What the Diabetes Team Needs to Know About Kidney Transplant

Indian Health Service Division of Diabetes Treatment and Prevention CME/CE Webinar May 25, 2022

Isaac E. Hall, MD, MS

Assistant Professor of Medicine

University of Utah School of Medicine

Department of Internal Medicine

Division of Nephrology & Hypertension

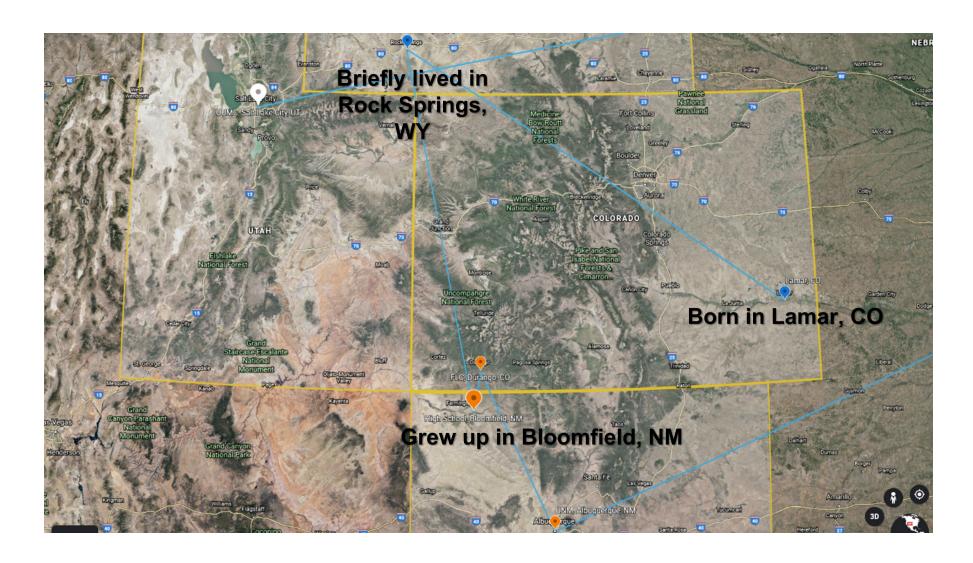
Kidney and Pancreas Transplant Program

University of Utah Campus

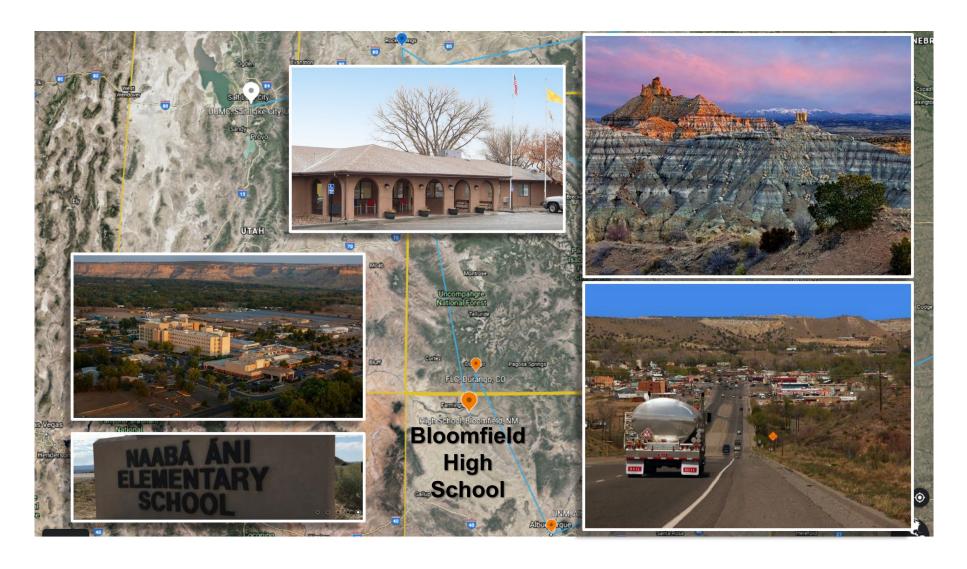
Resources

- https://esrdncc.org/en/patients/ (Transplant Section)
- https://kdigo.org/guidelines/ (Transplant Recipient Tile)
 - https://kdigo.org/wp-content/uploads/2017/02/Managing-Your-Adult-Patients-Who-Have-a-Kidney-Transplant-kdigo.pdf
 - https://kdigo.org/wpcontent/uploads/2017/02/KDIGO_TX_NephsTool-Managing-Kidney-Transplant-Recipients.pdf
- https://www.myast.org/guidelines-post-kidney-transplantmanagement-community-setting

