Antimicrobial Efforts in the Emergency Room

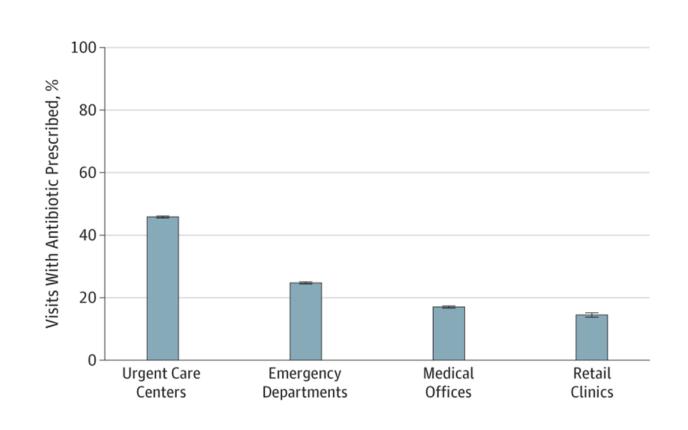
Presented By: LCDR Ashley Channels, PharmD, BCPS, CPP

October 19, 2022

Objectives

- Describe which departments in a healthcare facility have the most opportunities for improvement in antimicrobial prescribing.
- Identify common barriers to antimicrobial stewardship in the emergency department.
- Examine the risks associated with one-time antibiotic dosing before discharge from the emergency department.
- Implement antimicrobial stewardship quality-improvement best adapted for the emergency department.

Focus of Resources

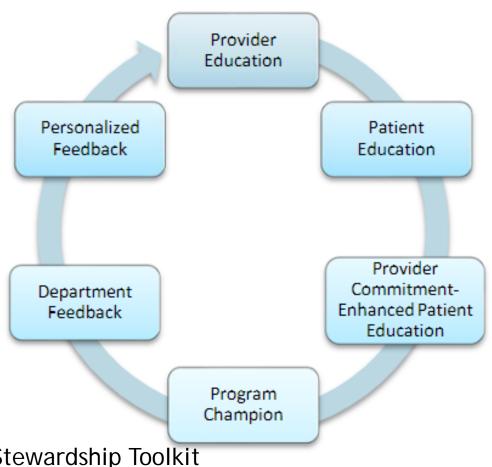

- Majority of antibiotics written in the outpatient setting
- Majority of fully functioning stewardship programs occur in inpatient setting
 - JCAHO standards?
 - Ability to better track outcomes?
 - ► More resources for these departments?

IHS Facilities Uniquely Positioned to Lead the Way in Outpatient Stewardship

- Most patients receive majority of healthcare from the same facility
- Antimicrobial stewardship programs have access abundance of data to track outcomes
- Facilities have greater financial incentive to avoid adverse outcomes and lower outpatient prescription cost

Breakdown of Inappropriate Prescribing by Departments in the Outpatient Setting

Challenges to Antimicrobial Stewardship in Urgent Care and Emergency Departments


- Patient expectations
- High workload
- Atypical prescriber scheduling
- Lack of real time pharmacist monitoring
- Lack of accountability for long term outcomes
- Lack of relationship based care
- Frequent interruptions
- Quick decisions
- Accurate coding

Problems More Specific to CIHA

- Lack of overnight coverage
- Acute care pharmacist lack of experience
- ► High turnover in emergency department
- No physician on leadership team

General Strategies for Outpatient ASP Interventions- MITIGATE Framework

MITIGATE Outpatient Antimicrobial Stewardship Toolkit stacks.CDC.gov/view/cdc/80653

Prescribers and Pharmacists Working Together

- ASP pharmacists are not police
- ASP pharmacists are a resource
- Working towards shared goals
 - Improved patient outcomes
 - Reduced re-admissions/repeat visits
 - Judicious use of facility resources

Problematic prescribing in the ED At CIHA

- Pharmacists noticed large number of IV vancomycin orders coming from the ED
- Orders often written for patients who were ultimately discharged
- Orders often written for uncomplicated SSTIs

