Meditation as a Modulator of Stress Effects on the Mind and Body

Shawn S. Sidhu, M.D., F.A.P.A.
Nari K. Clemons, PT
Overview

I) Brief Review of Normal Structure and Function of Central Nervous System

II) Physiological Effects of Stress on the Mind and Body

III) Physiological Effects of Meditation on the Mind and Body
Brief Review of Normal Structure and Function of Central Nervous System
CNS Structure and Function

Structure – refers to “nuts and bolts” of the brain

Function – refers to inter/intra neuronal functioning

If we compare the brain to a computer, structure would refer to the hardware (computer, monitor, mouse, etc.) while function would refer to the software code while causes the computer to run smoothly.
Really More of a Continuum
(Sadock 2007, pg 70)

Cell Components (receptors, genetic material, proteins) → Neuron → Neuronal Network → Broadman Groups or Areas → Larger Structures → Whole Brain

*Enough “micro” changes over time can lead to “macro” changes (even whole brain volume)
Brain Structure
(Sadock 2007, pg. 86)

Broken Into 3 Major Areas:

1) Forebrain
2) Midbrain
3) Brainstem: Cranial nerves, vital centers (arousal, heart rate, origin of neurotransmitters)
Forebrain

(Sadock, 2007, pg 87, table 3.1-3)

<table>
<thead>
<tr>
<th>Telencephalon</th>
<th>Diencephalon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebral Cortex</td>
<td>Thalamus</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>Hypothalamus</td>
</tr>
<tr>
<td>Amygdala</td>
<td>Epithalamus</td>
</tr>
<tr>
<td>Striatum/Basal Ganglia</td>
<td></td>
</tr>
</tbody>
</table>
Cerebral Cortex

http://psychlopedia.wikispaces.com/Cerebral+Cortex
Cortex (lobes)
(Sadock 2007, pg 85, table 3.1-1)

Frontal: language (left), movement (right), executive function, motivation, voluntary movement

Temporal: Audition, language (left), some memory and emotion given proximity to limbic system

Parietal: Tactile sensation, visuospatial (right), reading/calculation (left), sensory integration

Occipital: Vision
Cortex is also divided into 47 different Brodmann areas based on differences in cellular arrangements.

Specialized Areas of Cortex
(Sadock 2007 pg 90, Ngo 2013)

Prefrontal Cortex: anterior most portion of frontal lobe (many small divisions). Executive functioning, motivation, attention, sequencing of actions, planning. Can be involved in emotion regulation, cognitive re-evaluation, reconsolidation, and mental flexibility.
Prefrontal Cortex

Specialized Areas of Cortex

Insular Cortex/Insula: Refers to deep cortex of the temporoparietal junction. Serves a role in body awareness, perception of visceral sensation, awareness of heart rate and respiratory rate, and response to pain (Ngo 2013)
Forebrain
(Sadock 2007 pg. 89)

“Top” – Cerebral Cortex

“Bottom” – Basal Ganglia (modulation of movement) Limbic System/Cingulate Cortex
Limbic System/Cingulate Cortex (Ngo 2013)

Limbic system
 Amygdala: Emotion Processing
 Hippocampus: Memory Processing

Cingulate Cortex: Known as “limbic cortex”
 Anterior Cingulate: Attention
 Posterior Cingulate: Understanding Context
Forebrain
(Sadock, 2007, pg 87, table 3.1-3)

Telencephalon
 Cerebral Cortex
 Hippocampus
 Amygdala
 Striatum/Basal Ganglia

Diencephalon
 Thalamus: relays sensory and motor signals/information to cortex (Sherman 2000)
 Hypothalamus
 Epithalamus
Hypothalamus
(Sadock 2007, pg 121)

Releases a multitude of hormones, including:

Corticotropin Releasing Hormone (CRH)

Adrenocorticotropin Hormone (ACTH)

Thyrotropin-Releasing Hormone (TRH) → Thyroid Stimulating Hormone (TSH)

Gonadotropin-Releasing Hormone (GnRH) → Luteinizing hormone (LH) and Follicle-Stimulating Hormone (FSH)

Growth Hormone Releasing Hormone (GHRH) → Growth Hormone (GH)
Typical Hypothalamic Feedback Loop

Corticotropin releasing hormone (CRH) stimulates release of corticotropin (ACTH). Corticotropin stimulates secretion of cortisol by adrenal cortex. Elevated cortisol inhibits release of CRH by hypothalamic neurosecretory cells. Cortisol secreted by the adrenal cortex suppresses secretion of CRH and ACTH.
Major Neurotransmitters (NTs)
(Sadock 2007, pgs 100-109)

Dopamine: cardiac, movement, breast feeding (Schizophrenia)

Norepinephrine/Epinephrine: sympathetic, focus (anxiety, depression)

Serotonin: gut (anxiety, depression)

Histamine: allergy/inflammation, sedation, weight gain

Acetylcholine: movement, parasympathetic (anticholinergic toxicity)

Gamma-Aminobutyric Acid (GABA): major inhibitory NT

Glutamate: major excitatory NT
Physiological Effects of Stress on the Body
Stress

What does stress even mean?

