Simple To Advanced Approaches To Carbohydrate Counting
 March 8 ${ }^{\text {th }}, 2023$

Kibbe Brown MS, RD
LCDR U.S. Public Health Service
Nutrition Consultant
IHS - Division of Diabetes Treatment and Prevention
Wendy Castle, MPH, RD, LD, CDCES
Clinical Training Coordinator
IHS - Division of Diabetes Treatment and Prevention
The Hill Group Contractor

Learner Objectives

1. Examine visual cues to identify, count and balance carbohydrates in meals as a vital tool for diabetes management.
2. Educate clients to identify carbohydrates and carb content of foods.
3. Describe how to calculate insulin dosage based on the amount of carbohydrate that
is consumed at a meal.

Health Education - Tailored Approaches

According to the ADCES, education content should be adapted to meet individuals' needs, accounting for:

- Age
- Developmental stage
- Type of diabetes
- Cultural factors
- Health literacy and numeracy
- Access to healthful food
- Comorbidities

Carb Counting Continuum

Carb Awareness -

Learning foods with Carbs

Basic -

Counting Carbs with
Meals/Snack

Advanced -

Carb to Insulin
Ratios

End Goal - Glycemic Control

The Case for Carbohydrate Counting

- Has been used since insulin discovered.
- Gained in popularity since the Diabetes Control \& Complication Trial (DCCT) 1993
- Priority to achieve and maintain glycemic control \downarrow Morbidity/Mortality
- Improved post prandial (pp) glucose control.
- The quantity and type of carb intake are major determinants of pp glucose
- Allows people to match their dose of insulin to a set amount of carbohydrate to consume.

Consensus Report on Nutrition

"Strong evidence supports the efficacy and cost effectiveness of nutrition therapy as a component of diabetes care, including it's integration into the medical management of diabetes".

https://doi.org/10.2337/dci19-0014
Nutrition Therapy for Adults with Diabetes, Pre- diabetes, Diabetes Care 4-2019

Class Education Process

Assessing Knowledge of Carbs

Questions to ask:

- What are the foods/food groups that contain carbs?
- What are the foods/food groups that contain no or few carbs?
- What are some foods with carbs that you eat?
- What are some foods with carbs that were eaten long ago?

Assemble - Food Visuals

Foods with carbs:
Organize images into groups:

- Grains: whole grains and highly processed grains
- Starchy vegetables: corn, beans, potatoes, hard shelled squash
- Fruit
- Dairy foods: milk, yogurt

Have visuals of sample plates

NASCO Food Models: www.enasco.com/nutriton

CDC Diabetes Plate

Basic Ideas About Carbs

- Carbs are sugars, starches, and fibers in foods
- Carbs give your body energy and raise glucose
- Carbs + Insulin (in your body) correlate to blood sugar levels
- Include some carbs with meals and snacks
- Have consistent times for meals and snacks

Traditional Growing System - Milpa

Corn, Beans, and Squash "The Three Sisters"

Crops domesticated by ancestors of American Indians and the backbone of agrarian tribes food systems.

- Corn - rich in carbs
- Beans - protein, carbs
- Squash - carbs, seed oils and antioxidant vitamins

Indian Health Service
Division of Diabetes Treatment and Prevention

Mann, Charles (2005). 1491: New Revelations of the Americas Before Columbus. New York: Vintage Books. pp 197-198

Beans and Starchy Veggies

Beans - $1 \frac{1}{2}$ cups/week

Starchy Vegetables - 5 cups/week

Glycemic Index (glucose = 100)	
Corn tortilla	46 ± 4
Sweet corn	52 ± 5
Pinto beans, boiled	30
Ontario potato, white, baked	60
Wild rice	55

Glycemic Index looks at the glycemic response to a fixed amount of carbohydrate in a food (50 grams). This response is compared against the response of a reference food, glucose or white bread.