Design

- Targeted presentations
- Guideline based order menus

Provider Education

Report cards

 Retrospective restricted antimicrobials review

Department

Feedback

Personalized

Feedback

Patient Education

- Patient handouts
- Posted signage

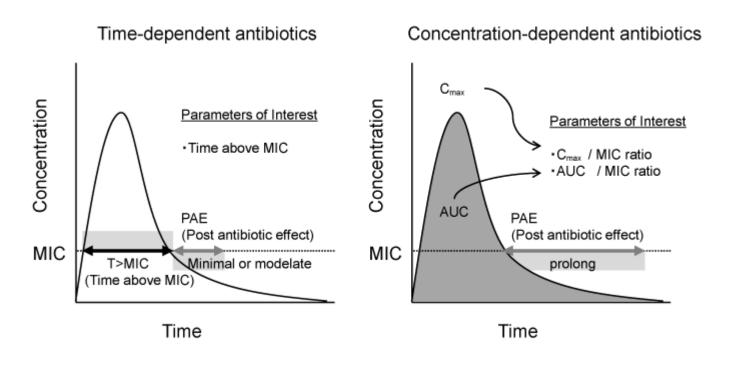
• Emails to department

Reporting at P&T

Provider Commitment-Enhanced Patient Education

 Posted commitment signage

Program Champion


ED physician representation

To-go IV Antibiotics

- One time dose of IV antibiotics given with the intent to discharge home on an oral antibiotic
- Generally not indicated except for cases of pyelonephritis when treating with an oral beta lactam

Antibiotic Pharmacokinetics

Zhao et al, Bioorganic and Med Chem 2016

Vancomycin pharmacokinetics

- Target Levels
 - ► AUC/MIC: 400-600mg•h/L
 - ► Trough: 15-20mg/L
- Real world population levels after 1g q12h
 - After 1 dose: AUC: 113.51mg•h/L ± 49.51
 - ► After 2 doses: AUC: 295.89mg•h/L ± 153.82

Mail et al, Indian J Crit Care Med, 2019

Real World Data

- Retrospective, single center, urban, tertiary care center ED study evaluating appropriateness of "to-go" vancomycin prescribing
- ▶ 70% of patients dx with SSTIs
- > 75% had MRSA risk factors
- 68% of patients only received 1 dose of vancomycin before discharge
- > 73% of patients under-dosed

Misconception 1: IV drugs have better bioavailability than oral drugs

Oral Drug	Bioavailability
Cephalexin	> 95%
Clindamycin	> 90%
Doxycycline	> 90%
Levofloxacin	> 95%
Linezolid	> 95%
Metronidazole	> 95%

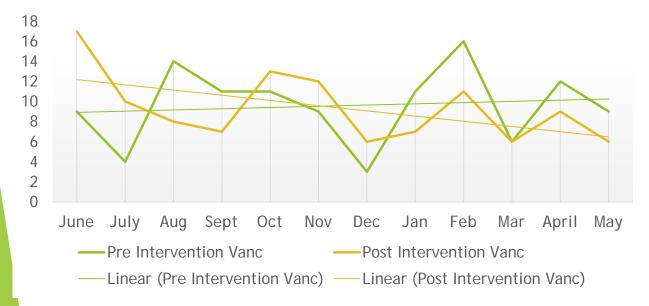
Misconception 2: IV drugs allow for test dose to make sure patient doesn't have an allergy

- ► Can be done with a one-time oral dose while awaiting lab results
- Patients could have infusion reactions that are not related to a drug hypersensitivity

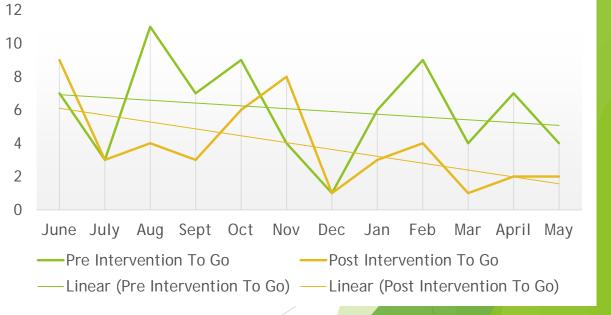
Misconception 3: IV drugs will work better/quicker

- Multiple doses required to get antibiotic to steady state
- Switching drugs is like starting over

Risks of IV Administration Over Oral in the ED


- Resistance
- Infusion reactions
- IV access
- Timely
- Expensive

Data Collection


- Icare panels pulled monthly for patients prescribed outpatient vancomycin IV prescriptions
- Compared to the same panel with addition of home discharge condition

Results

Number of Patients with To Go Vanc Orders 2020-2022

Strengths

- Plays to pharmacy's strengths
- Once up and running, low maintenance
- Data mining is simple

Limitations

- Data over COVID-19 pandemic
- ▶ Patients discharged to home could have left AMA or had beds unavailable
- Possibly could have included prescriptions from primary care (very unlikely)