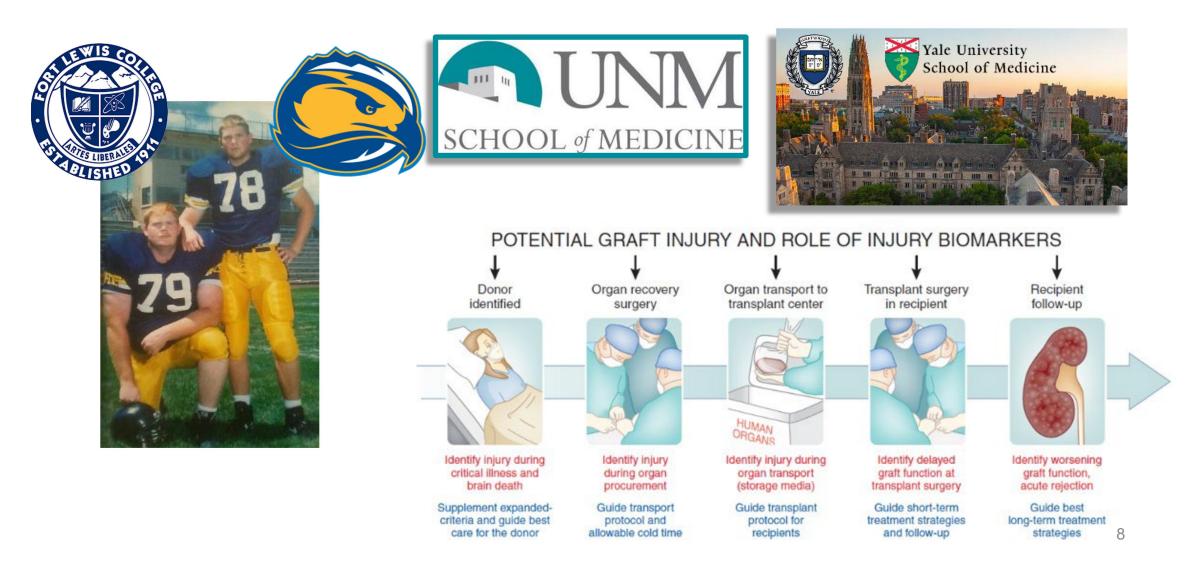
Learner Objectives and Outcomes

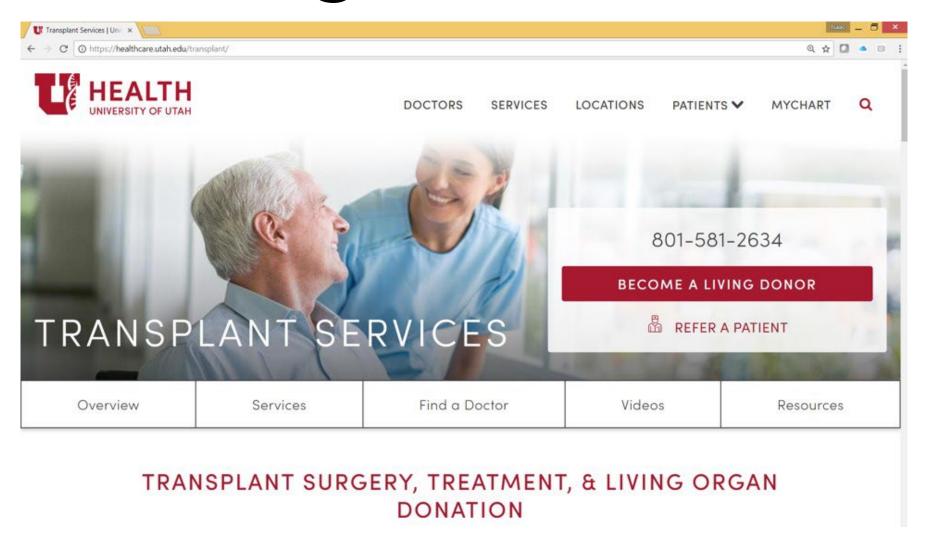

At the end of the presentation, participants will be able to:

- 1. Utilize lab tests for monitoring kidney graft function.
- 2. Describe important long-term complications of kidney transplantation.
- 3. Discuss prevention and management strategies for common complications in patients with kidney transplants.
- Identify at least one change you will incorporate into your clinical or community health practice as a result of the training.


Outline

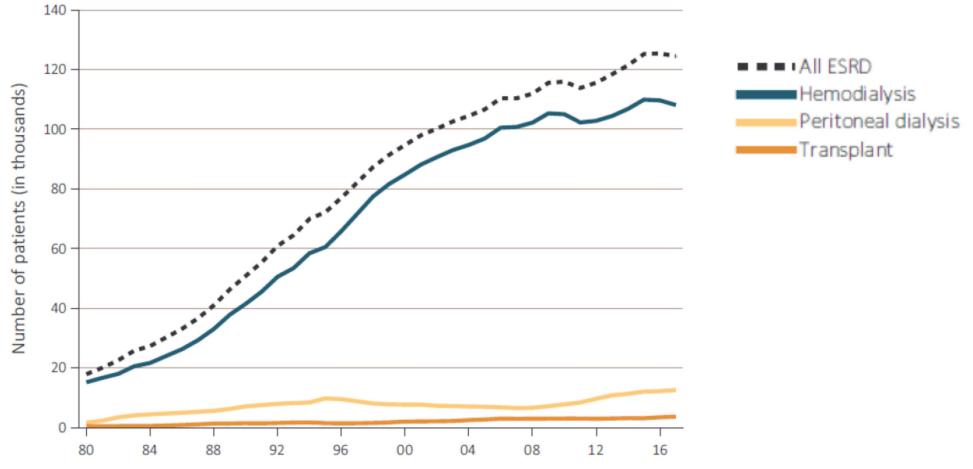
- 1. Brief introduction of myself
- 2. Kidney transplant as one of the options for renal replacement therapy
- 3. Immunosuppressive transplant medications
- 4. Long-term care of kidney transplant recipients
 - i. Kidney allograft dysfunction
 - ii. Cardiovascular disease risk reduction
 - iii. Diabetes after transplant
 - iv. Infection
 - v. Cancer
 - vi. Other issues/complications


Backstory


Bloomfield

College, Medical School, Residency/Fellowship/Research

Email: isaac.hall@hsc.utah.edu

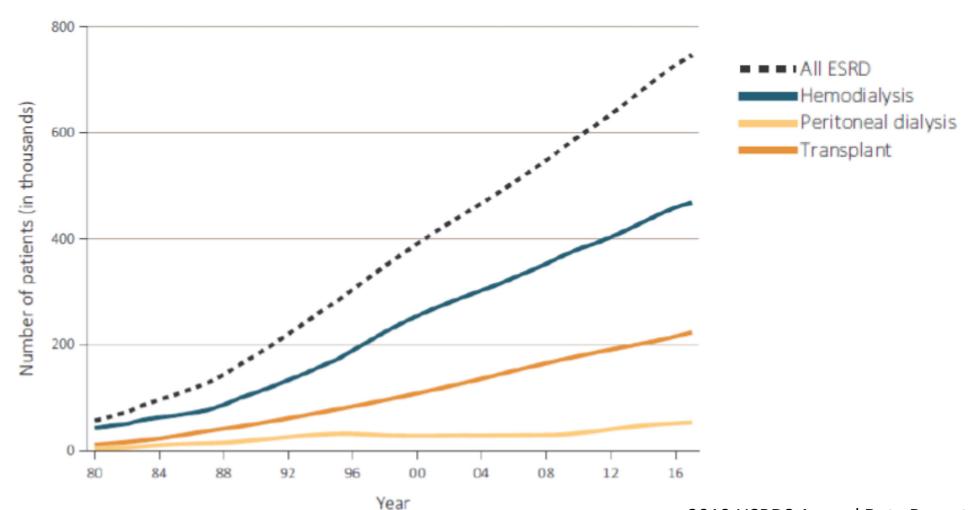

Outline – Step 2

Step 2: Kidney transplant as one of the options for renal replacement therapy.

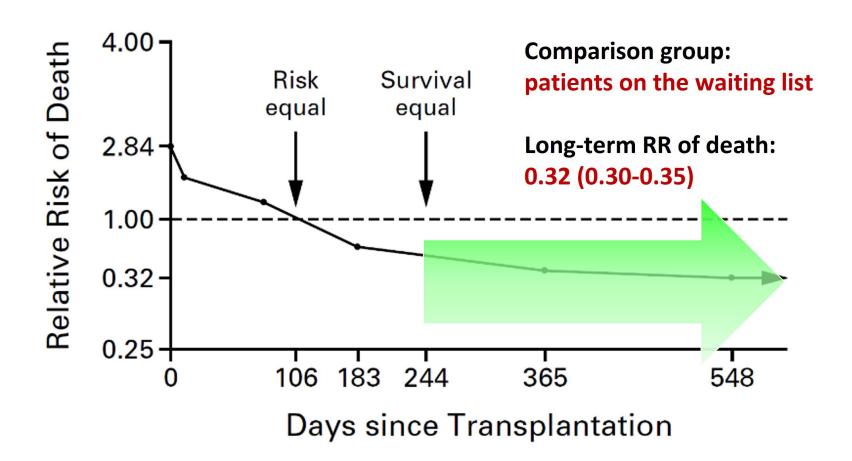
Renal Replacement Therapies

	•	•	
	Therapy	Pros	Cons
	Hemo-dialysis (HD)	Short treatments Good small salute removal Socialization at dialysis	Vascular access Strict diet, fluid intake Variable fluid status & BP Fatigue post dialysis
	Peritoneal Dialysis (PD)	Self-care treatments Good large salute removal Better Hgb & steady labs More liberal diet	Peritoneal access Frequent/daily treatments High glucose/obesity Protein loss/malnutrition Hernias/back pain
	Kidney Transplant (KT)	No dialysis treatments Normal solute removal Most liberal diet Improved sex-repro function Best quality/quantity of life	Chronic immunosuppression Strict med adherence, pill burden & interactions Clinic visits & complications Diabetes, obesity, lipids

