Promoting Food Security and Food Sovereignty in Indigenous Communities: Lessons from Tribally-Driven Research

Diabetes in Indian Country 2019 Conference
August 8, 2019

Valarie Blue Bird Jernigan, DrPH, MPH
Director, Center for Indigenous Health Research and Policy
Oklahoma State University Center for Health Sciences
bluebird.jernigan@okstate.edu
Acknowledgements

Indian Health Service

Oklahoma State University
Center for Health Sciences

Choctaw Nation of Oklahoma
Chickasaw Nation
Osage Nation

Center colleagues -Charlie Love, Tori Taniguchi,
Kristy Jurko, Tvl Jacob, Tanae Wapskineh

THRIVE (NHLBI Grant# R01HL117729)
FRESH (NIMHD Grant# MD01266)
Center for Indigenous Health Research and Policy at Oklahoma State University Center for Health Sciences
Food Insecurity and Chronic Disease

- Food insecurity – lacking consistent access to enough food for an active and healthy life
- In 2017, 13% of US population was food insecure
- Food insecurity is associated with obesity, diabetes, and hypertension:
 - Stress
 - Overconsumption of foods high in sugar, fat, and salt
 - Underconsumption of nutritious foods
 - Feast or famine eating cycles
 - Reduced employability
 - Spending tradeoffs

Prevalence of Food Insecurity in Native Communities

• Studies documented food insecurity prevalence from 39% in California to 76% in Navajo Nation.

• Using the Current Population Survey Food Security Supplement, we analyzed the food insecurity trends of Natives compared to other racial and ethnic groups.

• From 2000 to 2010, 25% of Natives remained consistently food insecure.

• Natives were twice as likely to be food insecure as Whites.

• Urban Natives more likely to be food insecure than rural Natives.

Figure 1. Prevalence of food insecurity by race and ethnicity, 2000–2010.

Factors Associated with Food Insecurity in Native Communities

- Limited access/availability to fresh, healthy foods\(^5\)
- Urban Natives have access to corner stores, where goods are expensive, few grocery stores, "food swamps"\(^6\)
- Rural Native communities lack grocery stores; shoppers travel to Wal-Marts\(^5\)
- On reservations, foods are more expensive than in neighboring non-reservation communities\(^7\)

Factors Associated with Food Insecurity in Native Communities cont.

- Farmers in rural areas report the lack of a cash economy to ensure produce stays local\(^5\)
- The limited number of food distributors, restricts options\(^8\)
- Historical reliance on commodity foods has cultivated taste preferences for foods high in fat/sugar/sodium\(^8\)

Improved food security is associated with better dietary intake and lower weight, improved disease management, lower health care costs and overall better health\(^9\)

\(^9\)https://hungerandhealth.feedingamerica.org/understand-food-insecurity/hunger-health-101/
Food Systems Interventions to Improve Health within Oklahoma Native Nations
THRIVE preliminary studies: food insecurity and chronic disease among Natives in Choctaw and Chickasaw Nations

- Conducted cross sectional survey of 513 Natives
- Administered USDA 6-item short form Household Food Security Scale
- **58% of Natives surveyed were food insecure**
- Among those who were food insecure, the prevalence of diabetes (27.3% vs 18.8%), obesity (60.7% vs 45.8%), and hypertension (52.5% vs 42.5%) was higher compared to those who were food secure, even after adjustment for age, gender, education, income, and study site
- **More than 60% of Natives surveyed reported shopping for food at tribal convenience stores 3 or more times per week**

THRIVE study question: can we increase healthy food access by improving tribal stores?
Food System Conceptual Model

Design and Methods

- Participatory research orientation
- Cluster control trial with eight stores (4 intervention/4 control)
- Longitudinal cohort study surveyed Native shoppers (n=1637) before and after the intervention
- Intervention strategies:
 - Product
 - Placement
 - Promotion
 - Pricing
Outcomes

- **Store:**
 - Increased fruit/vegetable availability
 - Store inventory and sales;
 - Nutrition environment measures scores

- **Individual:**
 - Exposure to interventions
 - Sociodemographic
 - Eating behaviors
 - Self-efficacy
 - Perceived nutrition environment
 - Increased fruit/vegetable purchasing and intake
Intervention strategies development phase one: product

Intervention strategies development phase two: placement, promotion, pricing12

Placement

a. Store layout before intervention

- Packaged foods
- Refrigeration unit

b. Store layout after intervention

- Intervention foods
Promotion
Pricing
Statistical Analysis

- **Participants lost to follow-up compared to those completing follow-up surveys**
 - Demographics
 - Fruit and vegetable intake at baseline

- **Intervention stores – promotion effects**
 - Promotion (signs) recall
 - Purchase promoted product
 - Effect of sign on purchase

- **Intervention vs control stores**
 - Perceived nutrition environment (NEMS-P)
 - Food and beverage consumption with an emphasis on healthy items targeted in the interventions (e.g. fruits and vegetables)