Broadly defined as:
Physical/Pain
Grief or Loss
Mental Illness (Depression, Schizophrenia)
Early Childhood Adversity/Trauma

Largely defined as when demands in life outweigh our ability to cope with them
Stress and Pain

Pain is an incredibly complex phenomenon.

The way we perceive pain is multifactorial, from the objective cellular level (automatic reflexes) all the way to the very subjective emotional level.

Even our cellular understanding of pain isn’t complete. Why would a serotonergic medication help treat pain if in theory the only receptors for pain are opioid?
Goal with Stress and Pain

Much like with pain, our goal with stress is to help explain its relationship to the body and to then work towards learning to accept it and adjust ourselves to function with both stress and pain.

A completely stress-free world is a fantasy. However, how we choose to respond to the stress in this world may make all the difference.
PsychoNeuroEndocrinology
(Sadock 2007 pgs 122-125)

Hypothalamic-Pituitary-Adrenal Axis:
High levels of stress cause increased CRH, ACTH, and cortisol levels. Over time this leads to reduced hippocampal size and enlarged adrenal glands. Chronic hypercortisolemia results in reduced immune function.

Can lead to chronic fatigue, social withdrawal, impaired sleep, and decreased concentration. Can also lead to mood disturbance. Seen in anxiety and PTSD.
Hypothalamic-Pituitary-Gonadal Axis:

High cortisol levels, especially over time, also appear to inhibit testosterone and estrogen secretion.

Testosterone: mood, energy, strength, sperm production
Estrogen: mood, libido, sense of well-being, fertility

Both of these hormones can impact the size of the hypothalamic nuclei and corpus callosum, the neuronal density in the temporal cortex, the organization of language ability, and the responsivity in Broca’s motor speech area.
Hypothalamic-Pituitary-Thyroid Axis:

Stress has also been shown to decrease conversion of T4 to T3, which means you have less active thyroid hormone circulating in your body.

Signs of hypothyroidism include: fatigue, decreased libido, memory impairment, irritability, and depression.
Severe psychosocial stress can cause growth hormone deficiency and delay puberty, and this can be severe enough to result in significant short adult stature.

Children with Growth Hormone Deficiency see improved cognitive functioning when growth hormone is supplemented.
PsychoNeuroImmunology
(Sadock 2007, pgs 125-126)

Numerous effects of stress on immunology (cortisol known to cause immunosuppression)

One study assessed medical students prior to examination and during final examination. Examination stress resulted in less natural killer T cell activity, decreased numbers of T cells, and decreased interferon production.
PsychoNeuroImmunology
(Sadock 2007, pgs 125-126)

Caregivers of people with chronic illnesses have been found to have impaired antibody responses, more days of illness, and longer latency for wound healing.

HIV patients who rate severe stress experience lower CD*+ T Cell numbers and lower natural killer cell counts.
Mental Illness:

Schizophrenia: increased interferon (helps generate immune response), lower interleukin-2 (pro-inflammatory).

Depression: increased proinflammatory interleukin-1 and interleukin-6, increased CRP.

Chronic Fatigue Syndrome: alternating overactive immune activation and suppression
PsychoNeuroImmunology
(Sadock 2007, pgs 125-126)

TAKE HOME: Stress simultaneously

1) Creates chronic, low level inflammation in the body which promotes systemic inflammation (linked to cancer, heart disease, autoimmune conditions, and depression)

2) Suppresses acute inflammation needed to fight off infections
Physiological Effects of Stress on the Brain
Effects of Hypercortisolemia
(Issa 2010, Gray 2013)

- Chronic elevated levels of cortisol in the cerebral vasculature and CSF
- Reduced level of Brain-Derived Neurotrophic Factor (BDNF)
- Decreased volume of hippocampus
Chronic Stress Effects on CNS Structures

<table>
<thead>
<tr>
<th>Structure</th>
<th>Effect of Stress</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefrontal Cortex</td>
<td>Decreased OFC activity</td>
<td>Dedovic 2009</td>
</tr>
<tr>
<td>Cingulate Cortex</td>
<td>Decreased ACC volume</td>
<td>Meng 2014, Baldacara 2014</td>
</tr>
<tr>
<td>Amygdala</td>
<td>Decreased volume</td>
<td>Hanson 2014, Stratmann 2014</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>Decreased volume (GM) Deactivity</td>
<td>Issa 2010, Gray 2013, Dedovic 2009</td>
</tr>
<tr>
<td>Temporo-Parietal Junction</td>
<td>Decreased volume</td>
<td>Stratmann 2014, Meng 2014</td>
</tr>
<tr>
<td>Insula</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“Activation” refers to increased blood flow and/or increased metabolism
Physiological Effects of Meditation on the Mind and Body
Cognitive Behavioral Therapy
Sadock, 2007, pgs. 953-961