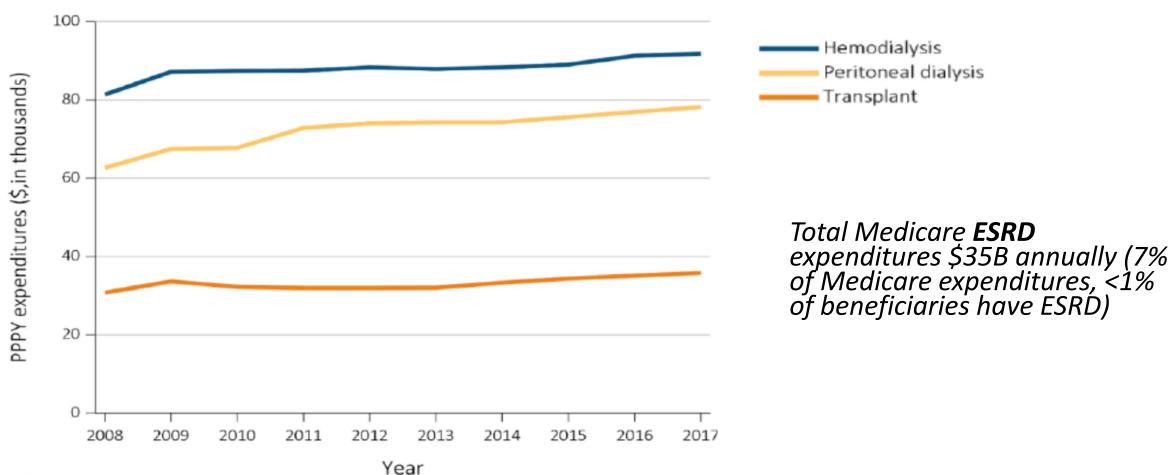
Though Recently Slowed, End-stage Renal Disease (ESRD) Incidence Continues to Rise in the U.S.



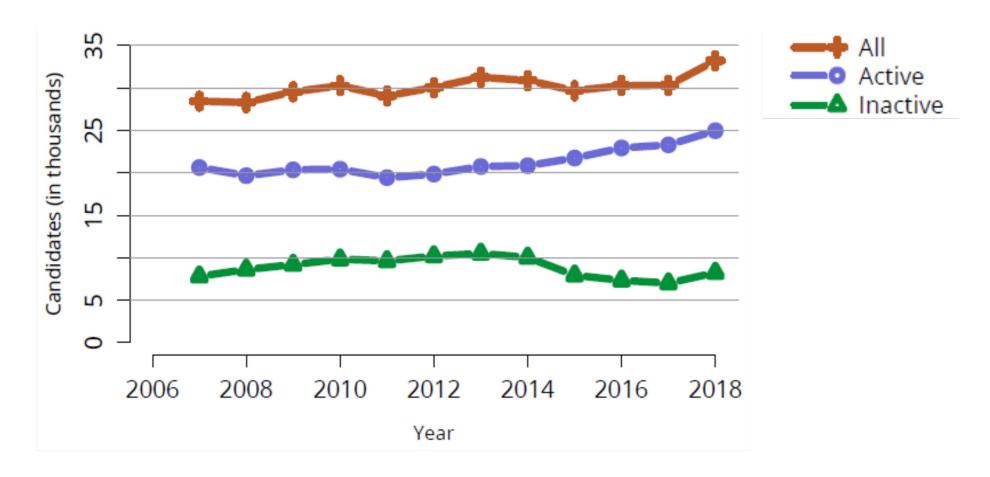
Year


2019 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. NIH/NIDDK, Bethesda, MD.

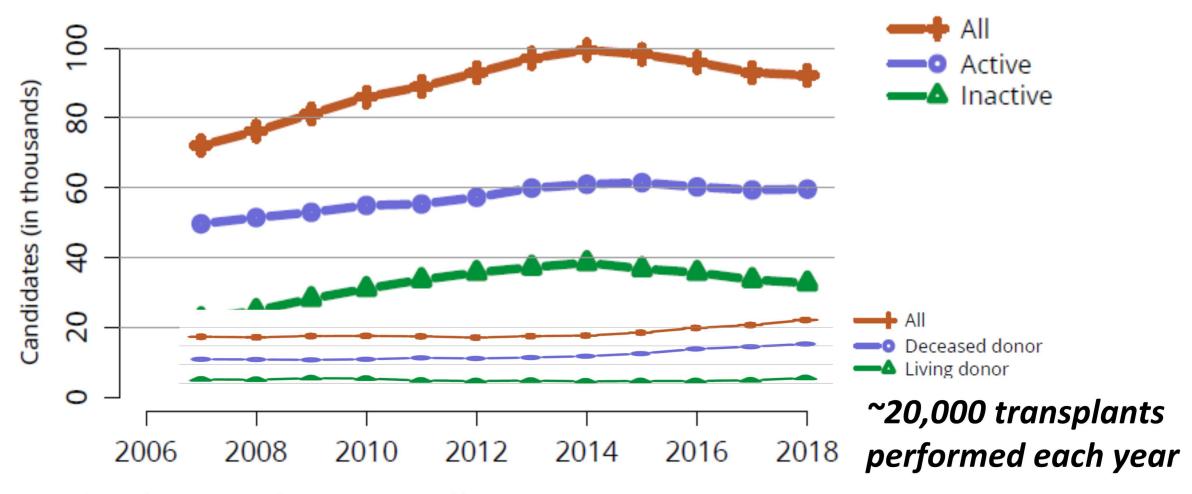
Patients are Living Longer With Renal Replacement Leading to Increasing ESRD Prevalence



