

RESOURCE AND PATIENT MANAGEMENT SYSTEM

Ensemble Programming Standards
and Conventions

Version 1.0
September 2010

Office of Information Technology (OIT)
Division of Information Resource Management

Albuquerque, New Mexico

Ensemble Programming Standards and Conventions Version 1.0

September 2010 <Table of Contents

ii

Table of Contents

Table of Contents .. ii

1.0 Purpose, Policy, and Standards and Conventions ... 1

1.1 Purpose ... 1

1.2 Policy ... 1

1.2.1 Conformance ... 1

2.0 Cache Programming Standards and Conventions ... 2

2.1 Document Definitions ... 2

2.1.1 Camel Case .. 2

2.1.2 K&R-Style Indentation ... 2

2.2 Class Structure and Format ... 3

2.2.1 First Line .. 3

2.2.2 Second Line ... 3

2.2.3 Third Line... 3

2.2.4 Fourth Line .. 3

2.2.5 Parameters Section ... 3

2.2.6 Properties Section ... 4

2.2.7 Indices Section .. 4

2.2.8 Methods Section ... 5

2.2.9 Comments ... 5

2.2.10 ProcedureBlock ... 5

2.3 Name Requirements ... 6

2.3.1 Packages .. 6

2.3.2 Classes ... 6

2.3.3 Declarations .. 6

2.3.4 Parameters .. 6

2.3.5 Properties .. 6

2.3.6 Indices ... 6

2.3.7 Methods .. 6

2.3.8 Variables .. 6

Ensemble Programming Standards and Conventions Version 1.0

September 2010 <Table of Contents

iii

2.4 Classes ... 7

2.4.1 Use .. 7

2.4.2 Distribution ... 7

2.4.3 Deleting Objects .. 7

2.4.4 Persistence and Instantiation ... 7

2.4.5 Source Code .. 7

2.4.6 Storage Strategy .. 7

2.4.7 Transaction Processing ... 8

2.4.8 Web Service .. 8

2.5 Cache ObjectScript .. 8

2.5.1 Abbreviations .. 8

2.5.2 Commands per Line .. 8

2.5.3 Comments ... 8

2.5.4 Dot Structure ... 9

2.5.5 For ... 9

2.5.6 If/Else .. 9

2.5.7 Indirection ... 9

2.5.8 Kill .. 9

2.5.9 Logical Operators .. 9

2.5.10 New ... 9

2.5.11 Streams ... 10

2.5.12 % Variables .. 10

2.5.13 White Space .. 10

2.5.14 Xecute ... 10

2.5.15 $Zutil ... 10

3.0 Ensemble Programming Standards and Conventions ... 11

3.1 Name Requirements ... 11

3.1.1 Classes ... 11

3.2 Business Processes .. 11

3.2.1 BPL ... 11

3.2.2 <code> ... 11

3.2.3 <sequence> ... 11

Ensemble Programming Standards and Conventions Version 1.0

September 2010 <Table of Contents

iv

3.3 Data Transformations ... 11

3.3.1 DTL .. 11

3.3.2 <code> ... 12

Ensemble Programming Standards and Conventions Version 1.0

September 2010 Purpose, Policy, and Standards and Conventions

1

1.0 Purpose, Policy, and Standards and
Conventions

1.1 Purpose
The purpose of this document is to provide a set of standards and conventions for
Cache and Ensemble development. It assumes an understanding of and compliance
with object-oriented programming practices.

There are many books and Web sites available that provide object-oriented design
and programming information, including Oracle’s guide at
http://download.oracle.com/javase/tutorial/java/concepts/index.html for object-
oriented programming concepts and the Corelinux Consortium’s document at
http://www.literateprogramming.com/oostnd.pdf for object-oriented design
principles.