Introduce Grains - Major Source of Carbs

Make most of your grains - whole grain

- Rolled oats or corn mush
- 100% whole wheat bread \& pasta
- Brown or wild rice
- Corn tortilla

Glycemic Index (glucose = 100)	
White wheat bread*	75 ± 2
Whole wheat/whole meal bread White rice, boiled*	74 ± 2
Brown rice, boiled	73 ± 4

Indian Health Service
Division of Diabetes Treatment and Prevention
https://www.diabetesnet.com/food-diabetes/glycemic-index/

Examine Visual Qualities: Color \& Texture

Group 1

What are the colors and textures you see in these groups of carbs?

Group 2

Indian Health Service
Division of Diabetes Treatment and Prevention

Heritage Carbs - Starchy Vegetables

More Ideas for Mr NATIVE PLATE
Using the color pattern (white, brown, or colorful) to find the carbs. Hint: grains \& starchy vegetables.

Did you know the sweetness in fruit is from natural sugar?

- Natural sugar is a carb Nutrients in fruit:

Vitamins C, A, potassium, fiber, and antioxidants

- Whole fruits are best: fresh, frozen or canned
- Try for 1 cup of whole fruit daily

Carbs In Dairy Foods - Lactose

- Milk (fluid, dry, evaporated)
- Milk Alternatives - Soy milk
- Yogurt
- Dairy Desserts

Nutrients
Calcium, protein, vitamins A \& D, potassium, and phosphorus

Suggested intake - At least 2 servings

Identify Foods - With No Carbs

- Meats, seafood, poultry
- Eggs
- Cheese,
- Fats: margarine, butter, real mayonnaise, oils
- Nuts

Low in Carbs - 5 grams
Non-starchy vegetables, like;

Link to My Native Plate, full color PDF

Hidden Carbs

Common Overlooked Carbs

- Bread/rolls from the bread basket
- Breading - chicken patty or fish fillet
- Pasta sauce
- Barbeque sauce, ketchup
- Croutons in salad
- Larger than usual sandwich roll
- Icing on cake or cupcake
- Pie crust

Know How Many Carbs to Eat?

Males:

- Meals: 3 - 4 CHO points per meal (45-60 grams carb/meal)
- Snacks: 1 - 2 CHO points per snack (15-30 grams carb/snack)

Females:

- Meals: 2 - 3 points per meal (30-45 grams carb/meal)
- Snacks: 1 - 2 points per snack (15-30 grams carb/snack)

Meal Timing:
Recommended 3 meals/day, every 4-6 hours
Snacks: 2-3 snacks per day in between meals

> For an extensive list of carb foods see: The Diabetic Exchange List www.diabetesed.net

Indian Health Service
Division of Diabetes Treatment and Prevention

How Many Carbohydrates

Should I Eat to Help My Blood Sugar?

Women: 2-3 points at each meal
Men: 3-4 points at each meal
Snacks: 1-2 points per snack

0 Pointry
 1 Point

Vegetahles (lettuce, spinach, kale, carrots, cucumbers, cabhage, tomatoes, green beans, hroceoli, cuuliflower, onions, poppers)

- (Elemiktione Lower-fat meat: Chicken, turkey, fish. eggs. low-fat choose, peanut butter
- Higher-fat ments: heef, stenk. pork
- Water
- Diet Soda or Diet Juice
- Crystal Light. Sugar Froe Kool-Aid, Powerade Zero, Vit amin Water Zero
- Astificial swoetencers (Splenda, Sweet-and-Low, Equal, Stevini)
- Condiments (Ketchup. mustard, salsa)
- Oils
- Spioen (Garlic, onion, pepper, Italian sensaning, cinnamon, etc.)
- Black Caffoe
- Unsweetened Ten