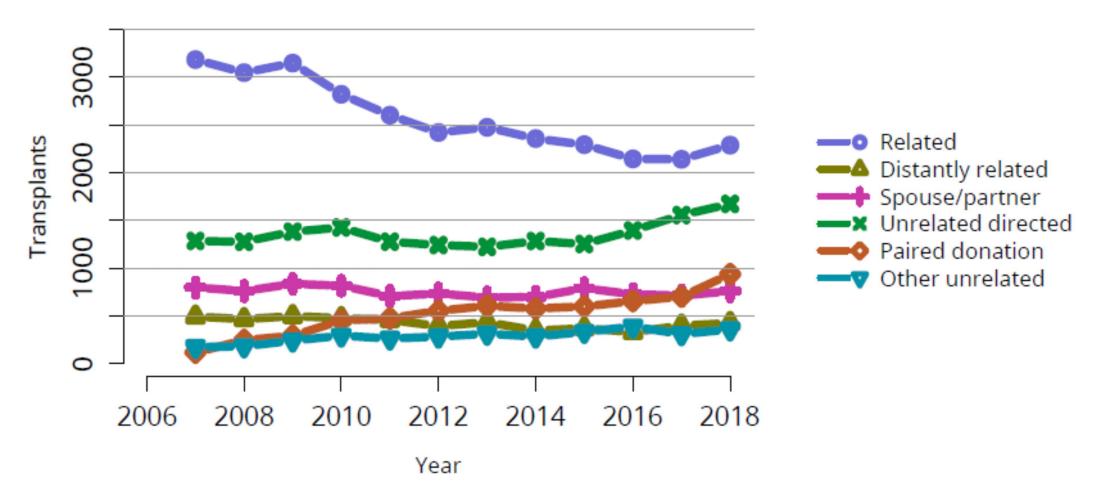
Transplant Improves Survival



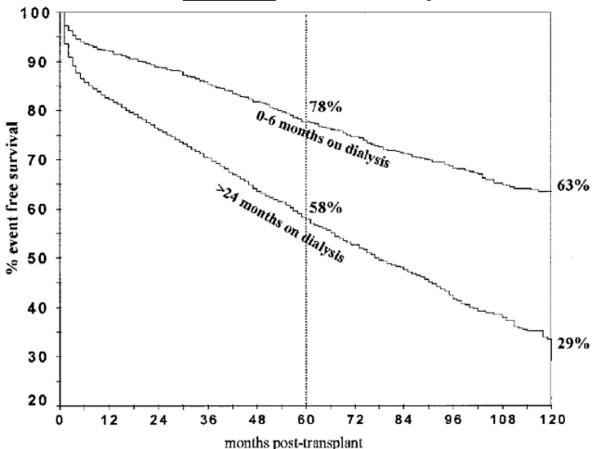
Kidney Transplantation is Less Than Half the Cost of Hemodialysis Per Patient Per Year



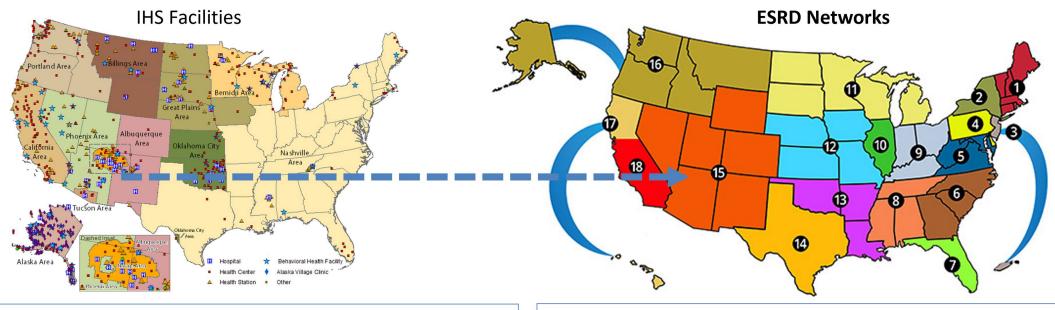
Over 30,000 Patients are Added to the Kidney Waiting List Every Year

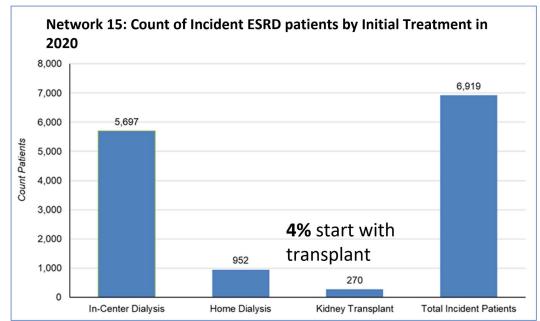


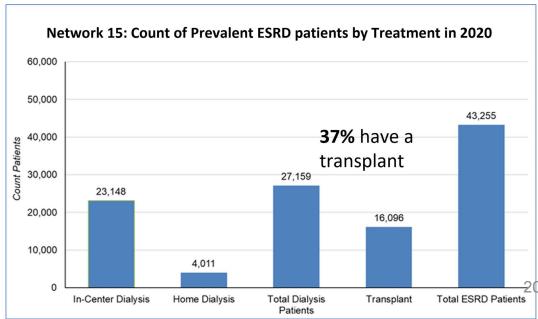
Nearly 90,000 Candidates are Currently Waiting for a Kidney Transplant


After years of steady declines in living-donor kidney transplants, slight increase recently in unrelated directed and paired donation

Less Time on Dialysis Before transplant → Better Survival


2405 *paired* DDKT recipients




Having a living donor usually means minimal waiting for transplant

ESRD Networks

Disparities Remain Between Races/Ethnicities for Kidney Transplantation

Ethnicities	Current kidney waiting list	Current kidney waiting list	Total kidney transplants in 2021	Total kidney transplants in 2021
All Ethnicities	89,965	-	24,670	-
White, Non-Hispanic	32,369	35.98%	10,381	42.08%
Black, Non-Hispanic	27,960	31.08%	7,074	28.67%
Hispanic/Latino	19,460	21.63%	4,948	20.06%
Asian, Non-Hispanic	8,442	9.38%	1,766	7.16%
American Indian/Alaska Native, Non- Hispanic	775	0.86%	181	0.73%
Pacific Islander, Non-Hispanic	570	0.63%	123	0.50%
Multiracial, Non-Hispanic	780	0.87%	197	0.80%

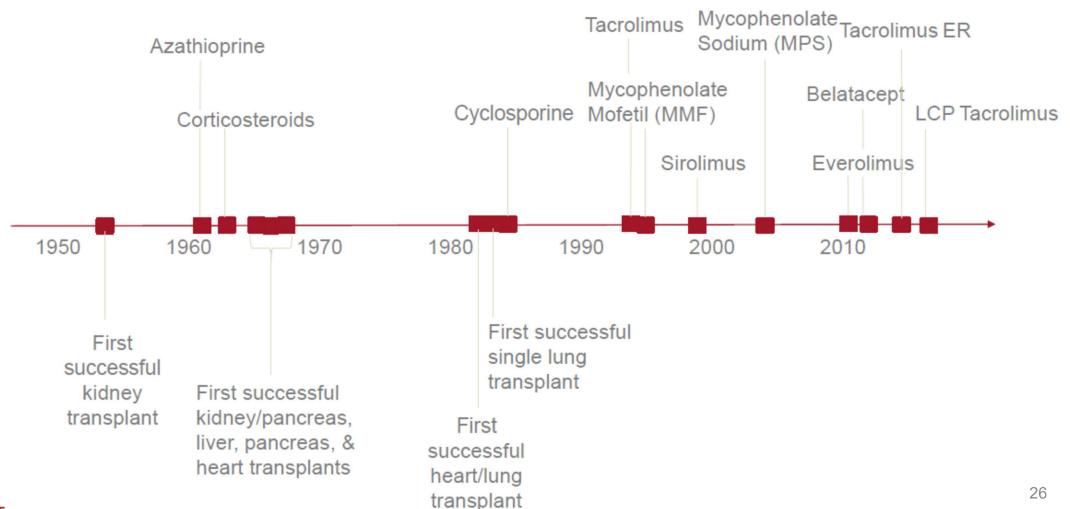
Disparities Remain Between Races/Ethnicities for Kidney Transplantation and Donation