- **Effect of dose of exposure to intervention – frequency of shopping at home store**

- **Statistical analyses:**
 - Chi-squared test for categorical variables
 - T-tests for continuous variables
 - Trend analysis for dose effect (frequency of shopping)
 - Confidence intervals for changes over time
Nation A Demographic Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Control (n=240)</th>
<th>Intervention (n=292)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean years (SD)</td>
<td>44.3 (15.5)</td>
<td>41.0 (15.2)</td>
</tr>
<tr>
<td>Female, %</td>
<td>53</td>
<td>66</td>
</tr>
<tr>
<td>Marital status, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>51.9</td>
<td>41.6</td>
</tr>
<tr>
<td>In a relationship</td>
<td>13.1</td>
<td>21.0</td>
</tr>
<tr>
<td>Widowed, Divorced, Separated</td>
<td>21.1</td>
<td>24.7</td>
</tr>
<tr>
<td>Never married</td>
<td>13.9</td>
<td>12.7</td>
</tr>
<tr>
<td># of people <18 years living in household, mean # (SD)</td>
<td>1.4 (1.6)</td>
<td>1.8 (1.7)</td>
</tr>
<tr>
<td>Education, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< high school</td>
<td>5.0</td>
<td>7.2</td>
</tr>
<tr>
<td>High school diploma</td>
<td>29.8</td>
<td>24.1</td>
</tr>
<tr>
<td>GED</td>
<td>9.2</td>
<td>17.2</td>
</tr>
<tr>
<td>Some college or technical school</td>
<td>31.9</td>
<td>33.8</td>
</tr>
<tr>
<td>Associate's degree or tech college degree</td>
<td>9.7</td>
<td>5.2</td>
</tr>
<tr>
<td>≥ Four-year college degree</td>
<td>14.3</td>
<td>12.4</td>
</tr>
<tr>
<td>Employed ≥ part-time, %</td>
<td>82.4</td>
<td>75.2</td>
</tr>
<tr>
<td>Body mass index, mean kg/m² (SD)</td>
<td>30.7 (6.8)</td>
<td>31.7 (7.1)</td>
</tr>
</tbody>
</table>
Nation B demographic characteristics

<table>
<thead>
<tr>
<th></th>
<th>Control (n=322)</th>
<th>Intervention (n=350)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean years (SD)</td>
<td>41.9 (14.2)</td>
<td>42.3 (14.3)</td>
</tr>
<tr>
<td>Female, %</td>
<td>74</td>
<td>73</td>
</tr>
<tr>
<td>Marital status, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>54.4</td>
<td>53.7</td>
</tr>
<tr>
<td>In a relationship</td>
<td>13.7</td>
<td>11.6</td>
</tr>
<tr>
<td>Widowed, Divorced, Separated</td>
<td>20.9</td>
<td>21.8</td>
</tr>
<tr>
<td>Never married</td>
<td>11.1</td>
<td>12.8</td>
</tr>
<tr>
<td># of people <18 years living in household, mean # (SD)</td>
<td>1.3 (1.4)</td>
<td>1.2 (1.2)</td>
</tr>
<tr>
<td>Education, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< high school</td>
<td>2.9</td>
<td>3.0</td>
</tr>
<tr>
<td>High school diploma</td>
<td>17.0</td>
<td>21.5</td>
</tr>
<tr>
<td>GED</td>
<td>4.6</td>
<td>4.2</td>
</tr>
<tr>
<td>Some college or technical school</td>
<td>32.7</td>
<td>28.1</td>
</tr>
<tr>
<td>Associate’s degree or tech college degree</td>
<td>18.0</td>
<td>12.8</td>
</tr>
<tr>
<td>≥ Four-year college degree</td>
<td>24.8</td>
<td>30.5</td>
</tr>
<tr>
<td>Employed ≥ part-time, %</td>
<td>78.3</td>
<td>83.0</td>
</tr>
<tr>
<td>Body mass index, mean kg/m² (SD)</td>
<td>31.2 (6.7)</td>
<td>32.2 (7.4)</td>
</tr>
</tbody>
</table>
Perceptions of healthy food options at control and intervention stores (Nation A)