1.2 Policy

1.2.1 Conformance
All Cache and Ensemble software developed for the Indian Health Service (IHS) will
conform to the Ensemble Standards and Conventions. In areas where standards are
not specified, software development will conform to other applicable IHS
programming standards and conventions and industry standards.

http://download.oracle.com/javase/tutorial/java/concepts/index.html�
http://www.literateprogramming.com/oostnd.pdf�

Ensemble Programming Standards and Conventions Version 1.0

September 2010 Cache Programming Standards and Conventions

2

2.0 Cache Programming Standards and
Conventions
All Cache-based IHS software will meet the following standards and comply with the
spirit of the conventions.

2.1 Document Definitions

2.1.1 Camel Case
Style of writing in which multiple words are joined without spaces and the initial
letter of each word is capitalized while the other letters are in lower case. In upper
camel case, the first letter of the compound word is capitalized, e.g.
UpperCamelCase. In lower camel case, the first letter of the compound word is lower
case, e.g. lowerCamelCase.

2.1.2 K&R-Style Indentation
Indentation style in which the opening brace of a conditional or loop block is on the
same line as the control statement and the closing brace is on its own line at the same
level of indentation as the control statement. For example:

if (x=0) {

 // One or more indented commands

}

The opening brace following a declaration is on its own line at the same level of
indentation as the declaration. For example:

ClassMethod GetAge(DOB As %Date) As %Integer

{

 // One or more indented commands

}

Ensemble Programming Standards and Conventions Version 1.0

September 2010 Cache Programming Standards and Conventions

3

2.2 Class Structure and Format

2.2.1 First Line
The first line of a class definition contains a comment describing the class, its
purpose, and its use. Any markup required for clarity should use standard HyperText
Markup Language (HTML) tags.

2.2.2 Second Line
The second line of a class definition contains the class declaration, which has the
following format:

Class (package).(classname) Extends (parent-classes) [(class-keywords)]

Where

(package).(classname) is the full name of the class

Extends (parent-classes) defines the class inheritance. It is optional for classes
consisting of only utility methods.

(class-keywords) are any keywords defining the class, such as ProcedureBlock.

2.2.3 Third Line
The third line of a class definition consists of the opening brace (“{“). There are no
other characters on this line.

2.2.4 Fourth Line
The fourth line of a class definition is a blank line.

2.2.5 Parameters Section
Beginning on the fifth line of a class definition is the optional parameters section. The
parameters section consists of zero or more class parameter declarations, separated by
a blank line. Comments are optional but should be included for custom parameters or
in other instances where the parameter’s use is not obvious. Each parameter
declaration has the following format:

/// Optional comment

Parameter (parameter-name) As (type) = “(value)”;

where:

(parameter-name) is the name of the parameter. Parameter names are in uppercase;

Ensemble Programming Standards and Conventions Version 1.0

September 2010 Cache Programming Standards and Conventions

4

As (type) is the optional type declaration for the parameter;

(value) is the value assigned to the parameter.

There is a blank line between the parameters section and the subsequent section.

2.2.6 Properties Section
Following the parameters section in a class definition is the optional properties
section. The properties section consists of zero or more property declarations,
separated by a blank line. Comments are optional but should be included for custom
parameters or in other instances where the parameter’s use is not obvious. Each
property declaration has the following format:

/// Optional comment

Property (property-name) As (type) [(property-parameters)];

where:

(property-name) is the name of the property in upper camel case (mixed case with a
capital first letter);

As (type) is the optional type declaration;

[(property-parameters)] is an optional declaration of the property’s parameters.

There is a blank line between the properties section and the subsequent section.

2.2.6.1 Relationship Properties
Relationship properties are included in the properties section along with the other
properties. They may be grouped together for clarity.

2.2.7 Indices Section
Following the properties section in a class definition is the optional indices section.
The indices section consists of zero or more index declarations, separated by a blank
line. Comments are optional. Each index declaration has the following format:

/// Optional comment.

Index (name) On (property-list) [(index-parameters)]

where:

(name) is the name of the index in upper camel case, suffixed with “IDX” in
uppercase.