The percent of transplants that were from **living donors** was <u>35.7% for Whites</u> vs. <u>19.3% for Al/AN</u> people

Ethnicity	Current kidney waiting list	Total kidney transplants in 2021	Deceased kidney donors in 2021	Living kidney donors in 2021	
All Ethnicities	89,965	24,670	13,214	5,972	
White, Non-Hispanic	32,369 (35.98%)	10,381 (42.08%)	8,864 (67.08%)	4,188 (70.13%)	
Black, Non-Hispanic	27,960 (31.08%)	7,074 (28.67%)	1,896 (14.35%)	465 (7.79%)	
Hispanic/Latino	19,460 (21.63%)	4,948 (20.06%)	1,951 (14.76%)	938 (15.71%)	
Asian, Non-Hispanic	8,442 (9.38%)	1,766 (7.16%)	314 (2.38%)	251 (4.20%)	
American Indian/Alaska Native, Non-Hispanic	775 (0.86%)	181 (0.73%)	92 (0.70%)	21 (0.35%)	
Pacific Islander, Non-Hispanic	570 (0.63%)	123 (0.50%)	45 (0.34%)	13 (0.22%)	
Multiracial, Non-Hispanic	780 (0.87%)	197 (0.80%)	52 (0.39%)	96 (1.61%)	

Evaluation of Kidney Transplant Candidates

- Contraindications:
 - Reversible kidney failure
 - Current infection
 - Active malignancy
 - Active substance abuse
 - Uncontrolled psychiatric disease
 - Chronic illness with substantially shortened life expectancy
 - Documented active and ongoing treatment non-adherence
- Many relative contraindications (careful case-by-case evaluation), examples:
 - Malnutrition
 - Primary oxalosis (requires evaluation for combined liver-kidney transplant)
 - Active systemic diseases that may have caused kidney failure (e.g., ANCA vasculitides, systemic amyloidosis)
- Initial evaluation:
 - Thorough medical, surgical, and psychosocial history
 - Physical, laboratory, and other studies as needed (e.g., age-appropriate cancer screening, stress testing/cardiac clearance depending on risk factors)


Take Away Messages About Renal Replacement Therapy

- Early initial referral to nephrology for patients with chronic kidney disease (then partner with those providers to prevent progression)
- Early (when eGFR <30 mL/min/1.73 m2) and frequent discussions about renal replacement therapy types – HD / PD / Transplant
- Encourage transplantation as the best replacement therapy
- Normalize kidney donation (both living and deceased)

Outline – Step 3

Step 3: Immunosuppressive transplant medications.

Evolution of Immunosuppression Medications

Typical Immunosuppression Maintenance

<u>Calcineurin</u> <u>Inhibitor</u>

Cyclosporine (Gengraf, Neoral)

or

Tacrolimus (Prograf)

 \pm

Antimetabolite

Mycophenolate mofetil (Cellcept)

or

Mycophenolate sodium (Myfortic)

or

Azathioprine (Imuran)

±

<u>Steroid</u>

Prednisone

Toxicity Profiles of Immunosuppressive Medications

Adverse effect	Steroids	CsA	Тас	mTORi	MMF	AZA
New-onset diabetes mellitus	1	↑	↑ ↑	1		
Dyslipidemias	1	↑		$\uparrow \uparrow$		
Hypertension	↑ ↑	$\uparrow \uparrow$	1			
Osteopenia	↑ ↑	↑	(↑)			
Anemia and leucopenia				1	1	↑
Delayed wound healing				1		
Diarrhea, nausea/vomiting			1		↑ ↑	
Proteinuria				↑ ↑		
Decreased GFR		↑	1			

AZA, azathioprine; CsA, cyclosporine A; GFR, glomerular filtration rate; MMF, mycophenolate mofetil; mTORi, mammalian target of rapamycin inhibitor(s); Tac, tacrolimus.

↑ indicates a mild-moderate adverse effect on the complication.

↑↑ indicates a moderate-severe adverse effect on the complication.

(1) indicates a possible, but less certain adverse effect on the complication.

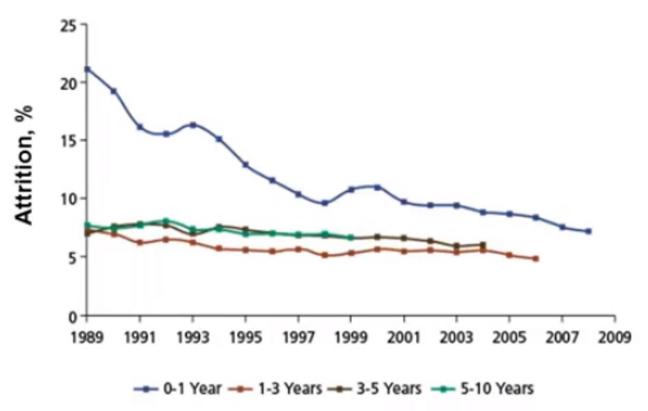
KDIGO Clinical Practice Guideline for the Care of Kidney Transplant Recipients

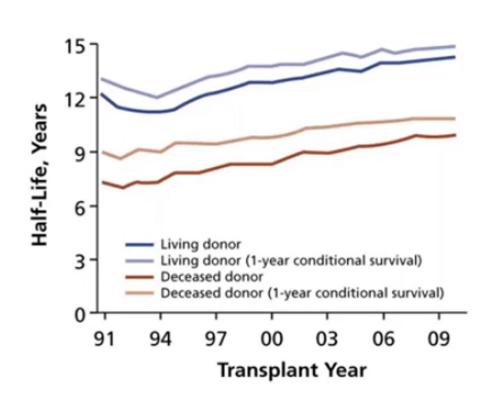
Examples of Common Drug Interactions: Cyclosporine, Tacrolimus, Sirolimus, and Everolimus

(https://www.uptodate.com/contents/image?imageKey=NEPH%2F110436)