- Fruit (1 small medium apple, 1 medium arange, 1 small banana or half lurge banana, half a grapefruit $O R$ handful of struwherries)
- Spona of sugar or honey
- I eupped hand blue corn mush
- 16 -inch ear of varn OR 1 handful of corn
- 1 handful green peas
- 1 fist-size partion of squash
- 1 handful beans (black, painto, kidney)
- 1 fist-sizod potato or sweet potato
- I handful of mashed potatoes
- 1 small juice (Orange, pomegranate, apple, cranberry)
- 1 piece bread (whole grain. white, wheat)
- 1 6.inch tortilla
- 1 taco (just shell)
- G Saltine eruckers
- $10-15$ chips
- 3 2.cupped hands of popeorn
- 15 pretzels
- 1 cup (Sax) pf cow's milk

- 1 fist-sixed portion of pasta
- 1 fist-sized portion of rice
(brown, white)
- Half a hugel
- 1 hot dog hun
- 1 hamburger bun
- 1 cup fruit-flavored yogurt
- 2 cupped hands of melon
- 2 cuppod hands of ice cream
- 3 mini donuts
- 2 "Fun-Sized" Candy Bars
- 1 slice thin-crust pizza
- Can of regular soda (Cuke, 7.Up, Sprite)
- 1 Powerade or

Gatornde (20 oz)

- 1 bowl (2 cupped hand) cereal. cream of wheat or oatmeal
- 1 large banana
- 1 hean burritn (5 inches)
- S-inch frybread
- 2 2-cupped hands of mutton stew wiv potatoen
- 5-inch kneel S-inch kneel
- 2 cupped hands of melon

Example 1:

Sue is getting ready for the day. She chooses these foods for breakfast:

Points:

\qquad 1 bowl oatmeal
1 medium orange
Black Coffee
Add up all the points. Total Points: \qquad

Example 2:
John has been working in the field all day. For dinner he ate:
Points:
_1 1 -inch frybread
_Handful of black beans
_ 1 small banana
_ 6 carrots
_1 can of diet soda
Add up all the points. Total Points: \qquad

Worksheet to Apply Learning

Hand guide for portion control

Using the Nutrition Facts Label to find Total Carbs and translating grams to points

Incorporation of 50/50 My Plate Method

Material created by: LCDR Jenna Cope MPH, RD, LN, CHES while serving IHS at Shiprock AZ.

Use hands to measure food portions:

0 Pointa $=0$ grams (0 g)
1 Point = 15 grams (15 m)
2 Points $=30$ grams (30 g)
3 Points $=46$ grams (45 g)
4 Points $=60$ grams (60 g)
5 Points $=75$ grams (76 g)

Protein/Meat
Other proteins: Eggs, chicken turkey, fish, chease, tofu nuts, peanut butter, almond bulter

Carbohydrates (Carbs)

Try not to eat less tran the recommended amount of carts, espe oally if you take a medcation that can "trop" your glucose such as irsuin or Glipizide.

Talk with a distitiun at the Haalth Bduestion Ounter for nukrition Tecommandetiona funt for youl

Non-Starchy
Vegetables
(Elid as many ranstancly vegetables as you wanl!
Including: Tomatioes, chilis peppers, green beans cauthower, broccol, colery, falapertos cabbage, onions. eqgiplant, squash. spinach. etc.

How to use the Nutrition Facts Label?

- Info is based on one serving
- Look at Total Carbohydrate - Includes all carb components
- Pay attention to Added Sugars
- Every 15 grams Carb = 1 point

8 servings per container	
Serving size 8 fl oz (2)	$8 \mathrm{fl} \mathrm{oz} \mathrm{(240mL)}$
Amount per serving Calories	140
	\% Daily Value*
Total Fat 0g	0\%
Saturated Fat Og	0\%
Trans Fat 0g	
Cholesterol 0mg	0\%
Sodium 5mg	0\%
Total Carbohydrate 27g	te 27 g (0\%
Dietary Fiber 0g	0\%
Total Sugars 25 g	
Includes 23g Added Sugars	dded Sugars 46\%
Protein 0 g	
Vitamin D Omcg	0\%
Calcium Omg	0\%
Iron Omg	0\%
Potassium 40mg	0\%
*The \% Daily Value (DV) tells you how much a nutrient in a serving of food contributes to a daily diet. 2,000 calories a day is used for general nutrition advice.	