Ensemble Programming Standards and Conventions Version 1.0

September 2010 Cache Programming Standards and Conventions

5

2.2.8 Methods Section
Following the properties section in a class definition is the optional methods section.
The methods section consists of zero or more method definitions, separated by a
blank line. Each method definition has the following format:

/// Optional comment.

(method-type) (name) (parameters) As (return type) [(method-parameters)] {

 (method-code)

}

where:

(method-type) is either ClassMethod or Method, depending on the type of method
being defined;

(name) is the name of the method in upper camel case;

(parameters) is the list of any parameters for the method;

(return type) defines the type of value returned by the method;

(method-parameters) defines any method parameters for the method;

(method-code) is the code for method.

The opening brace (“{“) for the method is on the same line as the method declaration,
preceded by a space. The closing brace (“}”) is on its own line.

2.2.9 Comments
A comment preceding a class, parameter, property, index, or method declaration
consists of three slashes and a space, followed by the comment. Any markup should
use standard HTML tags. For example:

/// Number of seconds to wait for the document to be generated before returning an
error.
Parameter DOCUMENTTIMEOUT = 60;

2.2.10 ProcedureBlock
Classes must use the ProcedureBlock keyword except when its omission is required
for backwards compatibility.

Ensemble Programming Standards and Conventions Version 1.0

September 2010 Cache Programming Standards and Conventions

6

2.3 Name Requirements

2.3.1 Packages
The first level of the package name for classes must be the namespace assigned to the
project. Subsequent levels of the package name shall be used to group classes into
functional groups within the project. The first level (namespace) is in uppercase, and
the subsequent levels are in upper camel case. Package names must be meaningful
and concise.

2.3.2 Classes
Class names must be meaningful and concise. Classes that represent an item should
be in the singular, e.g. BCDE.Admit.Patient, not BCDE.Admit.Patients.

2.3.3 Declarations
Parameter, Property, Index, Method, ClassMethod, and other declaration keywords
are in upper camel case.

2.3.4 Parameters
Parameter names are in all uppercase.

2.3.5 Properties
Property names are in upper camel case. The name should represent a thing or a flag.

2.3.6 Indices
Index names are in upper camel case and have the suffix “Idx”. The name should
summarize the fields being indexed.

2.3.7 Methods
Method names are in upper camel case and may be no longer than 31 characters. The
name should describe the action the method performs, e.g. GetAge(). The name of a
method that returns a Boolean should express an assertion, e.g. IsMinor().

2.3.8 Variables
Variable names are in lower camel case and may be no longer than 31 characters.
Nondescriptive variable names, such as x, i, and obj, may be used only over a small
section of code. Variables used over a longer section of code must be given
meaningful names.

Ensemble Programming Standards and Conventions Version 1.0

September 2010 Cache Programming Standards and Conventions

7

2.4 Classes

2.4.1 Use
Classes, properties, and methods should be used instead of routines, globals, and
functions whenever possible. Routines should be used only when necessary for
compatibility. Globals should not be used directly, except when using process-private
globals for sorting.

2.4.2 Distribution
Classes should be distributed using the class distribution software in conjunction with
proper package mapping. See the class distribution documentation for more
information.

2.4.3 Deleting Objects
The methods for deleting objects, such as %Delete() and %DeleteExtent(), should
normally be called with “0” for the concurrency parameter. Calling these methods
with the default concurrency values causes a large number of locks to be taken out,
potentially filling up the lock table.

2.4.4 Persistence and Instantiation
A class must not extend %Persistent or any other persistent class unless it is necessary
for its objects to be persisted. A class that is not intended to be instantiated, such as a
class of utility methods, must not extend %RegisteredObject.

2.4.5 Source Code
The “k” (“keep source”) flag should be used when importing or compiling classes to
retain the source code.

2.4.6 Storage Strategy
The default storage strategy for a class should not be overridden without good reason.
The “SQL Storage” strategy should not be used unless mapping a persistent class to a
pre-existing global structure.