Common types of drug interactions	Examples of interacting drugs	Approach to management in the absence of appropriate noninteracting alternatives		
Coadministration of drugs that inhibit CYP3A metabolism and/or P-gp efflux can increase immunosuppressant serum concentrations, leading to significant toxicities.	 Amiodarone ART-boosting agents (e.g., ritonavir, cobicistat) Azole antifungals (e.g., fluconazole, posaconazole, voriconazole) HIV protease inhibitors (e.g., atazanavir, nelfinavir, saquinavir) Macrolide antibiotics Non-dihydropyridine calcium channel blockers Ombitasvir-paritaprevir-ritonavir with or without dasabuvir (an HCV, direct-acting antiviral regimen) Grapefruit juice 	 Closely monitor immunosuppressant concentrations and signs of toxicity (e.g., tremors and headaches). Substantial, including preemptive, dose reduction of immunosuppressant drug may be needed (eg, on average, only 25% of the standard dose of cyclosporine is required if administered concomitantly with HIV protease inhibitors). 		
Coadministration of drugs that induce CYP3A metabolism and/or P-gp efflux pumping can decrease immunosuppressant serum concentrations, increasing the risk of organ rejection.	 Antiseizure medications, enzyme inducing (e.g., carbamazepine, fosphenytoin, phenobarbital, phenytoin, primidone) Enzalutamide Nafcillin Rifamycins (e.g., rifabutin, rifampin, rifapentine) St. John's wort 	 Closely monitor immunosuppressant serum concentrations and signs of organ rejection. Significant immunosuppressant dose increases may be needed. Enzyme induction can require up to 2 weeks to achieve maximum effect and persists for up to 2 weeks after discontinuation of the interacting medication. Clinically significant effects can occur within hours to days of starting a CYP inducer. 		
Coadministration of nephrotoxic drugs with cyclosporine or tacrolimus can cause additive or synergistic kidney injury.	Aminoglycosides Amphotericin B Colchicine Nonsteroidal anti-inflammatory drugs (NSAIDs)	Concomitant administration of cyclosporine and tacrolimus with other potentially nephrotoxic drugs should be avoided.		
Coadministration of drugs that increase serum potassium with cyclosporine or tacrolimus may cause severe hyperkalemia .	ACE inhibitors/ARBs Amiloride Spironolactone Triamterene Trimethoprim, trimethoprim-sulfamethoxazole (cotrimoxazole)	Closely monitor serum potassium levels.		
Coadministration of cyclosporine with sirolimus can increase sirolimus concentrations.	Cyclosporine	 Separate administration of sirolimus from cyclosporine by 4 hours; give sirolimus at a consistent time with respect to cyclosporine. Closely monitor immunosuppressant serum concentrations. 		
Coadministration of statin drugs with cyclosporine can increase statin levels and risk of myotoxicity.	Atorvastatin Lovastatin Pitavastatin Rosuvastatin Simvastatin	 Pravastatin and fluvastatin are preferred due to decreased interactions. Tacrolimus may be preferred over cyclosporine in patients receiving statin therapy. Cyclosporine and simvastatin should not be used together. 		

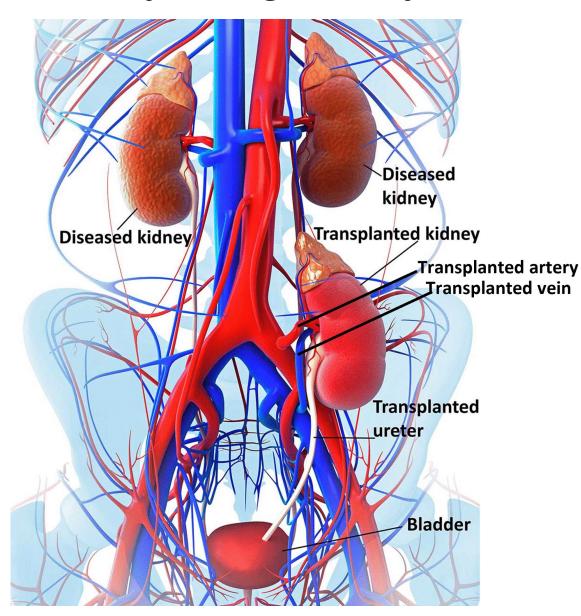
Take Away Messages About Immunosuppressive Transplant Medications

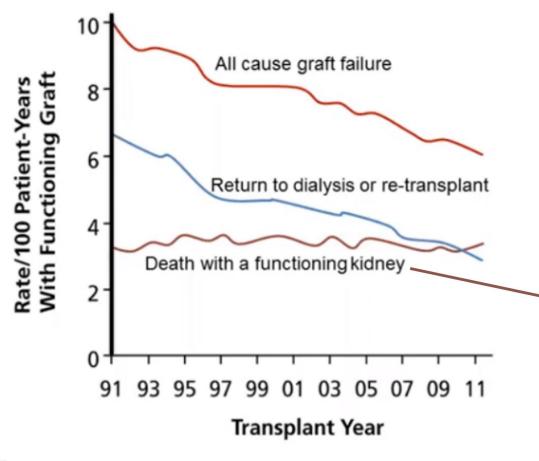

- Many different side effects
 - For new/worsening symptoms/complaints, consider possible side effects of their medications. If any question/concern, discuss with the Transplant Center.
- Many potential drug-drug, drug-food/supplement interactions
 - OTC medications can cause major problems (also marijuana/CBD/THC).
 - When adding new medications or changing doses, consider and lookup possible interactions. If any question/concern, discuss with the Transplant Center.


Outline – Step 4

Step 4: Long-term care of kidney transplant recipients

- i. Kidney allograft dysfunction
- ii. Cardiovascular disease risk reduction
- iii. Diabetes after transplant
- iv. Infection
- v. Cancer
- vi. Other issues/complications


Much of the progress in graft outcomes since the 1980s is due to better 1-year outcomes (less early rejection, but only incremental progress with longer-term survival)


Kidney Allograft Dysfunction

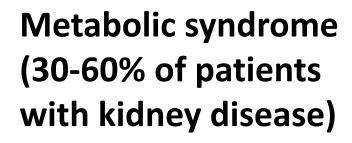
- Early detection via routine labs provides best chance for timely diagnosis and effective treatment:
 - Serum creatinine (SCr)
 - Urine protein/creatinine ratio (UPCR)
- SCr above baseline not explained by dehydration ("pre-renal") or urinary obstruction ("post-renal") is most likely an "intra-renal" allograft process:
 - Acute rejection (any medication non-adherence?)
 - Drug toxicity (e.g., high tacrolimus level)
 - Recurrent or new kidney disease (e.g., diabetic nephropathy, glomerulonephritis)
 - BK virus nephropathy
 - Chronic allograft injury (often chronic rejection)
- Careful history, including medication/supplement review
- 2. Careful exam, especially volume status
- 3. Kidney transplant ultrasound
- 4. Very low threshold for kidney transplant biopsy

https://www.healthdirect.gov.au/kidney-transplants

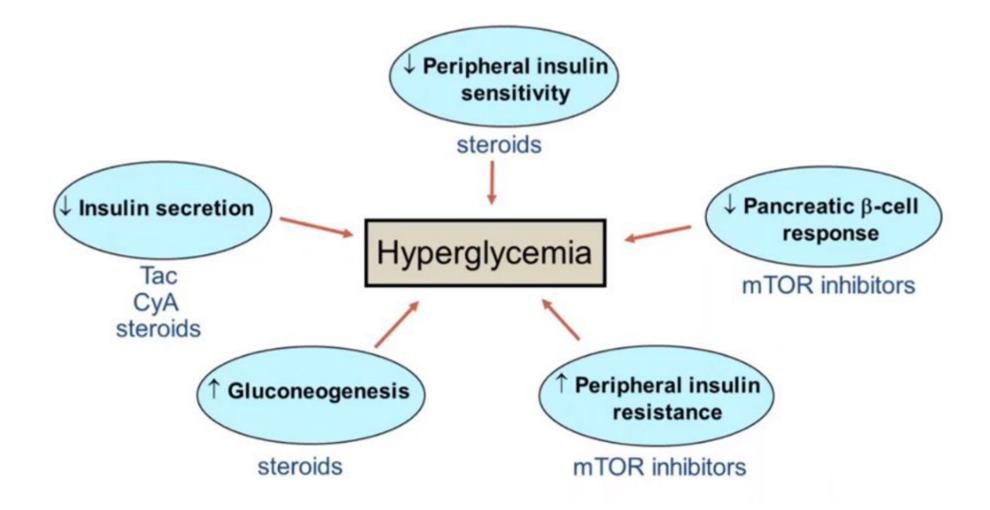
Graft Loss After Transplant (Failed Graft or Death)