Screen for Food Insecurity

Screen

To help your patients/clients lessen food insecurity, take these three steps:

1. Read each statement* and ask your client if the statement is often true, sometimes true, rarely true, or never true.

Within the past 12 months, we worried whether our food would run out before we got money to buy more. \square often True \square Sometimes True \square Rarely True \square Never True Within the past 12 months, the food we bought just didn't last and we didn't have money to get more. \square Often True \square Sometimes True \square Rarely True \square Never True
2. If your client responds "often true" or "sometimes true" to either statement, they likely have food insecurity. Help them get more food by filling out the list of resources (see next page) and giving it to them.

You can also fill out the list, make copies, and leave them in waiting rooms and other areas for community members to pick up.
3. Advocate for nourishing foods in your community. Take steps to increase the availability of nutritious, affordable food.

* Hager ER, Quigg AM, Black MM, Coleman SM, Heeren T, Rose-Jacobs R, et al. Development and validity of a 2-item screen to identify families at risk for food insecurity. Pediatrics. 2010 Jul 1; 126(1):26-32.

Intervene

SNAP
 WIC
 FDPIR (Commodities)
 School Lunch and Breakfast Senior Center
 Meals on Wheels Tribal Food Program Community Gardens Food Bank / Food Pantry

Food Insecurity Assessment Tool and Resource List (ihs.gov)

Carbohydrates by Color

Carbohydrates are your body's main source of energy

Carbohydrates (carbs) come from sugars, starches, and dietary fiber. They are part of a healthy diet. For most people, carbs are the body's leading energy source and affect blood sugar.
How many and what carbs you eat affects how high and quickly your blood sugar rises.
To keep it simple, you can use colors-colorful, brown, and white-to identify carbs. Some carbs are healthier than others. Carbs with deeper or brighter colors are usually more nutritious than paler, more processed carbs, such as foods made with white flour and sugar.

Colorful Carbs

Starchy Vegetables

Starchy vegetables add color and texture to meals. They are healthy substitutes for highly processed grains, such as white flour and white rice. Native people traditionally ate a wide variety of corn, beans, squash, and root vegetables.

These vegetables are naturally high in fiber and nutrients. They raise blood sugar more slowly than the more processed carbohydrates.

Try to eat at least 5 cups of starchy vegetables every week.

Brown Carbs

Whole Grains

Whole grains are usually brown. They come in many shapes and textures and are a major energy source. Whole grains include whole wheat flour, brown and wild rice, rolled oats, and corn meal. Some breads and pastas are made with whole grain. Whole grain foods are full of fiber and raise sugar more slowly than processed grains. They are less likely to cause spikes in blood sugar.
Make half your grain choices whole grains.

White Carbs

Processed Grains and Sugars
Processed grains and sugar are usually white. Foods made from these tend to raise blood sugar quickly and could contribute to it going too high.

Food made with white flour includes crackers, white bread, flour tortillas, fry bread, and instant noodles.
Choose white carbs less often.

Dairy Foods
Dairy foods are rich in essential nutrients: calcium, phosphorus vitamin D, and protein. Many dairy foods have carbs along with protein and fat. They can be part of a healthy diet.
Aim for 3 servings of dairy foods each day

Low Carbs or No Carbs

Foods with low or no carbs have very limited or no effect on blood sugar levels. Some foods with few or no carbs include:

- Meats, fish, eggs, and cheese
- Non-starchy vegetables, such as tomatoes, onions, green beans, carrots, cabbage, celery, lettuce, and peppers

Put into practice what you've learned:
See Find the Carbohydrates on My Native Plate.