Ensemble Programming Standards and Conventions Version 1.0

September 2010 Cache Programming Standards and Conventions

8

2.4.7 Transaction Processing
By default, the %Save() method of a persistent class uses transaction processing,
which will enable journaling even if journaling is disabled. This behavior may be
overridden in Cache/Ensemble version 2010.1 or later by doing
$System.OBJ.SetTransactionMode(0). In versions prior to 2010.1, the command is do
$$SetTransactionMode^%apiOBJ(0). The use of ^%apiOBJ is deprecated in version
2010.1 and later and must be replaced with the $System.OBJ call, as ^%apiOBJ may
be changed or removed without warning.

2.4.8 Web Service
A web service class should specify a LOCATION parameter for use when generating
a WSDL via the FileWSDL() method. When not generating a WSDL, the parameter
must be commented out.

A web service class must set the USECLASSNAMESPACES parameter to 1 unless it
is required to be set to 0 for backwards compatibility. The SOAPSESSION parameter
must be set to 0 unless the use of session headers is required.

2.5 Cache ObjectScript

2.5.1 Abbreviations
Abbreviated commands may not be used. The full name of the command must be
used. Intrinsic functions and system variables may be abbreviated.

2.5.2 Commands per Line
There should be only one command per line. Commands with multiple related
arguments are permitted, e.g. set x=0, y=1.

2.5.3 Comments
Comments should be indicated by “//” unless a special comment indicator is needed,
such as “/// “ for class documentation, “#;” for comments to be removed from
generated .INT routines, or “;;” for comments to be retained in object code for use by
the $text function.

Code that is commented out but is to be retained must have a comment documenting
the purpose of the code and how it is to be used. For example, the LOCATION
parameter in a Web service must not be present except when generating a Web
Service Definition Language (WSDL) via the FileWSDL() method. The parameter
must have a comment indicating that the parameter is to be uncommented when
generating a WSDL.

Ensemble Programming Standards and Conventions Version 1.0

September 2010 Cache Programming Standards and Conventions

9

2.5.4 Dot Structure
The argumentless do command followed by a “dot” structure is deprecated. Braces
(“{ }”) should be used instead.

2.5.5 For
Code executed within a for loop must be enclosed in braces (“{ }”). While loops
should be used in place of argumentless for loops. When the braces enclose a single
command, the entire for command, including braces may be on one line. Otherwise,
the opening brace is on the same line as the for command, and the closing brace is on
its own line at the same level of indentation as the associated for command.

2.5.6 If/Else
Code executed conditionally after if or else must be enclosed in braces (“{ }”). When
the braces enclose a single command, the entire if or else command, including braces
may be on one line. Otherwise, the opening brace is on the same line as the if or else
command, and the closing brace is on its own line at the same level of indentation as
the associated if or else command. else must appear on a separate line from any
preceding closing brace.

2.5.7 Indirection
Indirection must not be used to get or set an object property. Because variables in
indirection are scoped outside of the method, care must be exercised when using
indirection to ensure the desired functionality is achieved.

2.5.8 Kill
Killing of local variables is generally not required and should not be used unless
necessary, such as when killing an OREF before reloading the object in order to get
an updated instance.

2.5.9 Logical Operators
The “&&” and “||” operators must be used for “and” and “or” unless there is a
specific need to use the “&” and “|” operators.

2.5.10 New
The new command must not be used.

Ensemble Programming Standards and Conventions Version 1.0

September 2010 Cache Programming Standards and Conventions

10

2.5.11 Streams
The classes %FileBinaryStream, %FileCharacterStream, %GlobalBinaryStream, and
%GlobalCharacterStream are deprecated. %Stream.FileBinary,
%Stream.FileCharacter, %Stream.GlobalBinary, and %Stream.GlobalCharacter
should be used instead.

2.5.12 % Variables
% variables may be used only for system-wide variables that must persist beyond a
given procedure block.

2.5.13 White Space
Blank lines should be used to clarify code by grouping related commands together.
Two or more consecutive blank lines should not be used. Indentation must be
consistent to assist the reader in identifying the code structure.