Death with graft function:

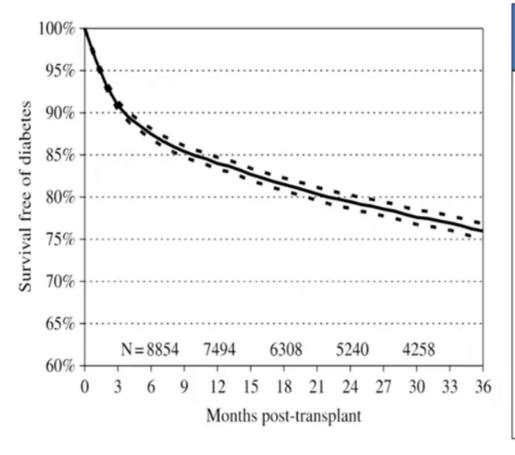
- 1) Cardiovascular disease
- 2) Infection
- 3) Malignancy
- No major improvements in rate of death with a functioning graft


2014 USRDS Annual Data Report

Cardiovascular Disease Risk Reduction


Address modifiable risk factors...

- Kidney disease
- Obesity
- Diabetes
- Hypertension
- Dyslipidemia
- Tobacco use
- Physical inactivity
- Family history
- Age



Immunosuppression and Glucose Intolerance

New Onset Diabetes After Transplant (NODAT)

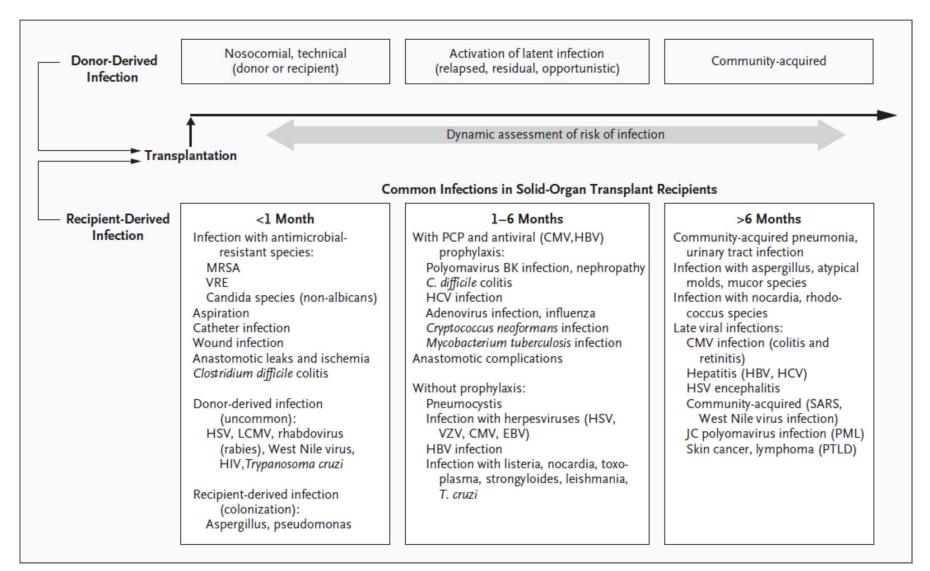
Potentially modifiable
Immunosuppression - Tac (++) - CyA (+)
- Steroids (+) - mTOR inhibitors (++)
Viral infections - HCV/CMV/HIV
Hypomagnesemia Pre-transplant IGT Obesity

Non-insulin Drugs for Diabetes After Transplant

Class	Mechanisms of Action	Example	Side Effects	Elimination/ Metabolism	CKD dose change
Sulfonylurea	Insulin secretagogue	Glipizide	Hypoglycemia	Liver	No
Glinides	Insulin secretagogue	Repaglinide	Hypoglycemia	CYP2C8/3A4	Yes
Biguanides	↓ liver glucose production	Metformin	Nausea, lactic acidosis	Kidney	Yes
Glitazones	↑ insulin sensitivity	Pioglitazone	Wt gain, edema bone loss		No
α-glucosidase inhibitors	↓ intestinal glucose absorption	Acarbose	Nausea, Flatulence	Major-gut	Yes
GLP-1R agonists	↑ glucose med insulin secretion, ↓ gastric emptying, ↓ glucagon	Exenatide	Nausea, GI	Major-kidney	Yes
DPP-4 Inhibitors	↑ glucose med insulin secretion; ↓ glucagon	Sitagliptin	Minimal	Major-kidney CYP3A4/5/2C8	Yes
SGLT-2 inhibitors	Inhibit proximal tubule glucose reabsorption	Empagliflozin	UTI, ketosis, amputations,	Major-liver CYP3A4	No

???

- Several require eGFR dose adjustment
- Effects on immunosuppression are fairly limited
- CNIs (especially cyclosporine) can potentiate several of these



Causes of Post-transplant Anemia

Common reasons for anemia in kidney transplant recipients				
Allograft dysfunction	Female sex			
Iron deficiency	Blood loss/Hemolysis			
 Medications mTOR inhibitors MMF/MPA Azathioprine ACEI/ARBs Antibiotics 	InfectionsCMVParvovirus B19Herpes viruses			
Malignancy	Inflammation/Oxidative stress			

Infections are Very Common Post-transplant

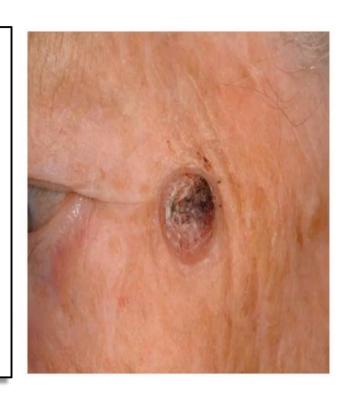
Malignancy After Transplant

- One of the most common late complications, incidence 2–4 times higher than general population
- Cancer after transplant tends to be more aggressive with increased mortality compared to general population
- Immunosuppression plays a central role in pathogenesis
- Non-melanoma skin cancer (NMSC) is most common
- Lymphomas account for 21% of cancers

Risk Factors for Malignancy After Transplant

- Immunosuppression
 - Direct effects
 - Suppress immune surveillance
 - Activate oncogenic viruses
- Underlying disease
- Type of transplant
- History of malignancy
- Established risk factors

Malignancy	Virus Associated
Cervical, vulvar, vaginal, and anal cancer	HPV-16 and -18
Hepatocellular carcinoma	HBV and HCV
PTLD	EBV
Leukemia and lymphoma	HTLV-1
Kaposi's sarcoma	HHV-8
	Suspected Viral Associations
Prostate cancer	Polyomavirus BK
Brain cancer	JCV
Brain, bone, and mesothelioma cance	SV-40


Abbreviations: EBV, Epstein-Barr virus; HBV, hepatitis B virus; HCV, hepatitis C virus; HPV, human papilloma virus; JCV, John Cunningham virus; PTLD, post-transplant lymphoproliferative disorder; HHV, human herpes virus; HTLV, human T-cell leukemia virus; SV, simian virus.

