 mm Hg | -4 mm Hg |
| Moderation in alcohol intake | Alcohol consumption
 In individuals who drink alcohol, reduce alcohol† to:
 ● Men: ≤2 drinks daily
 ● Women: ≤1 drink daily | -4 mm Hg | -3 mm |

*Type, dose, and expected impact on BP in adults with a normal BP and with hypertension.
†In the United States, one “standard” drink contains roughly 14 g of pure alcohol, which is typically found in 12 oz of regular beer (usually about 5% alcohol), 5 oz of wine (usually about 12% alcohol), and 1.5 oz of distilled spirits (usually about 40% alcohol).
Choice of Initial Medication

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>Recommendation for Choice of Initial Medication</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A^{SR}</td>
<td>For initiation of antihypertensive drug therapy, first-line agents include thiazide diuretics, CCBs, and ACE inhibitors or ARBs.</td>
</tr>
</tbody>
</table>

SR indicates systematic review.
Pharmacologic Interventions

• Treatment for hypertension should include drug classes demonstrated to reduce CV events in patients with diabetes: A
 • ACE Inhibitors
 • Angiotensin receptor blockers (ARBs)
 • Thiazide-like diuretics
 • Dihydropyridine calcium channel blockers

Cardiovascular Disease and Risk Management:
Standards of Medical Care in Diabetes - 2018. Diabetes Care 2018; 41 (Suppl. 1): S86-S104
Choice of Initial Monotherapy Versus Initial Combination Drug Therapy

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>Recommendations for Choice of Initial Monotherapy Versus Initial Combination Drug Therapy*</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>C-EO</td>
<td>Initiation of antihypertensive drug therapy with 2 first-line agents of different classes, either as separate agents or in a fixed-dose combination, is recommended in adults with stage 2 hypertension and an average BP more than 20/10 mm Hg above their BP target.</td>
</tr>
<tr>
<td>IIA</td>
<td>C-EO</td>
<td>Initiation of antihypertensive drug therapy with a single antihypertensive drug is reasonable in adults with stage 1 hypertension and BP goal <130/80 mm Hg with dosage titration and sequential addition of other agents to achieve the BP target.</td>
</tr>
</tbody>
</table>
Hypertension/BP Control: Recommendations (4)

Pharmacologic Interventions

• Patients with confirmed office-based blood pressure ≥140/90 mmHg should, in addition to lifestyle therapy, have prompt initiation and timely titration of pharmacologic therapy to achieve BP goals. A

• Patients with confirmed office-based blood pressure ≥160/100 mmHg should, in addition to lifestyle therapy, have prompt initiation and timely titration of two drugs or a single-pill combination of drugs demonstrated to reduce CV events in patients with diabetes. A

Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes - 2018. Diabetes Care 2018; 41 (Suppl. 1): S86-S104
Pharmacologic Interventions

• Multiple-drug therapy is generally required to achieve BP targets. However, combinations of ACE inhibitors and ARBs and combinations of ACE inhibitors or ARBs with direct renin inhibitors should not be used. A
Diabetes Mellitus

Recommendations for Treatment of Hypertension in Patients With DM

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>Recommendations for Treatment of Hypertension in Patients With DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>SBP: B-RSR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBP: C-EO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In adults with DM and hypertension, antihypertensive drug treatment should be initiated at a BP of 130/80 mm Hg or higher with a treatment goal of less than 130/80 mm Hg.</td>
</tr>
<tr>
<td>I</td>
<td>ASR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In adults with DM and hypertension, all first-line classes of antihypertensive agents (i.e., diuretics, ACE inhibitors, ARBs, and CCBs) are useful and effective.</td>
</tr>
<tr>
<td>IIb</td>
<td>B-NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In adults with DM and hypertension, ACE inhibitors or ARBs may be considered in the presence of albuminuria.</td>
</tr>
</tbody>
</table>

SR indicates systematic review.
Pharmacologic Interventions

• An ACE inhibitor or ARB, at the maximumly tolerated dose indicated for BP treatment, is the recommended first-line treatment for hypertension in patients with diabetes and urinary albumin-to-creatinine ratio ≥300 mg/g creatinine A or 30-299 mg/g creatinine B. If one class is not tolerated, the other should be substituted. B