2.5.14 Xecute
Because variables in an xecute command are scoped outside of the method, care must
be exercised when using the xecute command to ensure the desired functionality is
achieved.

2.5.15 $Zutil
$Zutil must not be used when there are higher-level methods to perform the same
functionality, such as ##class(%File).DirectoryExists() instead of $zutil(140,4). All
other uses of $zutil require SACC approval.

Ensemble Programming Standards and Conventions Version 1.0

September 2010 Ensemble Programming Standards and Conventions

11

3.0 Ensemble Programming Standards and
Conventions

3.1 Name Requirements

3.1.1 Classes
Name conventions for Ensemble business hosts should follow the same conventions
as other Cache classes, except for appending a suffix indicating the host type.
Business services must end in “BS”, business processes in “BP”, business operations
in “BO”, and data transformations in “DTL”, unless the business host type is
indicated in the package name. For example, BCDE.Prod.FileDocumentBO requires a
suffix, while BCDE.Prod.Operations.FileDocument does not.

3.2 Business Processes

3.2.1 BPL
Business processes should use BPL instead Cache ObjectScript-based classes unless
the requirements of the business process make it prohibitively difficult to do so.

3.2.2 <code>
Each <code> activity must perform a single logical action. If a <code> activity’s
action cannot be easily summarized, it should be divided into multiple <code>
activities, each representing a single logical action.

3.2.3 <sequence>
<sequence> blocks should be used to group multiple activities that constitute a logical
action in order to make the diagram easier to follow and maintain.

3.3 Data Transformations

3.3.1 DTL
Data transformations should use DTL instead of Cache ObjectScript-based classes
unless the requirements of the data transformation make it prohibitively difficult to do
so.

Ensemble Programming Standards and Conventions Version 1.0

September 2010 Ensemble Programming Standards and Conventions

12

3.3.2 <code>
 <code> elements should be used for small sections of Cache ObjectScript. A large
block of Cache ObjectScript logic should be placed in a method and called from a
<code> element.

	1.0 Purpose, Policy, and Standards and Conventions
	1.1 Purpose
	1.2 Policy
	1.2.1 Conformance

	2.0 Cache Programming Standards and Conventions
	2.1 Document Definitions
	2.1.1 Camel Case
	2.1.2 K&R-Style Indentation

	2.2 Class Structure and Format
	2.2.1 First Line
	2.2.2 Second Line
	2.2.3 Third Line
	2.2.4 Fourth Line
	2.2.5 Parameters Section
	2.2.6 Properties Section
	2.2.6.1 Relationship Properties

	2.2.7 Indices Section
	2.2.8 Methods Section
	2.2.9 Comments
	2.2.10 ProcedureBlock

	2.3 Name Requirements
	2.3.1 Packages
	2.3.2 Classes
	2.3.3 Declarations
	2.3.4 Parameters
	2.3.5 Properties
	2.3.6 Indices
	2.3.7 Methods
	2.3.8 Variables

	2.4 Classes
	2.4.1 Use
	2.4.2 Distribution
	2.4.3 Deleting Objects
	2.4.4 Persistence and Instantiation
	2.4.5 Source Code
	2.4.6 Storage Strategy
	2.4.7 Transaction Processing
	2.4.8 Web Service

	2.5 Cache ObjectScript
	2.5.1 Abbreviations
	2.5.2 Commands per Line
	2.5.3 Comments
	2.5.4 Dot Structure
	2.5.5 For
	2.5.6 If/Else
	2.5.7 Indirection
	2.5.8 Kill
	2.5.9 Logical Operators
	2.5.10 New
	2.5.11 Streams
	2.5.12 % Variables
	2.5.13 White Space
	2.5.14 Xecute
	2.5.15 $Zutil

	3.0 Ensemble Programming Standards and Conventions
	3.1 Name Requirements
	3.1.1 Classes

	3.2 Business Processes
	3.2.1 BPL
	3.2.2 <code>
	3.2.3 <sequence>

	3.3 Data Transformations
	3.3.1 DTL
	3.3.2 <code>