<table>
<thead>
<tr>
<th>NEMS-P domain</th>
<th>Control store shoppers</th>
<th>Intervention store shoppers</th>
<th>Between-group effect (^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All stores:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placement/Promotion of unhealthy items</td>
<td>Pre (n=127) 3.18 (0.77)</td>
<td>Post (n=127) 3.07 (0.73)</td>
<td>(95% CI) -0.11 (-0.26, 0.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placement/Promotion of healthy items and nutrition information</td>
<td>Pre (n=255) 3.15 (0.73)</td>
<td>Post (n=255) 3.08 (0.74)</td>
<td>(95% CI) -0.07 (-0.17, 0.04)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(95% CI) 0.01 (-0.08, 0.11)</td>
</tr>
<tr>
<td>Stores with a grill:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability of healthy options at the grill</td>
<td>-- (n=0)</td>
<td>-- (n=0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The grill promotes healthy options/nutrition information</td>
<td>-- (n=147) 3.38 (0.83)</td>
<td>-- (n=147) 3.57 (0.77)</td>
<td>(95% CI) 0.19 (0.03, 0.34)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It costs more to buy the healthy options at the grill</td>
<td>-- (n=147) 3.08 (0.57)</td>
<td>-- (n=147) 3.18 (0.64)</td>
<td>(95% CI) 0.10 (-0.02, 0.22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Perceptions of healthy food options at control and intervention stores (Nation B)

<table>
<thead>
<tr>
<th>NEMS-P domain</th>
<th>Control store shoppers</th>
<th>Intervention store shoppers</th>
<th>Between-group effect²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre (n=316)</td>
<td>Post (n=316)</td>
<td>Within-person effect¹</td>
</tr>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>All stores:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placement/Promotion of unhealthy items</td>
<td>3.31 (0.83)</td>
<td>3.14 (0.66)</td>
<td>-0.16 (-0.26, -0.07)</td>
</tr>
<tr>
<td>Placement/Promotion of healthy items and nutrition information</td>
<td>3.25 (1.03)</td>
<td>3.39 (0.83)</td>
<td>0.14 (0.01, 0.27)</td>
</tr>
<tr>
<td>Stores with a grill:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability of healthy options at the grill</td>
<td>2.81 (0.91)</td>
<td>3.23 (0.77)</td>
<td>0.43 (0.29, 0.57)</td>
</tr>
<tr>
<td>The grill promotes healthy options/nutrition information</td>
<td>2.78 (0.88)</td>
<td>3.06 (0.58)</td>
<td>0.28 (0.15, 0.41)</td>
</tr>
<tr>
<td>It costs more to buy the healthy options at the grill</td>
<td>3.82 (1.33)</td>
<td>3.50 (1.05)</td>
<td>-0.33 (-0.55, -0.10)</td>
</tr>
</tbody>
</table>
Store Food Availability Pre-Post Intervention *

*Measured by Nutrition Environment Measures Scores
Trend Analysis of Intervention Exposure Based on Frequency of Shopping13

\textbf{Figure:}

A bar chart showing the trend analysis of intervention exposure based on frequency of shopping. The chart includes several bars for different actions, such as noticing reach-in food coolers, buying fruit or vegetables from reach-in food coolers, and buying salads, sandwiches, or wraps from reach-in food coolers. The chart also indicates the significance level with * for p-value < 0.05.

13Jernigan, VB., Salvatore, AL., Williams, M...et al. (2018)
Summary and Next Steps

• THRIVE increased healthy food options (perceived and objective measures)
• Influenced decisions to purchase healthier items among a high proportion of shoppers
• Like other studies that only target the environment, we did not see significant changes in overall dietary intake, but we did change purchasing decisions, especially among those shopping more often
• Increased demand for healthy foods as evidenced by spread of intervention strategies
• Resulted in important policy changes: distributors for both Nations expanded suppliers and options
• Next steps: expand intervention strategies, include behavioral change and traditional foods focus, increase local food options

FRESH Study with Osage Nation
What study question: Can We Intervene More Broadly Upon the Food System?

• Community-initiated study
• Builds upon Osage Nation vision to create a sustainable tribal food system and build food sovereignty
• Multicomponent, multilevel intervention trial
• Aim: to reduce BMI and hypertension among 250 Osage families (total n=500)
• Wait-list control design with tribal head start programs (n=9) in 4 communities
• Intervention currently underway

“Finally, we have a way to do what we did 200 years ago...feed our own people.”
— Raymond Red Corn, Osage Nation Assistant Principal Chief
FRESH Intervention Components

- Farm to School Menu
- School Gardens
- Gardening, Healthy Eating, Cooking and Food Sovereignty Curriculum
FRESH Intervention Components, Processes, and Outcomes

Intervention
- Farm to School Menu
- School Gardens
- Gardening, Healthy Eating, Cooking and Food Sovereignty Curriculum

Proximal effects
- Exposure to fresh f/v
- Higher intake of f/v
- Nutrition and cooking knowledge
- Knowledge of traditional foods
- Improved nutritional intake

Distal effects
- Obesity and chronic disease prevention
- Sustainable fresh f/v
- Community food security; food sovereignty
- Lower obesity and chronic disease
- Strengthening of community collective efficacy, social networks; food security; food sovereignty
Summary and Conclusions

“We can’t heal the people if we don’t heal the food system”

-Kamuela Enos
Mao Organic Farms

• Future interventions must:
 • Support sustainable community food systems
 • Food security
 • Culturally and contextually centered interventions that restore the health of the environment, support traditional indigenous knowledge, and elevate what’s working in Native communities