Indian Health Service
Division of Diabetes Treatment and Prevention
https://www.ihs.gov/diabetes/education-materials-and-resources/diabetes-topics/nutrition/carbs-by-color/

Find the Carbohydrates on My Native Plate

 For use with Carbohydrates by Color Fact SheetKnowing which foods have carbohydrates (carbs) is one of the first steps to choosing healthy foods. Use the four plates shown to practice finding carbs. (See answers below.)

1. Find the grains and starches using the color shades of white, brown, and colored foods on the plates.
2. Find the other brightly colored carbs. (Hint, they are naturally sweet.)
3. Find the foods that have low carbs or no carbs.

More Ideas for Mr NATIVE PLATE

Helpful Tips

- Try choosing healthier carbs for meals and snacks. Balance the carbs you eat throughout the day.
- Eating the right kinds and amounts of carbs can help with blood sugar control.
- Visit a dietitian or diabetes care specialist. They can help you learn how many carbs are right for you.

[^0]
REFERENCES

- Dietary Guidelines for Americans, 2020-2025
- Franz MJ, MacLeod J, Evert A, et al. Academy of Nutrition and Dietetics practice guideline for type 1 and 2 diabetes in adults: systemic review of evidence for medical nutrition therapy effect-iveness. J Acad Nutr Diet 2017; 117:1659-1679
- Nutrition Therapy for Adults with Diabetes and Prediabetes. Diabetes Care, 42019 https://doi.org/10.2337/dci19-0014
- Practical Carbohydrate Counting - A How to Teach Guide for Health Professionals
by Hope Warshaw, Karen Bolderman. American Diabetes Association, $2^{\text {nd }}$ edition.
- Clinical Practice Recommendations: Nutrition

Advanced Carbohydrate Counting: Insulin-to-Carb Ratios

(ICR)

Question 1:

Only people with Type 1 Diabetes use Insulin-to-Carb Ratios

Question 1:

Only people with Type 1 Diabetes use Insulin-to-Carb Ratios

FALSE

Indian Health Service
Division of Diabetes Treatment and Prevention

Question 2:

Insulin-to-Carb Ratios are only used with insulin pumps

Question 2:

Insulin-to-Carb Ratios are only used with insulin pumps

FALSE

Question 3:

Insulin-to-Carb Ratios allow the most flexibility with eating while still providing accurate insulin dosing

Question 3:

Insulin-to-Carb Ratios allow the most flexibility with eating while still providing accurate insulin dosing

TRUE

Is Your Patient a Good Candidate to Use Insulin-to-Carb Ratios?

- Do they use meal time insulin?
- Do they eat a different amount of carbohydrates at each meal/snack?
- Are they able to read food labels?
- Are they comfortable carbohydrate counting?
- Are they able to do basic math?

The Provider's Role is to Calculate the Dosages...

Indian Health Service
Division of Diabetes Treatment and Prevention

Process Steps to Prescribe an Insulin-to-Carb Ratio

1. Determine Total Daily Dose (TDD) of Insulin
2. Calculate Insulin-to-Carb Ratio (ICR)
3. Calculate Insulin Sensitivity Factor (ISF) aka: Mealtime Correction Factor (CF)

1. Calculating Total Daily Dose

a) Unit per kg body weight

- Underweight/Hemodialysis = .3 units/kg body weight
- Normal Body Weight = . 4 units/kg body weight
- Overweight = 5 units/kg body weight
- Obese= . $6-1$ units/kg body weight
b) Insulin Drip
- Add up units/hour for a 24 hour period

2. Calculate Insulin-to-Carb Ratio (ICR)

a) Rule of 500

- Divide 500 by the Total Daily Dose (TDD)
- ICR=500/TDD
b) Example:
- TDD= 70
- ICR=500/70=7.14
- ROUND to 7 g carb
- So, 1 unit for every 7 g carb consumed
- $\quad I C R=1: 7$

3. Calculate Insulin Sensitivity Factor/ Mealtime Correction Factor

(1 unit of insulin will lower blood sugar by X amount)
a) Calculate Correction Factor = Divide 1800 by Total Daily Dose
CF= 1800/TDD
b) Example:

CF= 1800/70=25 (1 unit of insulin will lower blood sugar by $25 \mathrm{mg} / \mathrm{dl}$)

Give your Patient 3 things...