Lessons Learned

- Find your high-volume problem prescribing
 - National data suggests this likely will be in urgent care or the ED
- Start with easy wins
 - Focus on areas in which pharmacists are the experts
 - Drug/bug, PK, MOA, etc...
 - ► Eases your pharmacists into having challenging conversations
 - ► Helps build the reputation of the ASP

Looking Forward

Low Effort/Low Value

• Separate infectious UA

Low Effort/High Value

- Other "to-go" antibiotic prescribing
- Culture callback

High Effort/Low Value

High Effort/High Value

- Upper respiratory infection prescribing
- Centor scoring for GAS
- ASB in geriatric patients

Summary

- Urgent care and ED often have many opportunities for improvement in antimicrobial prescribing
- ► The emergency department has unique barriers to stewardship that must be considered when designing quality improvement projects
- Outside of certain cases of pyelonephritis, to-go IV antibiotic prescribing is generally inappropriate
- Working to reduce to-go IV antibiotic prescribing can be a small, but impactful quality improvement project
- Focus limited resources on low effort, high impact projects first

References

- Eudy JL, Pallotta AM, Neuner EA, Brummel GL, Postelnick MJ, Schulz LT, Spivak ES, Wrenn RH. Antimicrobial Stewardship Practice in the Ambulatory Setting From a National Cohort. Open Forum Infect Dis. 2020 Oct 24;7(11):ofaa513. doi: 10.1093/ofid/ofaa513. PMID: 33269298; PMCID: PMC7686658
- Huang J, Kassamali Escobar Z, Bouchard TS, Lansang JMG, Jain R, Chan JD, Lynch JB, D'Angeli MA, May LS, Bryson-Cahn C. Finding the path of least resistance: Locally adapting the MITIGATE toolkit in emergency departments and urgent care centers. Infect Control Hosp Epidemiol. 2021 Nov;42(11):1376-1378. doi: 10.1017/ice.2020.1394. Epub 2021 Feb 19. PMID: 33602365.
- Lexicomp Online. Waltham, MA: UpToDate, Inc.; September 30, 2021. https://online.lexi.com. Accessed October 10, 2022
- Mali NB, Deshpande SP, Wandalkar PP, et al. Single-dose and Steady-state Pharmacokinetics of Vancomycin in Critically Ill Patients Admitted to Medical Intensive Care Unit of India. *Indian J Crit Care Med.* 2019;(11):513-517. doi: 10.5005/jp-journals-10071-23289.
- Mueller K, McCammon C, Skrupky L, Fuller BM. Vancomycin use in patients discharged from the emergency department: a retrospective observational cohort study. J Emerg Med. 2015; 49 (1): 50-57
- Palms DL, Hicks LA, Bartoces M, et al. Comparison of Antibiotic Prescribing in Retail Clinics, Urgent Care Centers, Emergency Departments, and Traditional Ambulatory Care Settings in the United States. *JAMA Intern Med.* 2018;178(9):1267-1269. doi:10.1001/jamainternmed.2018.1632
- Suda KJ, Hicks LA, Roberts RM, Hunkler RJ, Danziger LH. A national evaluation of antibiotic expenditures by healthcare setting in the United States, 2009. J Antimicrob Chemother 2013;68:715-8. http://dx.doi.org/10.1093/jac/dks445
- Suda KJ, Hicks LA, Roberts RM, Hunkler RJ, Matusiak LM, Schumock GT. Antibiotic Expenditures by Medication, Class, and Healthcare Setting in the United States, 2010-2015. Clin Infect Dis. 2018 Jan 6;66(2):185-190. doi: 10.1093/cid/cix773. PMID: 29020276; PMCID: PMC9454312.
- Yadav K, Meeker D, Mistry RD, Doctor JN, Fleming-Dutra KE, Fleischman RJ, Gaona SD, Stahmer A, May L. A Multifaceted Intervention Improves Prescribing for Acute Respiratory Infection for Adults and Children in Emergency Department and Urgent Care Settings. Acad Emerg Med. 2019 Jul;26(7):719-731. doi: 10.1111/acem.13690. Epub 2019 Jun 19. PMID: 31215721; PMCID: PMC8146207.
- Zhao M, Lepak AJ, Andes DR. Animal models in the pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Bioorg Med Chem. 2016 Dec 15;24(24):6390-6400. doi: 10.1016/j.bmc.2016.11.008. Epub 2016 Nov 9. PMID: 27887963.