Thoughts
Feelings
Behaviors
Chronic Stress Effects on CNS Structures

<table>
<thead>
<tr>
<th>Structure</th>
<th>Effect of Stress</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefrontal Cortex</td>
<td>Decreased OFC activity</td>
<td>Dedovic 2009</td>
</tr>
<tr>
<td>Cingulate Cortex</td>
<td>Decreased ACC volume</td>
<td>Meng 2014, Baldacara 2014</td>
</tr>
<tr>
<td>Amygdala</td>
<td>Decreased volume</td>
<td>Hanson 2014, Stratmann 2014</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>Decreased volume (GM) Deactivity</td>
<td>Issa 2010, Gray 2013, Dedovic 2009</td>
</tr>
<tr>
<td>Temporo-Parietal Junction Insula</td>
<td>Decreased volume</td>
<td>Stratmann 2014, Meng 2014</td>
</tr>
</tbody>
</table>

“Activation” refers to increased blood flow and/or increased metabolism.
Benefits of Meditation for the Brain

Simultaneously providing both “top-down” and “bottom-up” rewiring of the brain (comprehensive total brain exercise)

“Top-Down” by concentrating and focusing very hard while attempting to minimize impulses from lower brain

“Bottom-Up” by increasing our awareness of our body and in particular our heart rate and respiratory rate, which in turn allows the cortex to calm, decrease extraneous noise, and focus/concentrate
Maybe Also “Side to Side?”
(Kurth 2014)

Meditation thickens the corpus callosum, increasing “cross talk” between left and right cerebral hemispheres.
Frontal Brain Asymmetry on EEG
(Keune 2013, Moynihan 2013)

Meditation can impact frontal asymmetry. Keune reported that mindfulness meditation helped change the asymmetry pattern from withdraw to approach/motivation.

Moynihan reported that meditation helped to maintain left frontal asymmetry (where slipping to the right was undesirable)
Can Meditation Reverse the Effects of Stress on the Brain?
<table>
<thead>
<tr>
<th>Structure</th>
<th>Effect of Stress</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefrontal Cortex</td>
<td>Decreased activity</td>
<td>Dedovic 2009</td>
</tr>
<tr>
<td></td>
<td>Increased activation</td>
<td>Guleria 2013</td>
</tr>
<tr>
<td>Cingulate Cortex</td>
<td>Decreased ACC volume</td>
<td>Meng 2014</td>
</tr>
<tr>
<td></td>
<td>Increased volume</td>
<td>Baldacara 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lu 2014</td>
</tr>
<tr>
<td>Amygdala</td>
<td>Decreased volume</td>
<td>Hanson 2014,</td>
</tr>
<tr>
<td></td>
<td>Increased volume</td>
<td>Stratmann 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lu 2014</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>Decreased volume (GM)</td>
<td>Issa 2010,</td>
</tr>
<tr>
<td></td>
<td>Deactivity</td>
<td>Gray 2013</td>
</tr>
<tr>
<td></td>
<td>Increased volume</td>
<td>Dedovic 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lu 2014</td>
</tr>
<tr>
<td>Temporo-Parietal Junction</td>
<td>Decreased volume</td>
<td>Stratmann 2014,</td>
</tr>
<tr>
<td>Insula</td>
<td>Increased activation</td>
<td>Meng 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zeidan 2014</td>
</tr>
</tbody>
</table>
What About Meditation and Immune Function?
Meditation Improves Immune Function

Witek-Janusek 2008:

Women newly diagnosed with early stage breast cancer who were given mindfulness meditation had higher levels of healthy immune markers (interferon, interleukins) than controls. They also experienced improved coping skills and quality of life.
Meditation Improves Immune Function

Rosenkranz 2013:

Subjects were given a small “burn” with capsaicin cream. Those who partook in mindfulness had a much smaller post-test inflammatory response.
How About the Endocrine System?
Meditation and Cortisol

Turakitwanakan 2013:
Medical students given a four day mindfulness meditation course had significantly lower serum (blood) cortisol levels

Kang 2012:
Breast cancer patients received three hours of mindfulness meditation instruction per week for eight weeks, resulting in lower salivary cortisol, not to mention decreased perceived stress, improved coping, and decreased psychological stress
Other Organs/Diseases?
Park 2014: Mindfulness meditation resulted in reduction in systolic and diastolic blood pressure, mean arterial pressure, heart rate, and muscle sympathetic nerve activity, all critical to health in chronic kidney disease (population of study).

Manchanda 2014: Meditation can improve outcomes in individuals with coronary artery disease by reducing adverse cardiovascular events (heart attacks) by 48% over a 5 year period.
The benefits to meditation for the mind and the body are plentiful. That being said, is it possible that there can be too much of a good thing?
QUESTIONS/THOUGHTS???
References (in order of appearance)

References (in order of appearance)

References (in order of appearance)

References (in order of appearance)