Insulin dosing worksheet

$\stackrel{\epsilon}{6}$

Insulin to carbohydrate ratio
1 unit \qquad grams carbohydrate

Correction formula
(Blood sugar - target blood sugar) \div correction factor Target blood sugar \qquad
Correction factor \qquad $+10$

1. Insulin-to-Carb Ratio
2. Correction Factor
3. Target Blood Sugar Level

Now It's the Patient's Turn to Work...

Process Steps to Use an Insulin-to-Carb Ratio

1. Calculate the insulin dose to cover the food they plan to eat at a meal
2. Calculate how much extra insulin will need for the meal time correction if the patient is going into a meal above target glucose range

1．To calculate insulin dose to cover food：

a）Determine the number of grams of carbohydrate that they plan on eating at a meal／snack
b）Divide the number of grams by the insulin－to－ carb ratio prescribed by the provider
c）Example：
－Prescribed ICR＝1：7
－Bolus Dose $=30 / 7=4.2$
－ROUND TO 4 UNITS

M要然胃（0） Serving Size 3 oz．（85g） Serving Per Container 2		
Amount Per Serving		
Calories 200 Col	Calories from	Fat 120
\％Daily Value＊		
Total Fat 15 g		20%
Saturated Fat 5g		28%
Trans Fat 3g		
Cholesterol 30 mg		10%
Sodium 650mg		28%
Total Carbohydrate	30 g	10%
Dietary Fiber Og		0\％
Sugars 5g		
Protein 5g		
Vitamin A 5\％Vitamin C 2\％		
Calcium 15\％－Iron 5%		
＊Percent Daily Values are based on a 2，000 calorie diet． Your Daily Values may be higher or lower depending on your calorie needs．		
Calories	2，000	2，500
Total Fat Less than	－659	80 g
Sat Fat Less than	－ 20 g	25 g
Cholesterol Less than	， 300 mg	300 mg
Sodium Less than	$2,400 \mathrm{mg}$	2，400mg
Total Carbonfyydrate Dietary Fiber	$\begin{aligned} & 300 \mathrm{mg} \\ & 25 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 375 \mathrm{mg} \\ & 30 \mathrm{~g} \end{aligned}$

2. To calculate the meal time correction for going into a meal above target glucose range:

a) Check blood sugar
b) Subtract current blood sugar from target blood sugar level
c) Divide the difference by the correction factor prescribed by your provider

Calculate Correction Bolus:
(Current Blood Sugar-Target Blood Sugar)
Correction Factor

2. To calculate the meal time correction for going into a meal above target glucose range:

BOLUS CORRECTION: (Current Blood Sugar-Target Blood Sugar)
Correction Factor

Example:

- Current Blood Sugar is $284 \mathrm{mg} / \mathrm{dl}$
- Target Blood Sugar is $150 \mathrm{mg} / \mathrm{dl}$
- Prescribed Correction Factor is 1:25

CF $=1800 / 70=25$ (1 unit of insulin will lower blood sugar by $25 \mathrm{mg} / \mathrm{dl}$)
Correction Bolus $=(284-150) / 25=5.36$
(ROUND TO 5 UNITS FOR CORRECTION BOLUS)

Calculate insulin dose for food

- Add up all the carbohydrates in your meal.
- Divide the total carbohydrates by the insulin to carbohydrate ratio.
- The result is the amount of insulin units needed.

Total carbs
\div insulin to carb ratio
$=$ units of insulin needed

Calculate insulin dose to correct a high blood sugar

- If pre-meal blood sugar is high, take the blood sugar reading and subtract target blood sugar.
- Divide what remains by the correction factor.
- The result is the amount of insulin needed to correct high blood sugar.
(blood sugar - target) \qquad
\div correction factor \qquad
$=$ units of insulin needed

Calculate total insulin dose

- Add the number of units needed for food to the number of units needed to correct blood sugar to get your total dose of insulin (Humalog/Novolog/Apidra).