Skin Cancers After Transplant

Skin Cancers After Transplant

- Provide patient information
- Counsel about sun avoidance
- Use sun-protecting agents
- Monthly self exams
- Annual dermatology evaluation

Post-transplant Lymphoproliferative Disorders (PTLD)

- 2nd most frequent tumors in adults and most frequent in kids
- 85% are of B-cell origin
- 80% associated with EBV
- Highest risk during 1st year
- 1-3% following KTx

WHO Classification of PTLD (2008)

I. Early lesions

Plasmacytic hyperplasia

Infectious mononucleosis-like

- II. Polymorphic PTLD
- III. Monomorphic PTLD (classify according to lymphoma they resemble)

B-cell neoplasms

Diffuse large B-cell lymphoma (DLBCL)

Burkitt lymphoma

Plasma cell myeloma

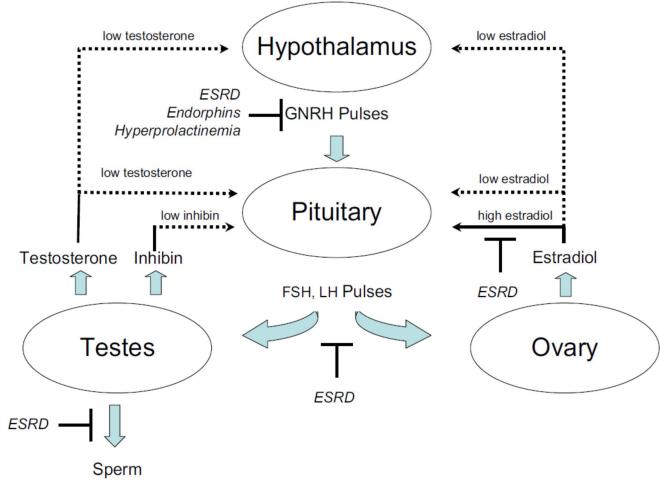
Plasmocytoma-like lesion

Other

T-cell neoplasms

Peripheral T-cell lymphoma, not otherwise specified

Hepato-splenic lymphoma


Other

IV. Classical Hodgkin lymphoma-type PTLD

Reproductive Issues After Transplant

- Infertility in CKD is common
 - Sexual dysfunction
 - Loss of libido
 - Anovulation
 - Derangements in the hormonal control of fertility
- Fertility can be restored within a few months of transplant

Holley J. Adv in CKD 2013; 20: 240-245

Reproductive Issues After Transplant (con't)

Counseling about contraception begins at the first pretransplant evaluation

- Emphasis on need for continued IS therapy
- Need to plan pregnancy as medications need to be changed
- Discuss birth control options
- Recommend waiting 12–24 months post-transplant before considering pregnancy (plus no rejections in past year)

Hyperuricemia and Gout (KDIGO)

- Treat hyperuricemia when there are complications, such as gout, tophi, or uric acid stones. [2D]
- Use colchicine to treat acute gout, with appropriate dose reduction for decreased kidney function and concomitant CNI use. [2D]
- Avoid allopurinol in patients receiving azathioprine. [1B]
- Avoid NSAIDs and COX-2 inhibitors whenever possible. [2D]

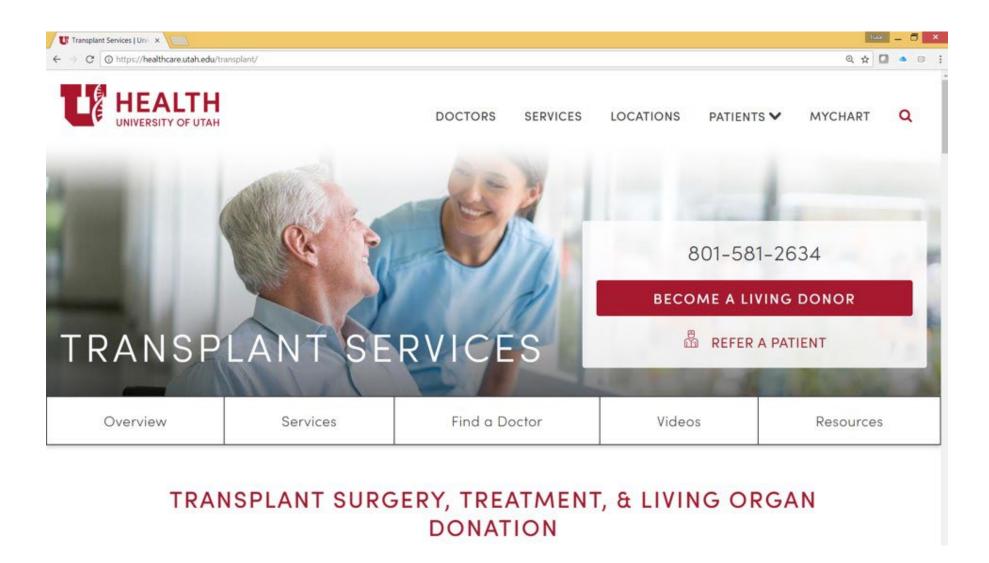
Failed Kidney Transplant (Back on Dialysis): Signs and Symptoms of Graft Intolerance (Likely Need for Graft Nephrectomy)

Common Clinical Findings	Less Common Findings
 Fever Gross hematuria Allograft enlargement and localized edema Allograft tenderness 	 Malaise Weight loss ESA resistant anemia Thrombocytopenia High inflammatory markers:
	ferritin, CRP, ESR

Take Away Messages About the Long-term Care of Kidney Transplant Recipients

- Partner with the Transplant Center and Primary Nephrologist to recognize and identify problems early "in the field"
 - Graft dysfunction / possible rejection
 - Interactions between medications, potential non-adherence
 - Infections
 - Cancers
- IHS provider goal should be early detection, not treatment
- Transplant Center will help determine and coordinate treatment
- The Transplant Center needs the IHS providers as much as the IHS providers need the Transplant Center

Resources – Kidney Transplants



- https://esrdncc.org/en/patients/ (Transplant Section)
- https://kdigo.org/guidelines/ (Transplant Recipient Tile)
 - https://kdigo.org/wp-content/uploads/2017/02/Managing-Your-Adult-Patients-Who-Have-a-Kidney-Transplant-kdigo.pdf
 - https://kdigo.org/wpcontent/uploads/2017/02/KDIGO_TX_NephsTool-Managing-Kidney-Transplant-Recipients.pdf
- https://www.myast.org/guidelines-post-kidney-transplantmanagement-community-setting

Questions? isaac.hall@hsc.utah.edu