• For patients treated with an ACE inhibitor, ARB, or diuretic, serum creatinine/estimated glomerular filtrated rate and serum potassium levels should be monitored at least annually. B

Cardiovascular Disease and Risk Management:
Standards of Medical Care in Diabetes - 2018. Diabetes Care 2018; 41 (Suppl. 1): S86-S104
Resistant Hypertension: Diagnosis, Evaluation, and Treatment

Figure 10. Resistant Hypertension: Diagnosis, Evaluation, and Treatment

Confirm treatment resistance
Office SBP/DBP ≥130/80 mm Hg
and
Patient prescribed ≥3 antihypertensive medications at optimal doses, including a diuretic, if possible
or
Office SBP/DBP <130/80 mm Hg but patient requires ≥4 antihypertensive medications

Exclude pseudoresistance
Ensure accurate office BP measurements
Assess for nonadherence with prescribed regimen
Obtain home, work, or ambulatory BP readings to exclude white coat effect

Identify and reverse contributing lifestyle factors

Discontinue or minimize interfering substances

Screen for secondary causes of hypertension

Pharmacological treatment
Maximize diuretic therapy
Add a mineralocorticoid receptor antagonist
Add other agents with different mechanisms of actions
Use loop diuretics in patients with CKD
and/or patients receiving potent vasodilators (e.g., minoxidil)

Refer to specialist

BP indicates blood pressure; CKD, chronic kidney disease; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; NSAIDs, nonsteroidal anti-inflammatory drugs; and SBP, systolic blood pressure. Adapted with permission from Calhoun et al.
Resistant Hypertension

• Patients with hypertension who are not meeting BP targets on three classes of antihypertensive medications (including a diuretic) should be considered for mineralocorticoid receptor antagonist therapy. A
Case 1

• 43 yo female with newly diagnosed T2D for routine f/u. No complaints.
• PMHX: Gestational DM, Asthma
• PSHX: Appy, C-section
• FHX: Father had high blood pressure and heart problems died age 60. Mother has heart problems and T2D.
• SHX: Works as a cashier. Drinks ETOH on weekends. Smokes tobacco when she drinks ETOH. No drugs. No routine exercise.
Case 1

• Meds: Metformin 500mg BID, Simvastatin 40mg daily, Calcium supplement

• Allergies: PCN

• PE: Height-5’5” Weight-180lbs BMI- 30 BP: 145/89 P: 82

• Exam: unremarkable

• Labs: HbA1C: 6.8 previous 7.3, TC 180, HDL 45, LDL 135, all other labs within normal limits

• CVD Risk is 7.3% based on ASCVD risk calculator
What would you do?

• Initiate non-pharmacologic therapy and medical therapy.
• Reassess 1 month and optimize as needed.
Case 1

• BP 135/80
• CVD risk is now 6.3%
• What do you do now?
• Manage with non-pharmacologic therapy and reassess 3-6 mos
Case 1

• Lipid profile: TC 230, HDL 40, LDL 180
• BP 135/80
• CVD risk is 11.8%
• What now?
Case 1

• Initiate combination of non-pharmacologic therapy and medical therapy with follow up in 1 month.
• Consider increase in statin
CVD Risk Factors Common in Patients With Hypertension

<table>
<thead>
<tr>
<th>Modifiable Risk Factors*</th>
<th>Relatively Fixed Risk Factors†</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Current cigarette smoking, secondhand smoking</td>
<td>• CKD</td>
</tr>
<tr>
<td>• Diabetes mellitus</td>
<td>• Family history</td>
</tr>
<tr>
<td>• Dyslipidemia/hypercholesterolemia</td>
<td>• Increased age</td>
</tr>
<tr>
<td>• Overweight/obesity</td>
<td>• Low socioeconomic/educational status</td>
</tr>
<tr>
<td>• Physical inactivity/low fitness</td>
<td>• Male sex</td>
</tr>
<tr>
<td>• Unhealthy diet</td>
<td>• Obstructive sleep apnea</td>
</tr>
</tbody>
</table>

*Factors that can be changed and, if changed, may reduce CVD risk.
†Factors that are difficult to change (CKD, low socioeconomic/educational status, obstructive sleep apnea, cannot be changed (family history, increased age, male sex), or, if changed through the use of current intervention techniques, may not reduce CVD risk (psychosocial stress).