Food insulin

+ correction insulin \qquad $1 \sqrt{0}$
$=$ total insulin \square 1

Example Case Study \#1...

Abby came in to the hospital with DKA. She was on an insulin drip for 24 hours and her total dose on the insulin for 24 hours was 45 units. She has transitioned to basal-bolus insulin and the doctor is wanting to use an insulin to carb ratio when she starts eating.

What is her ICR?

Hint: Rule of 500

Example Case Study \#1...

Abby came in to the hospital with DKA. She was on an insulin drip for 24 hours and her total dose on the insulin for 24 hours was 45 units. She has transitioned to basal-bolus insulin and the doctor is wanting to use an insulin to carb ratio when she starts eating.

What is her ICR?

Hint: Rule of 500

Answer:
ICR=500/45=11.1
ROUND TO 11

Abby will receive 1 unit of insulin for every 11 g of carb she eats

Example Case Study \#1...

Abby came in to the hospital with DKA. She was on an insulin drip for 24 hours and her total dose on the insulin for 24 hours was 45 units. She has transitioned to basal-bolus insulin and the doctor is wanting to use an insulin to carb ratio when she starts eating.

What is her CF?

Hint: Rule of 1800

Answer:
CF 1800/45=40
1 unit of insulin will lower Abby's blood sugar by about 40 mg/dl

Example Case Study \#1...

Abby will receive 1 unit of insulin for every 11 g of carb she eats

The nurse comes in to give Abby her meal tray. The nurse checked Abby's blood sugar and it is $244 \mathrm{mg} / \mathrm{dl}$. The doctor really wants it to be around $150 \mathrm{mg} / \mathrm{dl}$. Abby ordered her first meal and it has 64 g carb. How much insulin should her nurse give her?

Remember...
Abby's ICR is 11 and CF is 40

How much insulin should Abby receive?

Example Case Study \#1...

Abby will receive 1 unit of insulin for every 11 g of carb she eats
The nurse comes in to give Abby her meal tray. The nurse checked Abby's blood sugar and it is $244 \mathrm{mg} / \mathrm{dl}$. The doctor really wants it to be around $150 \mathrm{mg} / \mathrm{dl}$. Abby ordered her first meal and it is 64 g carb. How much insulin should her nurse give her?

Remember...
Abby's ICR is 11 and CF is 40

How much insulin should Abby receive?
ICR Bolus: 64/11=5.8
CF Bolus: (244-150)/40=2.35
Adding those together we get 8.15 and will round to 8

Abby will get 8 units of short-acting insulin to cover her meal and

Example Case Study \#2...

Jared came in to the clinic and has Type 2 Diabetes that is not controlled really well. He has been on insulin but finds it frustrating that he is supposed to eat a certain amount of carbs at each meal. The doctor is wanting to transition him to an insulin-to-carb ratio at mealtimes.

Ht: 6’1
Wt: 102 kg
BMI: 29.6

What is his TDD?

Hint: For Overweight patients we use $.5 / \mathrm{kg}$ body weight

Example Case Study \#2...

Jared came in to the clinic and has Type 2 Diabetes that is not controlled really well. He has been on insulin but finds it frustrating that he is supposed to eat a certain amount of carbs at each meal. The doctor is wanting to transition him to an insulin-to-carb ratio at mealtimes.

Ht: 6’1
Wt: 102 kg
BMI: 29.6

What is his TDD?

Hint: For Overweight patients we use $.5 / \mathrm{kg}$ body weight

Answer: .5*102= 51 units per day

Example Case Study \#2...