CKD indicates chronic kidney disease; and CVD, cardiovascular disease.
Case 2

• 69 yo male with T2D presents for routine evaluation. c/o “not feeling good”. Pain in knees and arms.
• PHX: HTN, CKD stage 2, COPD, BPH, Osteoarthritis
• PSHX: TKR x 2, hernia repair
• FHX: Mother and Father both deceased. “they had it all”
• SHX: Retired mechanic, lives alone near his son and daughter, stopped smoking age 49. Walks “as much as I can”. No routine exercise.
Case 2

• Meds: Metformin 1000mg BID, Glipizide 10mg BID, ASA 81mg daily, Lisinopril 20mg BID, Atorvastatin 80mg daily, tamsulosin, tiotropium, albuterol, fluticasone

• PE: HT 5’8”, WT 220lbs, BMI 33.4, BP 137/89, P 58

• Exam: unremarkable

• Labs: GFR 60, HbA1C 8.9, TC 120, HDL 35, LDL 65

• CVD risk is 35.8%
Case 2

• What do you do?
Assessing Blood Pressure

Obtain Appropriate Blood Pressure (BP) Measurement
- 5 minutes of sitting with both feet on the floor and back supported
- Support the arm at heart level
- Ensure correct cuff size
- Do not talk immediately before or during measurement
- Measure BP in both arms

Confirm Blood Pressure Measurements
- Obtain ≥2 readings on ≥2 visits
- Consider ambulatory* or home blood pressure monitoring (HBPM)
- If using HBPM, ensure patient is instructed on proper technique

Exclude white coat hypertension or masked hypertension
- Suspect white coat HTN IF:
 - SBP >140 and <160 or
 - DBP >90 or <100 or
 - Clinic BP readings are ≥5-10 mmHg above goal on ≥3 agents
- Suspect masked HTN IF:
 - SBP 130-140 or DBP 85-90 and high clinic suspicion (e.g. LVH on ECG, CKD, etc.)
Treatment Target Options

Factors to Consider

<table>
<thead>
<tr>
<th>Consider <130/80</th>
<th><140/90</th>
<th>Consider <150/90</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Younger</td>
<td>• MOST PATIENTS</td>
<td>• Older</td>
</tr>
<tr>
<td>• Healthier</td>
<td></td>
<td>• Multiple advanced comorbidities</td>
</tr>
<tr>
<td>• Low risk for hypotension</td>
<td></td>
<td>• High risk for hypotension</td>
</tr>
<tr>
<td>• Higher cardiovascular disease risk*</td>
<td></td>
<td>• Polypharmacy</td>
</tr>
<tr>
<td>• Target is achievable without burdensome side effects</td>
<td></td>
<td>• Lower targets are unachievable due to side effects</td>
</tr>
</tbody>
</table>

High CVD risk is a 10-year atherosclerotic cardiovascular event risk of 10% or higher based on the 2013 ACC/AHA pooled cohort equation risk calculator.
Hypertension Therapy in Type 2 Diabetes

Therapeutic Lifestyle Changes

First-Line Medication Classes

ACEI: Lisinopril or, ARB: Losartan
Diuretic: HCTZ, Chlorothiazide
Calcium Channel Blocker: Diltiazem, Amlodipine, Nifedipine

Consider ACEI or ARB as initial medication for patients with Chronic Kidney Disease. Do not use an ACE inhibitor and ARB together in the same patient.

If BP not at goal in one month, consider titrating dose up and/or adding medication from a different class above. Utilize these 3 classes before considering additional medication classes.

Consider Additional Medication Classes
If BP not at goal or unable to tolerate the first-line medication classes above, consider adding medications from additional drug classes. Base selection on individual patient indications.

Mineralocorticoid: Spironolactone
Beta Blocker: Metoprolol, Atenolol
Alpha Blocker: Prazosin, Doxazosin
Summary

• Individualize patient treatment

• Confirm accurate blood pressure measurements, especially if starting or changing medications.

• Use home blood pressure monitoring when possible
Questions?
Thank you!