Jared came in to the clinic and has Type 2 Diabetes that is not controlled really well. He has been on insulin but finds it frustrating that he is supposed to eat a certain amount of carbs at each meal. The doctor is wanting to transition him to an insulin-to-carb ratio at mealtimes.

Ht: 6’1
Wt: 102 kg
BMI: 29.6
TDD=51

What is his ICR?

Hint: Rule of 500

Answer: 500/51= 9.8 (ROUND TO 10)
Jared will get 1 unit of insulin for every 10 g carb he eats

Example Case Study \#2...

Jared came in to the clinic and has Type 2 Diabetes that is not controlled really well. He has been on insulin but finds it frustrating that he is supposed to eat a certain amount of carbs at each meal. The doctor is wanting to transition him to an insulin-to-carb ratio at mealtimes.

Ht: 6’1
Wt: 102 kg
BMI: 29.6
TDD=51

What is his CF?

Hint: Rule of 1800

Example Case Study \#2...

Jared came in to the clinic and has Type 2 Diabetes that is not controlled really well. He has been on insulin but finds it frustrating that he is supposed to eat a certain amount of carbs at each meal. The doctor is wanting to transition him to an insulin-to-carb ratio at mealtimes.

Ht: 6’1
Wt: 102 kg
BMI: 29.6
TDD=51

What is his CF?

Hint: Rule of 1800

Answer: 1800/51= 35

1 unit of insulin with drop Jared's blood sugar approximately $35 \mathrm{mg} / \mathrm{dl}$.

Example Case Study \#2...

Jared went home and made himself supper. He checked his blood sugar before eating and it was $198 \mathrm{mg} / \mathrm{dl}$. He remembered the doctor saying he wanted it less than $150 \mathrm{mg} / \mathrm{dl}$. He was planning his dinner and had 54 g of total carbohydrate on his plate.

ICR: 1:10
CF: $35 \mathrm{mg} / \mathrm{dl}$
Target Blood Sugar: $150 \mathrm{mg} / \mathrm{dl}$

What is the meal time dose and correction he should give himself?

Example Case Study \#2...

Jared went home and made himself supper. He checked his blood sugar before eating and it was $198 \mathrm{~g} / \mathrm{dl}$. He remembered the doctor saying he wanted it less than $150 \mathrm{~g} / \mathrm{dl}$. He was planning his dinner and had 54 g of total carbohydrate on his plate.

ICR: 1:10
CF: $35 \mathrm{~g} / \mathrm{dl}$
Target Blood Sugar: $150 \mathrm{~g} / \mathrm{dl}$

What is the meal time dose and correction he should give himself?
ICR=54/10=5.4
CF= (198-150) $/ 35=1.4$
Total: 5.4+1.4=6.8 (ROUND TO 7 UNITS)
Jared will give himself 7 units of short-acting insulin to cover his meal and

Helpful APPS for Calculating Insulin-to-Carb Ratios

Jade Insulin Dose Calculator

BolusCalc

Diabetes Personal
Calculator (\$0.99)

InPen

Blue Loop

Helpful Resources

- Insulin Dosing Worksheet https://www.choa.org/~/media/files/Childrens/medical-services/diabetes/insulin-dosing-worksheet.pdf
- Diabetes Care and Education: Advanced Insulin Management Worksheet https://www.wcu.edu/WebFiles/PDFs/6403AdvancedInsulinManagementFi nal.pdf
- Sutter Health Calculating Mealtime Insulin Worksheet https://www.sutterhealth.org/pdf/services/diabetes/mealtime-dose-sliding-scale.pdf

Thank you for attending!

Contact Information:

Kibbe Brown - Kibbe.Brown@ihs.gov Wendy Castle- Wendy.Castle@ihs.gov

[^0]: Answers to finding the carbs on My Native Plate
 1.) Answer: rice, tortilla, hamburger bun, cornbread 2.) Answer: berries, apple slices, canned peaches 3.) Answer: meat, egg, non-starchy vegetables: salad, carrots, celery, tomato, zucchini, and greens

